异步清零和同步时钟使能的4位加法计数器 实验报告

合集下载

实验五 含异步清零和同步使能4位加法计数器的VHDL设计

实验五 含异步清零和同步使能4位加法计数器的VHDL设计

实验五含异步清零和同步使能4位加法计数器的VHDL设计一、实验目的1掌握计数器的VHDL设计方法;2掌握异步复位和同步复位和使能的概念;3掌握寄存器性能的分析方法(即分析芯片所能达到的最高时钟频率)。

二、实验内容1异步复位4位加法计数器的设计;2同步复位4位加法计数器的设计。

3异步清0和同步时钟使能的4位加法计数器三、实验原理复位:给计数器一个初值叫复位,如果所给初值为0,则称复位为清零。

异步复位:复位跟时钟无关,只要复位信号的复位电平出现,计数器立即复位,如图5-1所示;同步复位:复位跟时钟有关,当复位信号的复位电平出现时,计数器并不立即复位,而是要等到时钟沿到来时才复位,如图5-2所示。

异步复位4位加法计数器的VHDL设计代码见教材P122-P123,仿真波形如图5-3所示。

同步复位4位加法计数器的VHDL部分代码如下,仿真波形如图5-4所示。

.图5-1异步复位图5-2同步复位图5-3异步复位计数器仿真波形图5-4同步复位计数器仿真波形四、实验步骤(一)异步复位4位加法计数器的设计1建立一个设计工程,工程名为CNT4B;2打开文本编辑器,建立一个VHDL设计文件,其VHDL代码见教材P164中的例6-20,文件名存为CNT4B.VHD。

注意文件的扩展名要选为.vhd,而且要求工程名、文件名和设计实体名必须相同。

3选器件:ACEX1K,EP1K30TC144-3(旧)或Cyclone,EP3C40Q240C8目标芯片。

4编译;5建立波形文件,然后保存,其文件名必须与工程名一致;【波形设置:①设置仿真时间为10us:②设置输入信号的波形:时钟周期设置为200ns,其他输入信号的波形设置参看图6-3。

】6仿真,观察输出波形是否正确;7时序分析:分析芯片所能达到的最高时钟频率。

【打开时序分析器,然后执行菜单命令:analysis/register performance/start,可以看到最高时钟频率为100.00MHZ】(二)同步复位4位加法计数器的设计8建立一个设计工程,工程名为CNT4B_SYS;9打开文本编辑器,建立一个VHDL设计文件,其VHDL代码参看异步计数器代码和实验原理中的参考代码,文件名存为CNT4B_SYS.VHD。

实验一2 含异步清0

实验一2    含异步清0

1)根据DE2_pin_assignments文件内容、格式 已制作本设计引脚对应文件的引脚锁定文 件:CNT4B.csv 2) 由Assignments->Import Assignment,打开 对话框,调入引脚对应文件即可。
• 进行编译、下载,通过实验,检查引脚锁定是 否正确。
• 将波形文件存盘为CNT4B.vwf
• 设定CNT4B.v是目前的顶层文件
• 由Processing->start->start annlysis & elaboration对程序进行初步的分析
• 由view->utility window->node finder,得到 如下对话框,
Filter中选择Pins: all 然后按List得到输 入输出端口列表, 用鼠标将它们拖到 波形编辑窗口
• 将instance框中的名字改为CNT4B(选中右击选择Rename Instance)
• 为看清楚,按
,将窗口浮动
• 在CNT4B框双击(Double-click to add node), 弹出节点(noder)对话框,Filter项选择all, 然后点击List
选中要观察的端口COUT、OUTY然后单击>加 入,点OK。
功能仿真
• 由Processing->generate functional simulation netlist,提取功能仿真的网表 • 由assigments->settings,对仿真工具设定为 功能仿真,并将激gt; start simulation 进行功能仿 真,并对结果进行分析。
• 锁好引脚,进行全编译(compile),重新布 局布线,时序仿真 引脚锁定,仿真结果核对无误后,准备下载

实验二含异步清0和同步使能的4位加法计数器

实验二含异步清0和同步使能的4位加法计数器

实验二含异步清0和同步使能的4位加法计数器一、实验目的:学习时序电路的设计、仿真和硬件测试,进一步熟悉VHDL技术。

二、原理说明:图2.1是一含计数使能、异步复位和计数值并行预置功能4位加法计数器,例2.1是其VHDL描述。

由图2-1所示,4位锁存器;rst是异步清0信号,高电平有效;clk是锁存信号;D[3..0]是4位数据输入端。

ENA是使能信号,当ENA为'1'时,多路选择器将加1器的输出值加载于锁存器的数据端;当ENA为'0'时将"0000"加载于锁存器。

图2-1含计数使能、异步复位和计数值并行预置功能4位加法计数器三、实验内容:1、在QuartusII上对例2-1进行编辑、编译、综合、适配、仿真。

说明例中各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。

【例2-1】module CNT4B(CLK,RST,ENA,CLK_1,RST_1,ENA_1,OUTY,COUT);input CLK,RST,ENA;output CLK_1,RST_1,ENA_1;output[3:0] OUTY;output COUT;reg[3:0] OUTY;reg COUT;wire CLK_1;wire RST_1;wire ENA_1;assign CLK_1 = CLK;assign RST_1 = RST;assign ENA_1 = ENA;always@(posedge CLK or negedge RST)beginif(!RST)beginOUTY<=4'b0000;COUT<=1'b0;endelseif(ENA)beginOUTY<=OUTY+1;COUT<=OUTY[0] & OUTY[1] & OUTY[2] & OUTY[3];endendendmodule2保存计数器程序为CNT4B.vhd,进行功能仿真、全编译、时序仿真,如出现错误请按照错误提示进行修改,保证设计的正确性3锁定引脚4下载采用JATG方式进行下载,通过ENA,CLK,RST输入,观察的LEDR[0],LEDR[7],LEDR[8],LEDR[9],LEDR[10],LEDG[0],LEDG[1],LEDG[8]亮灭验证计数器的逻辑功能。

含异步清规和同步使能的加法计数器

含异步清规和同步使能的加法计数器

实验三含异步清零和同步使能的加法计数器一、实验目的1、了解二进制计数器的工作原理。

2、进一步熟悉QUARTUSII软件的使用方法和VHDL输入。

3、时钟在编程过程中的作用。

二、实验原理二进制计数器中应用最多、功能最全的计数器之一,含异步清零和同步使能的加法计数器的具体工作过程如下:在时钟上升沿的情况下,检测使能端是否允许计数,如果允许计数(定义使能端高电平有效)则开始计数,否则一直检测使能端信号。

在计数过程中再检测复位信号是否有效(低电平有效),当复位信号起作用时,使计数值清零,继续进行检测和计数。

其工作时序如图3-1所示:图3-1 计数器的工作时序三、实验内容本实验要求完成的任务是在时钟信号的作用下,通过使能端和复位信号来完成加法计数器的计数。

实验中时钟信号使用数字时钟源模块的1HZ信号,用一位拨动开关K1表示使能端信号,用复位开关S1表示复位信号,用LED模块的LED1~LED11来表示计数的二进制结果。

实验LED亮表示对应的位为‘1’,LED灭表示对应的位为‘0’。

通过输入不同的值模拟计数器的工作时序,观察计数的结果。

实验箱中的拨动开关、与FPGA的接口电路,LED灯与FPGA的接口电路以及拨动开关、LED与FPGA的管脚连接在实验一中都做了详细说明,这里不在赘述。

数字时钟信号模块的电路原理如图3-2所示,表3-1是其时钟输出与FPGA的管脚连接表。

图3-2 数字时钟信号模块电路原理表3-1 数字时钟输出与FPGA的管脚连接表按键开关模块的电路原理如图3-3所示,表3-2是按键开关的输出与FPGA的管脚连接表。

图3-3 按键开关模块电路原理信号名称FPGA I/O名称核心板接口管脚号功能说明S[0] Pin_AF5 JP1_91 ‘S1’SwitchS[1]Pin_AH6 JP1_93 ‘S2’SwitchS[2]Pin_AH7 JP1_95 ‘S3’SwitchS[3]Pin_AH8 JP1_97 ‘S4’SwitchS[4]Pin_AG10 JP1_99 ‘S5’SwitchS[5]Pin_AG11 JP1_101 ‘S6’SwitchS[6]Pin_AH14 JP1_90 ‘S7’SwitchS[7] Pin_AG7 JP1_92 ‘S8’SwitchS[8]Pin_AG8 JP1_94 ‘S9’SwitchS[9]Pin_AF9 JP1_96 ‘S10’SwitchS[10]Pin_AH10 JP1_98 ‘S11’SwitchS[11] Pin_AH11 JP1_100 ‘S12’Switch表3-2 按键开关与FPGA的管脚连接表四、实验步骤1、打开QUARTUSII软件,新建一个工程。

四位全加器

四位全加器

4位加法计数器一、实验目的(1)学习时序电路的VHDL描述方法。

(2)掌握时序进程中同步、异步控制信号的设计。

(3)熟悉EDA的仿真分析和硬件测试技术。

二、实验原理设计一个含计数使能、异步复位和并行预置功能的4位加法计数器,RST是异步复位信号,高电平有效;CLK是时钟信号;当使能信号ENA为1时,加法计数,COUT为计数进位输出,OUTY为计数输出。

VHDL参考程序如下:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity CNT4B isport(clk:in std_logic;rst:in std_logic;ena:in std_logic;outy:out std_logic_vector(3 downto 0);cout:out std_logic);end CNT4B;architecture BEHA V of CNT4B issignal CQI:std_logic_vector(3 downto 0);beginP_REG:process(clk,rst,ena)beginif rst = '1' then CQI <= "0000";elsif clk'event and clk = '1' thenif ena = '1' then CQI <= CQI + 1;end if;end if;outy <= CQI;end process P_REG;cout <= CQI(0) and CQI(1) and CQI(2) and CQI(3);end BEHA V;三、实验任务(1)编写4位二进制加法计数器的VHDL程序。

(2)在ispDsignEXPERT System或者Quartu sⅡ上对加法计数器进行仿真。

四位加法器实验报告

四位加法器实验报告

四位加法器实验报告四位加法器实验报告一、引言在数字电路的学习中,加法器是一个非常重要的基础电路。

本次实验旨在通过设计和实现四位加法器,加深对数字电路原理的理解,并掌握加法器的设计方法和实现过程。

二、实验目的1. 理解加法器的原理和工作方式;2. 掌握加法器的设计方法和实现过程;3. 学会使用逻辑门电路和触发器构建加法器;4. 验证加法器的正确性和稳定性。

三、实验原理1. 半加器半加器是最基本的加法器,用于实现两个一位二进制数的相加。

其逻辑电路如下:(插入半加器电路图)2. 全加器全加器是由两个半加器和一个或门构成,用于实现三个一位二进制数的相加。

其逻辑电路如下:(插入全加器电路图)3. 四位加法器四位加法器是由四个全加器和一些其他逻辑门组成,用于实现四个四位二进制数的相加。

其逻辑电路如下:(插入四位加法器电路图)四、实验步骤1. 按照电路图连接逻辑门和触发器,搭建四位加法器电路;2. 使用开关设置输入数据,观察输出结果;3. 验证加法器的正确性,将不同的输入数据相加,并手动计算结果进行对比;4. 测试加法器的稳定性,观察输出结果是否随着时间稳定。

五、实验结果与分析通过实验,我们成功搭建了四位加法器电路,并进行了多组数据的测试。

实验结果表明,加法器能够正确地进行四个四位二进制数的相加,并输出正确的结果。

同时,实验中观察到输出结果在一段时间后稳定下来,验证了加法器的稳定性。

六、实验总结本次实验通过设计和实现四位加法器,加深了对数字电路原理的理解,并掌握了加法器的设计方法和实现过程。

通过实验验证了加法器的正确性和稳定性,提高了实际操作能力和解决问题的能力。

同时,实验中还发现了一些问题,比如电路连接错误、输入数据设置错误等,这些问题在实验中及时发现和解决,也对实验结果的准确性起到了保障作用。

在今后的学习中,我们将进一步深入研究数字电路的原理和应用,不断提高自己的实验技能和创新能力。

希望通过这次实验,能够为我们的学习和未来的工作打下坚实的基础。

EDA技术与FPGA应用设计实验报告--4位二进制加法计数器

EDA技术与FPGA应用设计实验报告--4位二进制加法计数器

本科实验报告课程名称:EDA技术与FPGA应用设计实验项目:4位二进制加法计数器实验地点:跨越机房专业班级:学号:学生姓名:指导教师:2012年6 月20 日一、实验目的:1.学习时序电路的VHDL描述方法。

2.掌握时序进程中同步、异步控制信号的设计。

3.熟悉EDA的仿真分析和硬件测试技术。

二、实验原理:设计一个含计数使能、异步复位和并行预置功能的4位加法计数器,RST是异步复位信号,高电平有效;CLK是时钟信号;当使能信号ENA为“1”'时,加法计数,COUT为计数进位输出,OUTY为计数输出。

三、实验内容:1.编写4位二进制加法计数器的VHDL程序。

2.在ispDesignEXPERT System上对编码器进行仿真。

3.将输入引脚连接到拨码开关,时钟输入锁定到相应频率的时钟信号,输出连接到发光二极管,下载后在实验板上验证其功能,记录实验结果。

四、实验程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALLUSE IEEE.STD_LOGIC_UNSIGNED.ALLENTITY CNT4B ISPORT(CLK:IN STD_LOGIC;RST:IN STG_LOGIC;ENA:IN STD_LOGIC;OUTY:OUT STD_LODGIC_VECTOR(3 DOWNTO 0);COUT:OUT STD_LOGIC);END CNT4B;ARCHITECTURE BEHAV OF CNT4B ISSIGNAL CQI:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINP_REG: PROCESS(CLK,RST,ENA)BEGINIF RST=’1’THEN CQI<=”0000”;ELSIF CLK’EVENT AND CLK=’1’THENIF ENA= ’1’THEN CQI<=CQI+1;ENG IF;END IF;OUTY <= CQI;END PROCESS P_REG;COUT<= CQI(0) AND CQI(1) AND CQI(2) AND CQI(3); END BEHAV;五、仿真结果:1.时序图:2.功能图:六、心得体会:通过本实验,让我对VHDL编程有了一定的了解和认识,让我初步学习了VHDL的编写及调试过程,实验中有错误产生,但是经过细心的改正,解决了问题,希望下次实验能有更大的提高。

含异步清零和同步时钟使能的4位加法器

含异步清零和同步时钟使能的4位加法器

含异步清零和同步时钟使能的4位加法器宁波⼯程学院电信学院EDA系统设计与实践实验报告实验名称含异步清零和同步时钟使能的4位加法器班级电科(系统设计)08-2 姓名学号 0840*******组员姓名实验⽇期2011-5-12指导⽼师实验四含异步清零和同步时钟使能的4位加法器⼀.实验⽬的学习计数器的设计,仿真和硬件测试。

进⼀步熟悉VHDL的编程⽅法。

⼆.实验内容本实验的内容是Quartus 11建⽴⼀个含计数使能、异步复位的4位加分计数器,SmartSOPC试验箱上进⾏硬件测试,由KEY1控制技术使能端ena并由LED指⽰,KEY2控制复位端rst并由LED2指⽰。

计数值由数码管指⽰。

三.实验原理Rst是异步清零信号,⾼电平有效。

Ema为是能端,能开始与暂停程序,当ena为0时,能所存信号。

四.实验步骤(1)破解Quartus 11;(2)建⽴⼯程:启动Quartus 11,建⽴空⽩⼯程。

命名为giui;(3)创建源程序⽂件:新建VHDL源程序⽂件giui,输⼊程序代码并保存,进⾏编译,若在编译过程中发现错误,则找出并更正,直⾄编译成功。

(4)编译并运⾏:编译并运⾏程序或者原理图,编译⽆误后,进⾏引脚锁定;(5)外部连接⽅式跟第2节相似。

五.实验程序⼀.在⼀个数码管上显⽰0~Flibrary ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity giui isport(clk48:in std_logic;key_2bit:in std_logic;dig_4bit:out std_logic_vector(3 downto 0);seg:out std_logic_vector(7 downto 0));end giui;architecture m1 of giui issignal num1:std_logic_vector(3 downto 0);signal cnt:std_logic_vector(23 downto 0);signal t: std_logic;signal q:std_logic;beginfre:process(clk48,cnt)beginif clk48'event and clk48='1' thencnt<=cnt+1;end if;q<=cnt(23);end process fre;coun:process(q)beginif q'event and q='1' thenif t='1' then num1<="0000";elsenum1<=num1+1;end if;end if;end process;SEG<= "11000000" when num1="0000" else "11111001" when num1="0001" else "10100100" when num1="0010" else"10110000" when num1="0011" else"10011001" when num1="0100" else"10010010" when num1="0101" else"10000010" when num1="0110" else"11111000" when num1="0111" else"10000000" when num1="1000" else"10010000" when num1="1001" else"10001000" when num1="1010" else"10000011" when num1="1011" else"01000110" when num1="1100" else"10100001" when num1="1101" else"10000110" when num1="1110" else"11111111";dig_4bit<="1110" when t='1' else"1111" when t='0';end m1;⼆.4位加法器Library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity sun_adder isport(clk:in std_logic;key:in std_logic;led1:out std_logic;dig:out std_logic_vector(3 downto 0);seg:out std_logic_vector(7 downto 0)); end sun_adder;architecture a of sun_adder issignal tmp:std_logic_vector(23 downto 0); signal tmp1:std_logic_vector(10 downto 0); signal address,pp:std_logic_vector(3 downto 0); signal p:std_logic_vector(1 downto 0);signal tt,t,q,q1: std_logic;signal num1,num2,num3,num4:std_logic_vector(3 downto 0);beginprocess(clk)beginif clk'event and clk='1' then tmp<=tmp+1;tmp1<=tmp1+1;end if;end process;q<=tmp(23);q1<=tmp1(10);process(q1)beginif q1'event and q1='1' then case p iswhen "00"=>pp<="1110";when "01"=>pp<="1101";when "10"=>pp<="1011";when others=>pp<="0111";end case;dig<=pp;case pp iswhen "1110"=>address<=num1;when "1101"=>address<=num2;when "1011"=>address<=num3;when others=>address<=num4;end case;p<=p+1;end if;end process;process(key)beginIf key'event and key='1' thent<= not t;end if;end process;process(q)beginif q'event and q='1' thenif t='1' then num1<="0000";num2<="0000";num3<="0000";num4<="0000";else num1<=num1+1;if num1="1001" then num1<="0000";tt<='1';if num2="1001" then num2<="0000";if num3="1001" then num3<="0000";if num4="1001" then num4<="0000";else num4<=num4+1; end if;else num3<=num3+1; end if;else num2<=num2+1; `1212212345123451233123`12341234123412341312end if; else num1<=num1+1;tt<='0'; end if; end if;end if;end process;seg<= "11000000" when address="0000" else"11111001" when address="0001" else"10100100" when address="0010" else"10110000" when address="0011" else"10011001" when address="0100" else"10010010" when address="0101" else"10000010" when address="0110" else "11111000" when address="0111" else "10000000" when address="1000" else "10010000" when address="1001" else "11111111";led1<='0' when tt='1' else'1' when tt='0';end a;六.实验现象。

设计含异步清零和同步时钟使能的加法计数器

设计含异步清零和同步时钟使能的加法计数器

附表1:广州大学学生实验报告开课学院及实验室:物理与电子工程学院-电子楼317室2016年 4 月21 日学院物电年级、专业、班姓名Jason.P 学号实验课程名称EDA技术实验成绩实验项目名称设计含异步清零和同步时钟使能的加法计数器指导教师一、实验目的:学习计数器的设计、仿真和硬件测试,进一步熟悉VerilogHDL设计技术。

二、实验内容:含异步清0和同步时钟使能的4位加法器(1)实验原理:上图是一含计数使能、异步复位的4位加法计数器,书中例3-15是其VerilogHDL描述。

由图2-1所示,图中间是4位锁存器;rst是异步清信号,高电平有效;clk是锁存信号;D[3:0]是4位数据输入端。

当ENA为‘1’时,多路选择器将加1器的输出值加载于锁存器的数据端;当ENA为‘0’时保持上一次的输出。

(2)实验步骤:(2)-1按照发给大家的文件“Quartus II 9.0基本设计流程-VerilogHDL.ppt”所讲述的步骤,在QuartusII上对例3-15(第四版)(第五版p124例5-15)进行编辑、编译、综合、适配、仿真。

说明例2-1各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。

(2)-2引脚锁定以及硬件下载测试:若目标器件是EP3C40Q240C8N,建议选实验电路模式5,用键8(PIO7)控制RST;用键7控制ENA;计数溢出COUT接发光管D8;OUTY是计数输出接数码1;时钟CLK接clock2,通过跳线选择4Hz信号。

引脚锁定后进行编译、下载和硬件测试实验。

将实验过程和实验结果写进实验报告。

三、实验HDL描述:module CNT10(CLK,RST,EN,LOAD,COUT,DOUT,DATA)input CLK,EN,RST,LOAD; //定义输入信号input[3:0] DATA; //定义4位的并行加载数据DATAoutput[3:0] DOUT; //定义4位的计数输出数据DOUToutput COUT; //定义进位输出信号COUTreg[3:0] Q1; //定义4位的寄存器型中间变量Q1reg COUT;assign DOUT = Q1; //将内部寄存器的计数结果输出至DOUTalways @(posedge CLK or negedge RST) //时序过程beginif(!RST) Q1 <= 0; //RST=0时,对内部寄存器单元异步清0else if(EN)begin //同步使能EN=1,则允许加载或计数if(!LOAD) Q1 <= DATA; //当LOAD=0,向内部寄存器加载数据else if(Q1<9) Q1 <=Q1+1; //当Q1小于9时,允许累加else Q1 <=4'b0000; //否则一个时钟后清零返回初值endendalways @(Q1) //组合过程if (Q1==4'h9) COUT = 1'b1;else COUT = 1'b0;endmodule四、仿真结果:图1图2由图1的时序波形可见,当EN=0时,DOUT的输出数据3保持了一段时间;当EN=1,且在时钟CLK的上升沿时间范围LOAD=0时,4位输入数据DATA=0被加载,在LOAD=1后作为计数器的计数初值(图1);当EN=1,LOAD=1时,输入的数据不被加载;RST在任意时刻均有效,即使CLK非上升沿时,计数也能即刻清0(图2:计数到3后清0);当计数到9时,COUT输出进位1,如图2所示。

实验二 四位加法计数器设计

实验二 四位加法计数器设计

设计要求:
1异步复位,即复位端有效,则计数器输出0; 2时钟信号上升沿有效,且计数器使能端有效, 计数器加1输出;
3设计为16进制计数器,即计数值为F则又 回0,进位输出1;
4位加法器(加1器) 多路选择器 4位锁存器
含计数使能、异步复位和
计数值并行预置功能4位加法计数器
【CNT4B】 module cnt4b (clk, rst, en, cq, cout); input clk; input rst; input en; output[3:0] cq; output cout; reg[3:0] cq; reg cout; reg[3:0] cqi;
(6)实验报告:将实验原理、设计过 程、编译仿真波形和分析结果、硬件测 试实验结果写进实验报告。
实验仿真波形图
定义数码管1 显示4位计数输出 定义LED1显示进位 选择模式5 定义键1控制清0
其余作默认设置
选择Clock0作时钟 输入频率选择4Hz
定义键2控制使能
end
end if (cqi == 15) begin cout <= 1'b1 ; end else begin cout <= 1'b0 ; end cq <= cqi ;
end endmodule
(4)实验内容2: 引脚锁定以及硬件下载测试 若目标器件是EPM7128SLC84-15,建议选实验 电路模式5,用键8(PIO7)控制RST;用键7( PIO6)控制ENA;计数溢出COUT接发光管D8( PIO15);OUTY是计数输出,接数码1(PIO19PIO16,低位靠右);时钟CLK接clock0,通过 跳线选择4Hz信号。引脚锁定后进行编译、下 载和硬件测试实验。将实验过程和实验结果写 进实验报告。

4位全加器实验报告

4位全加器实验报告

4位全加器实验报告篇一:四位全加器实验报告实验一:四位全加器实验报告实验日期:学生姓名:陆小辉(学号:25)指导老师:黄秋萍加法器是数字系统中的基本逻辑器件,是构成算数运算电路的基本单元。

1位加法器有全加器和半加器两种。

多位加法器构成方式有并行进位方式和串行进位方式。

并行进位加法器设有并行进位产生逻辑,运算速度较快;串行进位加法器是将全加器级联构成多位加法器。

并行进位加法器通常比串行进位加法器占用更多的资源,随着位数的增多,相同位数的并行进位加法器比串行进位加法器的资源占用差距快速增大。

因此,在工程中使用加法器时,要在速度与容量之间寻求平衡。

一、设计要求:设计四位全加器,完成相应的功能。

可采用并行进位方式和串行进位方式,可采用三种常用建模方式中的任意一种。

三、测试代码如(转载自:小草范文网:4位全加器实验报告)下: module text_fulladd4; 二、设计代码如下:(此处采用数据流建模)wire [3:0]sum; module fulladd4(sum,cout,a,b,cin); wire cout; output [3:0]sum; reg [3:0]a,b; output cout; reg cin; input [3:0]a,b; fulladd4 f1(sum,cout,a,b,cin);input cin; initial assign {cout,sum}=a+b+cin; begin endmodule a=4'b0; b=4'b0; cin=1'b0; #210 $stop; end always #10 a=a+1; always #5 b=b+1; always #100 cin=cin+1;endmodule 四、仿真波形如下:续图篇二:4位全加器实验报告数电第一次实验通信1402 程杰 UXX13468【实验目的】采用ISE集成开发环境,利用verilog硬件描述语言中行为描述模式、结构描述模式或数据流描述模式设计四进制全加器。

太原理工大学 EDA实验 VHDL方式设计4位加法计数器

太原理工大学 EDA实验 VHDL方式设计4位加法计数器

本科实验报告课程名称:CPLD/FPGA应用设计实验名称: VHDL方式设计4位加法计数器实验二VHDL方式设计4位加法计数器一、实验目的1、学习时序电路的VHDL描述方法。

2、掌握时序进程中同步、异步控制信号的设计。

3、熟悉EDA的仿真分析和硬件测试技术。

二、实验原理设计一个含计数使能、异步复位和并行预置功能的4位加法计数器,RST是异步复位信号,高电平有效;CLK是时钟信号;当使能信号ENA为“1”时,加法计数,COUT为计数进位输出,OUTY为计数输出。

三、实验仪器Windows xp操作系统;ispDesignEXPERT System软件;1016E开发板。

四、实验任务1、编写4位二进制加法计数器的VHDL程序。

2、在ispDesignEXPERT System上对编码器进行仿真。

3、将输入引脚连接到拨码开关,时钟输入锁定到相应频率的时钟信号,输出连接到发光二极管,下载后在实验板上验证其功能,记录实验结果。

五、实验步骤1、VHDL文本编辑在MUX+PLUS集成环境下,执行“file”中的“new”命令,弹出编辑文本类型的对话框,选择“text edior file”后单击“OK”。

先采用VHDL文本输入设计法实现4位二进制加法计数器的数字逻辑电路,并将文件cnt4.vhd保存到创建的目录下。

library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity cnt4 isport(clk : in std_logic;rst : in std_logic;ena : in std_logic;outy :out std_logic_vector(3 downto 0);cout :out std_logic);end cnt4;architecture behav of cnt4 issignal cqi : std_logic_vector(3 downto 0);beginp_reg : process(clk,rst,ena)beginif rst ='1'then cqi <="0000";elsif clk'event and clk ='1'thenif ena='1' thencqi<=cqi+1;end if;end if;outy <= cqi;end process p_reg;cout <=cqi(0) and cqi(1) and cqi(2) and cqi(3);end behav;2、编译文件对cnt4.vhd设计文件进行编译,进而实现四位同步二进制加法计数器的数字逻辑电路3、功能时序仿真4位加法计数器功能仿真图4位加法计数器时序仿真图4、引脚锁定5、器件适配在ispDesignEXPERT System Project Navigator主窗口中选中左侧的ispLSI1016E器件,双击右侧的Compile Design选项,进行器件适配。

含异步清0和同步时钟使能的4-位加法计数器-报告

含异步清0和同步时钟使能的4-位加法计数器-报告

含异步清0和同步时钟使能的4-位加法计数器-报告-CAL-FENGHAI.-(YICAI)-Company One1EDA设计课程实验报告实验题目:含异步清0和同步时钟使能的4 位加法计数器学院名称:专业:班级:姓名:高胜学号小组成员:指导教师:一、实验目的学习计数器的设计,仿真和硬件测试,进一步熟悉VHDL 的编程方法。

二、设计任务及要求1.设计总体要求:利用Quartus II建立一个含技术使能、异步复位的4位加法计数器,在SmartSOPC试验箱上进行硬件测试,由KEY1控制技术使能端ena并由LED1指示,KEY2控制复位端rst 并由LED2指示。

计数值由数码管指示。

2.设计基本要求:(1)进行正常的加法计数功能。

(2)由四个数码管显示其计数情况。

三、系统设计1、整体设计方案含异步清零与同步时钟使能计数器由译码显示电路、脉冲发生电路和16进制计数器这3个基本电路组成的。

此次设计要实现的功能有:正常的计数,异步清零,同步使能功能。

整体设计系统框图如图1所示:图1 含异步清零与同步时钟使能计数器系统结构图2、功能模块电路设计(1)各模块设计:译码显示电路模块框图(见图2):图2 译码显示电路系统输入输出模块框图脉冲发生电路模块框图(见图3):图3 秒脉冲发生电路系统输入输出模块框图16位进制计数电路系模块框图(见图4):图4 16位进制计数电路系统输入输出模块框图秒脉冲发生电路产生脉冲输入到16位计数器电路,计数器电路响应脉冲计数然后将计数响应输入到译码显示电路,译码显示电路响应,这时实验箱上8个数码管的后4位将进行从0到F计数的循环显示。

整体输入输出模块框图(见图5):图5 含异步清零与同步时钟使能计数器系统输入输出模块框图(2)模块逻辑表达(见表一和表二)功能 clk rst ena dout[3:0] 异步清零 X 0 X 0 0 0 0表一 16进制计数器的真值表表二译码显示电路的真值表(3)算法流程图译码显示电路流程图(见图6):图6 译码显示电路算法流程图16位计数器流程图(见图7):图7 16位计数器电路算法流程图(4)Verilog源代码译码显示电路代码:module dec(d,seg,dig); //定义模块名与输入输出input[3:0] d;output[7:0] seg;output[3:0] dig; //定义输入输出与数据类型reg[7:0] seg_r; //定义一个reg类型数据assign dig=4'b0000; //给dig赋值0assign seg=seg_r; //将reg类型数据与wire类型数据进行转换always @(d) //检测目标信号dbegincase(d) //case语句,目标公式为d4'b0000:seg_r=8'hc0; //当4位的d数据变化时对应的rge数据类型的seg_r数值4'b0001:seg_r=8'hf9;4'b0010:seg_r=8'ha4;4'b0011:seg_r=8'hb0;4'b0100:seg_r=8'h99;4'b0101:seg_r=8'h92;4'b0110:seg_r=8'h82;4'b0111:seg_r=8'hf8;4'b1000:seg_r=8'h80;4'b1001:seg_r=8'h90;4'b1010:seg_r=8'h88;4'b1011:seg_r=8'h83;4'b1100:seg_r=8'hc6;4'b1101:seg_r=8'ha1;4'b1110:seg_r=8'h86;4'b1111:seg_r=8'h8e;default:seg_r=8'h0; //其余d的显示的数据seg_r显示为0endcase //结束case语句end //结束always语句endmodule //结束程序16进制计数器电路代码:module jsqt(clk,rst,ena,dout); //定义模块名与输入输出input clk,rst,ena;output[3:0] dout; //定义输入输出与数据类型reg[3:0] dout_r; //定义一个reg数据类型assign dout=dout_r; //将reg类型数据与wire类型数据进行转换always @(posedge clk or negedge rst) //检测目标信号时钟或异步信号beginif(rst==0) //检测信号rst是否恒等于0dout_r=4'b0000; // 给reg数据类型的dout_r赋值0else if(ena==1) //检测信号ena是否恒等于1dout_r=dout_r+1; //数据dout_r加1end //结束always语句endmodule //结束程序四、系统调试1、仿真调试(1)仿真代码译码显示电路仿真代码:`timescale 1ns/1nsmodule dec_tp; //测试模块的名字reg[3:0] d; //测试输入信号定义为reg型wire[7:0] seg; //测试输出信号定义为wire型wire[3:0]dig; //测试输出信号定义为wire型parameter DELY=100; //延时100秒dec u1(d,seg,dig); //调用测试对象assign dig=4'b0000; //给dig赋值0initial begin //激励波形设定d=4'b0;#DELY d=4'b0001;#DELY d=4'b0010;#DELY d=4'b0011;#DELY d=4'b0100;#DELY d=4'b0101;#DELY d=4'b0110;#DELY d=4'b0111;#DELY d=4'b1000;#DELY d=4'b1001;#DELY d=4'b1010;#DELY d=4'b1011;#DELY d=4'b1100;#DELY d=4'b1101;#DELY d=4'b1110;#DELY d=4'b1111;#DELY $finish;endinitial $monitor($time,,,"seg=%d,dig=%d,d=%b",seg,d,dig); //输出格式i定义endmodulemodule dec(d,seg,dig); //命名模块名字input[3:0] d;output[7:0] seg;output[3:0] dig; //定义输入与输出reg[7:0] seg_r; // 定义seg_r的reg型数据assign dig=4'b0000; //给dig赋值0assign seg=seg_r; //将reg型数据转化为wire型数据always @(d) //检测d的数据是否变化begincase(d) //七段译码4'b0000:seg_r = 8'hc0; //显示04'b0001:seg_r = 8'hf9; //显示14'b0010:seg_r = 8'ha4; //显示24'b0011:seg_r = 8'hb0; //显示34'b0100:seg_r = 8'h99; //显示44'b0101:seg_r = 8'h92; //显示54'b0110:seg_r = 8'h82; //显示64'b0111:seg_r = 8'hf8; //显示74'b1000:seg_r = 8'h80; ///显示84'b1001:seg_r = 8'h90; //显示94'b1010:seg_r = 8'h88; //显示a4'b1011:seg_r = 8'h83; //显示b4'b1100:seg_r = 8'hc6; //显示c4'b1101:seg_r = 8'ha1; //显示d4'b1110:seg_r = 8'h86; //显示e4'b1111:seg_r = 8'h8e; ///显示fendcase //结束case语句end //结束always语句endmodule //结束程序16进制计数器仿真代码:`timescale 1ns/1nsmodule jsqt_tp; //测试模块的名字reg clk,rst,ena; //测试输入信号定义为reg型wire[3:0] dout; //测试输出信号定义为wire型parameter DELY=100; //延时100秒jsqt u1(clk,rst,ena,dout); //调用测试对象initial begin //激励波形设定clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY $finish;endinitial$monitor($time,,,"dout=%d,rst=%b,ena=%b,clk=%b",dout,rst,ena,clk); //输出格式i定义endmodulemodule jsqt(clk,rst,ena,dout); //定义模块名与输入输出input clk,rst,ena;output[3:0] dout; //定义输入输出与数据类型reg[3:0] dout_r; //定义一个reg数据类型assign dout=dout_r; //将reg类型数据与wire类型数据进行转换always @(posedge clk or negedge rst) //检测目标信号时钟或异步信号beginif(rst==0) //检测信号rst是否恒等于0dout_r=4'b0000; // 给reg数据类型的dout_r赋值0else if(ena==1) //检测信号ena是否恒等于1dout_r=0; //给dout_r赋初值dout_r=dout_r+4’b1; //数据dout_r加1end //结束always语句endmodule //结束程序(2)仿真波形图译码显示仿真波形图(见图8):图8 译码显示部分仿真波形图16进制计数器仿真波形图(见图9):图9 16进制计数器仿真波形图(3)波形分析由图6-1与图6-2可以看出给4位dig赋值0,每延迟100秒可以看见4位的d变化与8位seg产生的数据与代码上的编程相符合。

设计含异步清零和同步时钟使能的加法计数器.doc

设计含异步清零和同步时钟使能的加法计数器.doc

设计含异步清零和同步时钟使能的加法计数器.doc加法计数器是一种常见的数字电路,它可以用于计数器、频率分频等应用。

本文将介绍一种具有异步清零和同步时钟使能的加法计数器的设计方法。

一、电路原理加法计数器由若干个触发器组成,每个触发器的输出连接到下一个触发器的时钟端。

当计数器接受到一个时钟信号时,每个触发器的状态将根据前一个触发器的状态和时钟信号发生变化,从而实现计数的功能。

本文介绍的加法计数器还包含了异步清零和同步时钟使能功能,它们分别被连接到清零端和时钟端。

当清零端接受到一个高电平信号时,计数器的状态将被清零;当时钟端接受到一个高电平信号时,计数器将在时钟上升沿时计数。

二、电路实现本文中的加法计数器由4个D触发器和一些逻辑门组成,如图所示。

其中,D触发器的输入资源于四个运算器之中,运算器分别为。

①.异或门(XOR):将A,B两个数字按位异或,当两个输入不同时,输出为1;当两个输入相同时,输出为0。

②.与非器(NAND):将AB两个输入同时取反再进行与运算,输出为非AB的结果。

在加法计数器中,D触发器的输入端连接到异或门,异或门的两个输入端分别连接到计数器输入和进位信号。

同时,计数器输出也会连接到一个4位数显。

逻辑门的输出信号会被连接到触发器的时钟控制端或清零控制端,从而实现对计数器状态的控制。

三、时序分析1.异步清零当异步清零端接受到一个高电平信号时,计数器的状态将被清零。

具体来说,所有触发器的输出都将被强制为低电平信号。

这种操作可以通过将清零信号连接到每个D触发器的清零输入实现。

2.同步时钟使能当同步时钟使能端接受到高电平信号时,计数器只在时钟上升沿时计数。

这种操作可以通过将时钟使能信号连接到所有D触发器的时钟输入实现。

具体来说,当A和B两个输入都为0时,输出为0;当A和B两个输入都为1时,输出为0;当A和B两个输入中有一个为1时,输出为1。

四、总结本文介绍了一种具有异步清零和同步时钟使能的加法计数器的设计方法。

含异步清0和同步时钟使能的4位加法计数器

含异步清0和同步时钟使能的4位加法计数器

含异步清0和同步时钟使能的4位加法计数器含异步清0和同步时钟使能的4位加法计数器⼀、实验⽬的学习计数器的设计、仿真和硬件测试,进⼀步熟悉VHDL的编程⽅法⼆、实验内容本实验的内容是QuartusII建⽴⼀个含计数使能、异步复位的4位加法计数器,并执⾏仿真测试。

最后在SmartSOPC实验箱上进⾏硬件测试,有KEY1控制计数使能端ENA并有LED1指⽰,KEY2控制复位端并由LED2指⽰。

进位输出有LED8指⽰,计数值由数码管指⽰。

时钟CLK有分频模块int-div分频得到4HZ的信号。

三、实验原理实验图是⼀含计数使能、异步复位和计数值并⾏预置功能4位加法计数器,例1是其VHDL描述。

由实验图所⽰,图中间是4位锁存器;rst 是异步清信号,⾼电平有效;clk是锁存信号;D[3..0]是4位数据输⼊端。

当ENA为'1'时,多路选择器将加1器的输出值加载于锁存器的数据端;当ENA为'0'时将"0000"加载于锁存器。

四、实验步骤(1)启动QuartusII建⽴⼀个空⽩⼯程,然后命名为cnt-4b.qbf。

(2)新建VHDL源程序⽂件cnt4b.vhd,输⼊程序代码并保存,进⾏综合编译,若在编译过程中发现错误,则找出并更正错误,直到编译成功为⽌。

(3)建⽴波形仿真软件并进⾏仿真验证。

(4)将光盘中EDA⽬录下的int-div.bsf、int-div.vhd和decl7s.bsf、decl7s.vhd(5)新建图形设计⽂件(顶层模块)命名为cnt-4b.bdf并保存。

(6)选择⽬标器件并对相应的引脚进⾏锁定,在这⾥所选择的器件为Altera公司的Cyclone系列的EP1C12Q240C8芯⽚,引脚锁定⽅法如图,将未使⽤管脚设置为三态输⼊(⼀定要设置,否则可能会损坏芯⽚)。

(7)将cnt-4b.qbf.设置为顶层实体。

对该⼯程⽂件进⾏全程编译处理,若在编译过程中发现错误,则找出并更正错误,直到编译成功为⽌。

含异步清零和同步时钟使能的加法计数器设

含异步清零和同步时钟使能的加法计数器设

EDA实验报告书课题名称含异步清零和同步时钟使能的加法计数器设计实验目的1.学习计数器的设计、仿真和硬件测试方法;2.进一步熟悉VHDL设计技术;设计要求设计24进制含异步清零和同步时钟使能的加法计数器,具体要求如下:1.清零端高电平时,信号输出为0;使能端高电平时可以计数;2.本计数器为上升沿触发;3.计数器的输出为两路信号,分别代表计数值的个位和十位;两路信号以BCD码输出。

设计思路根据十进制使能端加法计数器设计24进制计数器,设计异步清零;清零端高电平时,信号输出为0;使能端高电平时可以计数。

现根据书上设计出24进制计数器,再通过改进,变为两路输出BCD码。

设计原理图及源程序仿真波形图实验结果问题讨论LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY JINZHI60 ISPORT(CLK,RD,EN:IN STD_LOGIC;CQ,CP:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT:OUT STD_LOGIC);END JINZHI60;ARCHITECTURE BBQ OF JINZHI60 ISSIGNAL CS,CG: STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINPROCESS(CLK,RD,EN)BEGINIF RD='1' THEN CG<="0000";CS<="0000";ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENIF (CS="0101" AND CG="1001") THENCG<="0000";CS<="0000";ELSIF CG="1001" THEN CG<="0000";IF CS="0101" THEN CS<="0000";ELSE CS<=CS+1;END IF;ELSE CG<=CG+1;END IF;END IF;END IF;CQ<=CG;CP<=CS;IF (CS="0101" AND CG="1001") THEN COUT<='1';ELSECOUT<='0';END IF;END PROCESS;END BBQ;教师评分教师签名日期操作成绩报告成绩。

异步清零和同步时钟使能的4位加法计数器 实验报告

异步清零和同步时钟使能的4位加法计数器 实验报告

异步清零和同步时钟使能的4位加法计数器一、实验目的:学习计数器的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。

二、实验原理本试验中所要设计的计数器,由4位带异步清零的加法计数器和一个4位锁存器组成。

其中,rst是异步清零信号,高电平有效;clk是计数时钟,同时也是锁存信号;ENA为计数器输出使能控制。

当ENA为‘1’时,加法计数器的输出值加载于锁存器的数据端,;当ENA为‘0’时锁存器输出为高阻态。

当计数器输出“1111”时,进位信号COUT为“1”。

三、实验内容1)画出该计数器的实体框图02)用VHDL语言完成上述计数器的行为级设计。

------------------------------------------------------------------------------------------------------- 程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT4 ISPORT (RST,CLK,ENA:IN STD_LOGIC;COUT: OUT STD_LOGIC;OUTY :OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END CNT4;ARCHITECTURE behv OF CNT4 ISBEGINPROCESS (RST,ENA,CLK)VARIABLE CQI :STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST='1' THEN CQI :=(OTHERS =>'0');ELSIF CLK'EVENT AND CLK='1' THENIF ENA ='1' THENIF CQI < 15 THEN CQI:=CQI+1;ELSE CQI :=(OTHERS =>'0');END IF;END IF;END IF;IF CQI =15 THEN COUT<='1';ELSE COUT <='0';END IF;OUTY <=CQI;END PROCESS;END behv;3)用QuartusII对上述设计进行编译、综合、仿真,给出其所有信号的仿真波形和时序分析数据。

【实验三】含异步清0和同步时钟使能的4位加法计数器

【实验三】含异步清0和同步时钟使能的4位加法计数器
eda实验实验三含异步清0和同步时钟使能的4位加法计数器实验目的学习使用vhdl语言进行含异步清零和同步加载与时钟使能的计数器的设计
EDA实验
【实验三】含异步清0和同步时钟使能的4 位加法计数器
实验目的

掌握简单逻辑电路的设计方法。 学习使用VHDL语言进行含异步清零和同步加 载与时钟使能的计数器的设计。
实验原理 下图是本试验中设计所要的计数器,由4位带异 步清零的加法计数器和一个4位锁存器组成。其 中,输入端有异步清零信号RST,高电平有效; 时钟信号CLK;计数使能信号ENA,高电平有 效;输出端有进位信号COUT和计数值OUTY。 当异步复位信号RST是高电平时,计数值OUTY 输出0;当计数使能控制信号
实验内容


END IF; END IF; COUT<=CQI(0) AND AND CQI(3);
实验要求
1. 说明例5-1各语句的含义,以及该例的整体功 能。在MAXPLUS II上进行编辑、编译、综合、 适配、仿真。 2. 设计10进制计数器的程序进行编辑、编译、综 合、适配、仿真;并进行引脚锁定及硬件测试。 建议选实验电路模式5,用数码1显示译码输出 (PIO19---PIO16),D8 (PIO15)作为 进位输出,键8、键7(PIO7---PIO6)两位 控制输入,硬件验证译码器的工作性能。
实验原理
ENA为‘1’时允许计数,当ENA为‘0’时停止计数。 计数器输出为“1111”时(十进制计数器,输出为 “ 1001”) ,进位信 COUT 为“ 1” ,否则 COUT 输 出 为“0”。
实验内容



程序5-2: IF RST='1'THEN CQI<="0000"; ELSIF CLK'EVENT AND CLK='1' THEN IF ENA='1' THEN IF CQI<"1001" THEN CQI <=CQI+1; ELSE CQI<="0000"; END 在例 4-3-1 中是否可以不定义信号 CQI 而直接 用输出端口信号完成加法运算 ,即 “OUTY<=OUTY+1”?

设计含异步使能清0和同步时钟使能的加法计数器

设计含异步使能清0和同步时钟使能的加法计数器

综合课程设计实验设计含异步使能清0和同步时钟使能的加法计数器1.实验目的1.计数器的设计2.QUARTUS 2中SIGNALTAP 2实时测试技术3.FPGA配置芯片的使用4.继续熟悉实验的软硬件平台2.实验步骤与结果1.设计含异步使能清0和同步时钟使能的加法计数器源代码:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10 ISPORT(CLK,RST,EN:IN STD_LOGIC;CQ:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT: OUT STD_LOGIC);END CNT10;ARCHITECTURE BEHAV OF CNT10 ISBEGINPROCESS(CLK,RST,EN )VARIABLE CQI :STD:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST=’1’ THEN CQI:=(OTHERS=>’0’); --复位信号ELSIF CLK’EVENT AND CLK=’1’ THENIF EN=’1’ THEN --使能信号IF CQI<9 THEN CQI:=CQI+1;ELSE CQI:=(O THERS=>’0’);END IF;END IF;IF CQI=9 THEN COUT<=’1’; --进位ELSE COUT<=’0’;END IF;CQ<=CQI;END PROCESS;END BEHAV;实验结果:键2低电平时允许计数,键1高电平时允许计数,数码管最后一位正确计数0到9,当有进位时,发光管D1显示进位信号。

2.使用嵌入式逻辑分析仪SIGNALTAP2 进行实时测试按如图设置SIGNALTAP 2获得实验波形:可以看到CQ的波形为锯齿状的3.将计数器设计文件烧到实验板上FPGA的配置器件EPCS1中,实现掉电保护实验结果:掉电重启以后实验板上程序的功能正常。

含异步清0和同步时钟使能的4位加法计数器 EDA技术与Verilog HDL实验报告

含异步清0和同步时钟使能的4位加法计数器 EDA技术与Verilog HDL实验报告

含异步清0和同步时钟使能的4位加法计数器一.实验目的熟悉在QuartusII下设计含异步清0和同步时钟使能的4位加法计数器。

二.实验内容在QuartusII下设计含异步清0和同步时钟使能的4位加法计数器,并编译、仿真验证其功能。

三.程序清单计数器顶层文件设计:10进制计数器文本输入:module CNT10(clk,rst,en,load,cout,dout,data);input clk,en,rst,load;input [3:0] data;output[3:0] dout;output cout;reg [3:0] q1;reg cout;assign dout = q1;always @(posedge clk or negedge rst)beginif (!rst) q1<=0;else if(en)beginif (!load) q1<=data;else if(q1<9) q1<=q1+1;else q1<=4'b0000;endendalways @(q1)if (q1==4'h9) cout= 1'b1;else cout= 1'b0;endmodule60位计数器文本输入:module CNT60(CLK,EN,RST,LOAD,COUT1,COUT2,DOUT1,DOUT2,DATA);input CLK,EN,RST,LOAD;input [3:0] DATA;output[3:0] DOUT1;output[2:0] DOUT2;output COUT1;output COUT2;reg [3:0] Q1;reg [2:0] Q2;reg COUT1;reg COUT2;assign DOUT1 = Q1;assign DOUT2 = Q2;always @(negedge CLK or negedge RST) beginif(!RST) Q1<=0;else if (EN) beginif (!LOAD) Q1<=DATA;else if (Q1<9) Q1<=Q1+1;else Q1<=4'b0000;endendalways @(Q1)if (Q1==4'h9) COUT1=1'b1;elseCOUT1=1'b0;always @(negedge COUT1 or negedge RST)beginif(!RST) Q2<=0;else if (EN) beginif (!LOAD) Q2<=DATA;else if (Q2<5) Q2<=Q2+1;else Q2<=4'b0000;endendalways @(Q2)if ((Q1==4'h9)&&(Q2==3'h5)) COUT2=1'b1;elseCOUT2=1'b0;endmodule60位计数器图形输入:四.实验步骤1、新建一个名称为CNT10的工程,并在该文件夹中新建一个CNT10.v的文件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异步清零和同步时钟使能的4位加法计数器
一、实验目的:
学习计数器的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。

二、实验原理
本试验中所要设计的计数器,由4位带异步清零的加法计数器和一个4位锁存器组成。

其中,rst是异步清零信号,高电平有效;clk是计数时钟,同时也是锁存信号;ENA为计数器输出使能控制。

当ENA为‘1’时,加法计数器的输出值加载于锁存器的数据端,;当ENA为‘0’时锁存器输出为高阻态。

当计数器输出“1111”时,进位信号COUT为“1”。

三、实验内容
1)画出该计数器的实体框图0
2)用VHDL语言完成上述计数器的行为级设计。

------------------------------------------------------------------------------------------------------- 程序:
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY CNT4 IS
PORT (RST,CLK,ENA:IN STD_LOGIC;
COUT: OUT STD_LOGIC;
OUTY :OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END CNT4;
ARCHITECTURE behv OF CNT4 IS
BEGIN
PROCESS (RST,ENA,CLK)
VARIABLE CQI :STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
IF RST='1' THEN CQI :=(OTHERS =>'0');
ELSIF CLK'EVENT AND CLK='1' THEN
IF ENA ='1' THEN
IF CQI < 15 THEN CQI:=CQI+1;
ELSE CQI :=(OTHERS =>'0');
END IF;
END IF;
END IF;
IF CQI =15 THEN COUT<='1';
ELSE COUT <='0';
END IF;
OUTY <=CQI;
END PROCESS;
END behv;
3)用QuartusII对上述设计进行编译、综合、仿真,给出其所有信号的仿真波形和时序分析数据。

--------------------------------------------------------------------------------------------------
仿真波形:
引脚锁定:
信号旧试验箱新试验箱No.5
管脚号连接的器件管脚号连接的器件clk 43 Clk1 153 CLK2
rst 35 开关2 234 键2
ena 30 开关1 233 键1
Outy(3) 29 LED12 1 LED1
Outy(2) 28 LED11 2 LED2
Outy(1) 27 LED10 3 LED3
Outy(0) 25 LED9 4 LED4
cout 23 LED7 6 LED6
实验结果
RST拨到高电平时,计数器清0,拨到低电平时可以计数。

ENA使能端为高电平时计数器工作,为低电平时置数。

当计数器工作时,数码管依次显示0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F,满位时LED灯闪亮一下,然后数码管自动清0.。

相关文档
最新文档