动能定理试题及答案详解

合集下载

高中物理动能与动能定理试题(有答案和解析)及解析

高中物理动能与动能定理试题(有答案和解析)及解析

高中物理动能与动能定理试题(有答案和解析)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析
(1)玩具滑车到达 点时对 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。

物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析

【解析】
【分析】
对 m 受力分析,由共点力平衡条件可以求出动摩擦因数;以 m 为研究对象,求出最大加
速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速
度,然后由平抛运动规律求出最大水平位移.
【详解】
(1)对 m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ (2)对 m 设其最大加速度为 am,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=mam 竖直方向:Ncosθ-μ2Nsinθ-mg=0
解得:N=12.5N
(3)从
D

E,由动能定理知:
mg
Hale Waihona Puke 2R1 2mvE 2
1 2
mvD2
解得: vD 5m / s

B

D,由动能定理知
mgL
1 2
mvD2
1 2
mvB2
解得: vB 7m / s
对物块 L vB vD t 2
解得:t=1s;
s相对 L vt 6 2 1m 8m
由能量守恒定律知: Q mgL s相对
L ),
解得,
Q= 1 2
m(
0
2gh)2 ;
考点:动能定理
【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过
程,熟练应用动能定理即可正确解题.
6.如图所示,光滑斜面 AB 的倾角 θ=53°,BC 为水平面,BC 的长度 lBC=1.10 m,CD 为光滑
的 1 圆弧,半径 R=0.60 m.一个质量 m=2.0 kg 的物体,从斜面上 A 点由静止开始下滑,物 4
解得:Q=16J

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。

【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。

其v-t图象如图所示。

则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。

【考点】动能定理。

3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。

【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。

【考点】动能定理。

4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。

已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。

小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。

只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。

已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。

一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动.取无限远处的电势为零,则A.q由A向O的运动是匀加速直线运动B.q由A向O运动的过程电势能逐渐减小C.q运动到O点时的动能最大D.q运动到O点时电势能为零【答案】BC【解析】两等量正电荷周围部分电场线如右图所示,其中P、Q连线的中垂线MN上,从无穷远到O过程中电场强度先增大后减小,且方向始终指向无穷远方向.故试探电荷所受的电场力是变化的,q由A向O的运动做非匀加速直线运动,故A错误.电场力方向与AO方向一致,电场力做正功,电势能逐渐减小;故B正确.从A到O过程,电场力做正功,动能增大,从O到N过程中,电场力做负功,动能减小,故在O点试探电荷的动能最大,速度最大,故C正确.取无限远处的电势为零,从无穷远到O点,电场力做正功,电势能减小,则q运动到O点时电势能为负值,故D错误.【考点】考查了带电粒子在电场中的运动2.一汽车质量为2000kg,行驶时受到的阻力为车重的0.1倍。

若汽车以3000N的恒定牵引力在水平公路上从静止开始前进100m时关闭发动机。

求:(1)汽车前进100m时的速度;(2)汽车关闭发动机后还能滑行多远。

【答案】(1)v=10m/s(2)x=50m【解析】设汽车前进100m时的速度为v,则对汽车应用动能定理得:.......................① 4分代入数据解得:v=10m/s....... ..... ..② 1分设汽车关闭发动机后还能滑行的距离为x,则对汽车应用动能定理得:.......... ..... ..... ③ 4分代入数据解得:x=50m..... ..... ..... . ④ 1分【考点】考查了动能定理的综合应用3.中国著名篮球运动员姚明在一次投篮中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m。

高二物理动能定理试题答案及解析

高二物理动能定理试题答案及解析

高二物理动能定理试题答案及解析1.质量为m的物体从静止以的加速度竖直上升h,关于该过程下列说法中正确的是()A.物体的机械能增加B.物体的机械能减小C.重力对物体做功D.物体的动能增加【答案】D【解析】物体从静止以的加速度竖直上升h,重力做了,故重力势能增加为,故A、C选项错误;牛顿第二定律,解得,故F做的功为,故物体的机械能增加了,B选项错误;由动能定理知,解得物体的动能增加,故D选项正确。

【考点】牛顿第二定律动能定理重力做功与重力势能的关系机械能的电场加速后从中心进入一个平行板2.带电量为Q,质量为m的原子核由静止开始经电压为U1电容器,进入时速度和电容器中的场强方向垂直。

已知:电容器的极板长为L,极板间距为d,,重力不计,求:两极板的电压为U2(1)经过加速电场后的速度;(2)离开电容器电场时的偏转量。

【答案】(1);(2)【解析】试题分析: (1)粒子在加速电场加速后,由动能定理得速度为(2)进入偏转电场,粒子在平行于板面的方向上做匀速运动在垂直于板面的方向做匀加速直线运动,加速度因此离开电容器电场时的偏转。

【考点】动能定理,带电粒子在匀强电场中的运动3.如图所示,在点电荷Q的电场中,已知a、b两点在同一等势面上,c、d两点在同一等势面上,无穷远处电势为零。

甲、乙两个带粒子经过a点时动能相同,甲粒子的运动轨迹为acb,乙粒子的运动轨迹为adb.由此可以判定:A.甲粒子经过c点与乙粒子经过d点时的动能相等B.甲、乙两粒子带同种电荷C.甲粒子经过b点时的动能小于乙粒子经过b点时的动能D.甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能【答案】 D【解析】试题分析: ac两点和ad两点之间的电势差相等,因为两电荷的电量大小未知,则无法比较电场力做功,根据动能定理,无法比较粒子在c点和d点的动能大小.故A错误;根据轨迹的弯曲知,乙电荷受到的斥力,甲电荷受到的是引力.所以两粒子的电性相反.故B错误;a到b,不管沿哪一路径,电场力做功为零,动能不变.故C错误;因为甲粒子受到的引力作用,电场力做正功,电势能减少,乙粒子受到的是斥力作用,电场力做负功,电势能增加,所以甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能.故D正确;【考点】等势面;动能定理的应用;电势能4.如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为.若小物体电荷量保持不变,OM=ON,则 ( )A.小物体上升的最大高度为B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先减小后增大.【答案】A【解析】对小物体,从M到N再到M,由动能定理可知:,从M到N,由动能定理可知:,联立解得:,故选项A正确;从N到M,电场力对小球先做正功再做负功,电势能先减小再增大,故选项BC错误;从N到M,电场力先增大再减小,故选项D错误.【考点】本题考查动能定理的应用、摩擦力及电场力做功的特点,涉及能量变化的题目一般都要优先考虑动能定理的应用,并要求学生能明确几种特殊力做功的特点,如摩擦力、电场力、洛仑兹力等.5.如图所示,光滑绝缘杆竖直放置,它与以正点电荷Q为圆心的某一圆周交于B、C两点,质量为m,带电量为的有孔小球从杆上A点无初速下滑,已知q<<Q,AB=h,小球滑到B点时速度大小为,则小球从A运动到B的过程中,电场力做的功为:______________;A、C 两点间电势差为 ____________.【答案】;【解析】试题分析: 设小球由A到B电场力所做的功为WAB ,由动能定理得mgh+WAB=解得:WAB=由于B、C在以Q为圆心的圆周上,所以φB =φC,所以UAC=UAB==【考点】动能定理的应用,,电势能。

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

5.动能 动能定理(含答案)

5.动能   动能定理(含答案)

动能 动能定理要点一 动能的概念即学即用1.关于物体的动能,下列说法中正确的是( )A.物体速度变化,其动能一定变化B.物体所受的合外力不为零,其动能一定变化C.物体的动能变化,其运动状态一定发生改变D.物体的速度变化越大,其动能一定变化也越大 答案 C要点二 动能定理即学即用2.人骑自行车下坡,坡长l=500 m,坡高h=8 m,人和车总质量为100 kg,下坡时初速度为4 m/s,人不踏车的情况下,到达坡底时车速为10 m/s,g 取10 m/s 2,则下坡过程中阻力所做的功为 ( ) A.-4 000 J B.-3 800 J C.-5 000 J D.-4 200 J 答案 B题型1 动能及动能的变化【例1】质量为m=2 kg 的物体,在水平面上以v 1=6 m/s 的速度匀速向西运动,若有一个F=8 N 方向向北的恒力作用于物体,在t=2s内物体的动能增加了( )A.28 JB.64 JC.32 JD.36 J 答案 B题型2 应用动能定理的一般问题【例2】一辆车通过一根跨过定滑轮的轻绳PQ 提升井中质量为m 的物体,如图所示,绳的P 端拴在车后的挂钩上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车向左加速运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时速度为v B .求车由A 移到B 的过程中,绳Q 端的拉力对物体做的功是多少? 答案 241)12(B m mgH v +- 题型3 情景建模【例3】如图所示,某滑板爱好者在离地h=1.8 m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移l 1=3 m,着地时由于存在能量损失,着地后速度变为v=4 m/s,并以此为初速度沿水平地面滑行l 2=8 m 后停止.已知人与滑板的总质量m=60 kg.求:(1)人与滑板在水平地面滑行时受到的平均阻力大小.(2)人与滑板离开平台时的水平初速度.(空气阻力忽略不计,g 取10 m/s 2) 答案 (1)60 N (2)5 m/s6.如图所示,在高1.5 m 的光滑平台上有一个质量为2 kg 的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧.当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧被压缩时具有的弹性势能为(g =10 m/s 2)( ) A .10 J B .15 J C .20 J D .25 J7.(2013·阳江模拟)如图5-2-11所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )A .mgh -12m v 2 B.12m v 2-mghC .-mghD .-(mgh +12m v 2)【动能定理及应用】8..质量m =1 kg 的物体,在与物体初速度方向相同的水平拉力的作用下,沿水平面运动过程中动能—位移的图像如图所示.在位移为4m 时撤去F ,物块仅在摩擦力的作用下运动.求:(g 取10m/s 2)(1)物体的初速度多大?(2)物体和平面间的动摩擦因数多大?(3)拉力F 的大小.9.(2013·湛江模拟)如图所示,用汽车通过定滑轮拉动水平平台上的货物,若货物的质量为m ,与平台间的动摩擦因数为μ,汽车从静止开始把货物从A 拉到B 的过程中,汽车从O 到达C 点处时速度为v ,若平台的高度为h ,滑轮的大小和摩擦不计,求这一过程中汽车对货物做的功.10.高台滑雪运动员经过一段弧长为s=10π3m的圆弧后,从圆弧上的O点水平飞出,圆弧半径R=10 m,他在圆弧上的O点受到的支持力为820 N.运动员连同滑雪板的总质量为50 kg,他落到了斜坡上的A点,斜坡与水平面的夹角θ=37°,如图所示.忽略空气阻力的影响,取重力加速度g=10 m/s2,求:(1)运动员离开O点时的速度大小;(2)运动员在圆弧轨道上克服摩擦力做的功;(3)运动员落到斜坡上的速度大小.(可用根号表示)11。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

动能定理典型例题附答案

动能定理典型例题附答案

动能定理典型例题附答案1、如图所⽰,质量m=0.5kg 的⼩球从距地⾯⾼H=5m 处⾃由下落,到达地⾯恰能沿凹陷于地⾯的半圆形槽壁运动,半圆槽半径R=0.4m.⼩球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直⾄槽左端边缘飞出,竖直上升,落下后恰好⼜沿槽壁运动直⾄从槽右端边缘飞出,竖直上升、落下,如此反复⼏次.设摩擦⼒⼤⼩恒定不变:(1)求⼩球第⼀次离槽上升的⾼度h.(2)⼩球最多能飞出槽外⼏次? (g 取10m /s 2 )2、如图所⽰,斜⾯倾⾓为θ,滑块质量为m ,滑块与斜⾯的动摩擦因数为µ,从距挡板为s 0的位置以v 0的速度沿斜⾯向上滑⾏.设重⼒沿斜⾯的分⼒⼤于滑动摩擦⼒,且每次与P 碰撞前后的速度⼤⼩保持不变,斜⾯⾜够长.求滑块从开始运动到最后停⽌滑⾏的总路程s.3、有⼀个竖直放置的圆形轨道,半径为R ,由左右两部分组成。

如图所⽰,右半部分AEB 是光滑的,左半部分BFA是粗糙的.现在最低点A 给⼀个质量为m 的⼩球⼀个⽔平向右的初速度,使⼩球沿轨道恰好运动到最⾼点B ,⼩球在B 点⼜能沿BFA 轨道回到点A ,到达A 点时对轨道的压⼒为4mg1、求⼩球在A 点的速度v 02、求⼩球由BFA 回到A 点克服阻⼒做的功4、如图所⽰,质量为m 的⼩球⽤长为L 的轻质细线悬于O 点,与O 点处于同⼀⽔平线上的P 点处有⼀根光滑的细钉,已知OP = L /2,在A 点给⼩球⼀个⽔平向左的初速度v 0,发现⼩球恰能到达跟P 点在同⼀竖直线上的最⾼点B .则:(1)⼩球到达B 点时的速率?(2)若不计空⽓阻⼒,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在⼩球从A 到B 的过程中克服空⽓阻⼒做了多少功?5、如图所⽰,倾⾓θ=37°的斜⾯底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。

质量m =0.50kg 的⼩物块,从距地⾯h =2.7m 处沿斜⾯由静⽌开始下滑,⼩物块与斜⾯间的动摩擦因数µ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜⾯底端B 时的速度⼤⼩。

高三物理动能定理的综合应用试题答案及解析

高三物理动能定理的综合应用试题答案及解析

高三物理动能定理的综合应用试题答案及解析1.已知一足够长的传送带与水平面的倾角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图a所示),以此时为t=0时刻记录了小物块之后在传送带上运动速度随时间的变化关系,如图b所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v1>v2),已知传送带的速度保持不变(g取10 m/s2),则A.0~t1内,物块对传送带做正功B.物块与传送带间的动摩擦因数为μ,μ<tanθC.0~t2内,传送带对物块做功为D.系统产生的热量大小一定大于物块动能的变化量大小【答案】D【解析】分析题图b可知,传送带沿斜面向上运动;0~t1内,物块沿斜面向下运动,物块受到的摩擦力沿斜面向上,故传送带受到的摩擦力沿斜面向下,物块对传送带做负功,选项A错误;0~t1内,物块沿斜面向下减速运动,故物块加速度沿斜面向上,即μmgcosθ>mgsinθ,故μ>tanθ,选项B错误;0~t2内,传送带对物块做的功W加上物块重力做的功WG等于物块动能的增加量,即,根据v-t图像的“面积”法求位移可知,WG≠0,选项C错误;设0~t1内物块的位移大小为s1,t1~t2内物块的位移大小为s2,全过程物块与传送带之间有相对滑动,物块受到的摩擦力f大小恒定,系统的一部分机械能会通过“摩擦生热”转化为热量即内能,其大小Q=fs相对,对0~t1内和t1~t2内的物块运用动能定理,有-(f-mgsinθ)s1=0-mv,(f-mgsinθ)s2=mv,即f(s1+s2)=mv+mv+mgsinθ(s1+s2)>mv-mv,因s相对>s1+s2,故Q=fs相对>f(s1+s2)>mv-mv,选项D正确2.(15分)如图所示,MN与PQ为在同一水平面内的平行光滑金属导轨,间距l=0.5m,电阻不计,在导轨左端接阻值为R=0.6Ω的电阻.整个金属导轨置于竖直向下的匀强磁场中,磁感应强度大小为B=2T.将质量m=1kg、电阻r=0.4Ω的金属杆ab垂直跨接在导轨上.金属杆ab在水平拉力F的作用下由静止开始向右做匀加速运动.开始时,水平拉力为F=2N.(1)求金属杆ab的加速度大小;(2)求2s末回路中的电流大小;(3)已知开始2s内电阻R上产生的焦耳热为6.4J,求该2s内水平拉力F所做的功.【答案】(1)2 m/s2(2)4A (3)18.7J【解析】(1)(4分)在初始时刻,由牛顿第二定律:(2分)得(2分)(2)(5分)2s末时,(1分)感应电动势(2分)回路电流为(2分)(3)(6分)设拉力F所做的功为, 由动能定理:(2分)为金属杆克服安培力做的总功,它与R上焦耳热关系为:,(2分)得:(1分)所以:(1分)【考点】本题考查电磁感应、动能定理=5m/s的水平初速度滑上静止在光滑水平3.(10分)如图所示,质量为m=1kg的滑块,以υ面的平板小车,若小车质量M=4kg,平板小车足够长,滑块在平板小车上滑移1s后相对小车静止。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

A1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆Q ”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅o()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-o o3.74m/s v ∴==(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-o o100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-o270m s ∴=则总位移12100m s s s =+=.v t v vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅o0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-oB 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=- 克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-o o又1cos l s θ=Q 、12s s s =+ 则11:0h s μ-= 即: hsμ=9也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。

一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。

已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。

(1)求滑块第一次运动到B 点时对轨道的压力。

(2)求滑块在粗糙斜面上向上滑行的最大距离。

(3)通过计算判断滑块从斜面上返回后能否滑出A 点。

【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。

(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。

【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

2.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。

动能定理专题含答案详解

动能定理专题含答案详解

动能定理1.如图1所示,质量为m 的物体静止于倾角为α的斜面体上,现对斜面体施加一水平向左的推力F ,使物体随斜面体一起沿水平面向左匀速移动x ,则在此匀速运动过程中斜面体对物体所做的功为 ( )A .FxB .mgx cos αsin αC .mgx sin αD .02.如图2所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB =2BC .小物块P (可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为μ1、μ2.已知P 由静止开始从A 点释放,恰好能滑动到C 点而停下,那么θ、μ1、μ2间应满足的关系是 ( )A .tan θ=μ1+2μ23B .tan θ=2μ1+μ23C .tan θ=2μ1-μ2D .tan θ=2μ2-μ13.人用手托着质量为m 的物体,从静止开始沿水平方向运动,前进距离x 后,速度为v (物体与手始终相对静止),物体与人手掌之间的动摩擦因数为μ,则人对物体做的功为( )A .mgxB .0C .μmgx D.12m v 24.构建和谐型、节约型社会深得民心,节能器材遍布于生活的方方面面.自动充电式电动车就是很好的一例.电动车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500 J 的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图3中图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是 ( ) A .200 J B .250 J C .300 J D .500 J5.以初速度v 0竖直向上抛出一质量为m 的小物块.假定物块所受的空气阻力F f 大小不变.已知重力加速度为g ,则物块上升的最大高度和返回到原抛出点的速率分别为 ( )A.v 022g (1+F fmg)和v 0mg -F fmg +F f图3B.v 022g (1+F fmg )和v 0mgmg +F fC.v 022g (1+2F fmg )和v 0mg -F fmg +F fD.v 022g (1+2F fmg)和v 0mgmg +F f6.如图4所示,板长为l ,板的B 端静放有质量为m 的小物体P ,物体与板间的动摩擦因数为μ,开始时板水平,若缓慢转过一个小角度α的过程中,物体保持与板相对静止,则这个过程中 ( ) A .摩擦力对P 做功为μmg cos α·l (1-cos α) B .摩擦力对P 做功为mg sin α·l (1-cos α) C .支持力对P 做功为mgl sin α D .板对P 做功为mgl sin α7.如图5所示,质量相等的物体A 和物体B 与地面的动摩擦因数相等,在力F 的作用下,一起沿水平地面向右移动x ,则 ( ) A .摩擦力对A 、B 做功不相等 B .A 、B 动能的增量相同C .F 对A 做的功与F 对B 做的功相等D .合外力对A 做的功与合外力对B 做的功不相等8.两根光滑直杆(粗细可忽略不计)水平平行放置,一质量为m 、半径为r 的均匀细圆环套在两根直杆上,两杆之间的距离为3r ,图6甲所示为立体图,图6乙所示为侧视图.现将两杆沿水平方向缓慢靠近直至两杆接触为止,在此过程中 ( )图6A .每根细杆对圆环的弹力均增加B .每根细杆对圆环的最大弹力均为mgC .每根细杆对圆环的弹力均不做功D .每根细杆对圆环所做的功均为-14mgr9.如图7所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物图图体从静止开始做匀加速直线运动.已知物体和木板之间的摩擦力为F f .当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中 ( ) A .物体到达木板最右端时具有的动能为(F -F f )(L +x ) B .物体到达木板最右端时,木板具有的动能为F f x C .物体克服摩擦力所做的功为F f L D .物体和木板增加的机械能为Fx8.质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3minl 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.10. (11分)如图8所示,竖直固定放置的斜面DE 与一光滑的圆弧轨道ABC 相连,C 为切点,圆弧轨道的半径为R ,斜面的倾角为θ.现有一质量为m 的滑块从D 点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O 与A 、D 在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:(1)滑块第一次至左侧AC 弧上时距A 点的最小高度差h . (2)滑块在斜面上能通过的最大路程s .11.(12分)右端连有光滑弧形槽的水平桌面AB 长L =1.5 m ,如图9所示.将一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的图A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:图9(1)木块沿弧形槽上升的最大高度;(2)木块沿弧形槽滑回B端后,在水平桌面上滑动的最大距离.12.(14分)质量m=1 kg的物体,在水平拉力F(拉力方向与物体初速度方向相同) 的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F停止作用,运动到位移是8 m时物体停止,运动过程中E k-x的图线如图10所示.求:(g取10 m/s2)(1)物体的初速度多大?(2)物体和平面间的动摩擦因数为多大?(3)拉力F的大小.【参考答案与详细解析】一、单项选择题1. D2. B3.D4.A5.A 二、多项选择题6. CD7. AB 8. BD 9. AB 三、计算题10. 解析:(1)由动能定理得: mgh -μmg cos θ·R /tan θ=0 得h =μR cos 2θ/sin θ=μR cos θcot θ(2)滑块最终至C 点的速度为0时对应在斜面上的总路程最大,由动能定理得 mgR cos θ-μmg cos θ·s =0 得:s =R μ.答案:(1)μR cos θcot θ (2)Rμ11.解析:(1)由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f L mg =1.5×(1.5-1.0)0.5×10 m =0.15 m(2)由动能定理得: mgh -F f x =0所以x =mgh F f =0.5×10×0.151.0 m =0.75 m答案:(1)0.15 m (2)0.75 m12.解析:(1)从图线可知初动能为2 J , E k0=12m v 2=2 J ,v =2 m/s.(2)在位移4 m 处物体的动能为10 J ,在位移8 m 处物体的动能为零,这段过程中物体克服摩擦力做功. 设摩擦力为F f ,则 -F f x 2=0-10 J =-10 J F f =-10-4 N =2.5 N因F f =μmg 故μ=F f mg =2.510=0.25.(3)物体从开始到移动4 m 这段过程中,受拉力F 和摩擦力F f 的作用,合力为F -F f , 根据动能定理有 (F -F f )·x 1=ΔE k故得F =ΔE k x 1+F f =(10-24+2.5) N =4.5 N.答案:(1)2 m/s (2)0.25 (3)4.5 N。

动能 动能定理参考答案

动能  动能定理参考答案

动能 动能定理1、解析:根据动能E k =21mv 2,可知水平速度与落地速度之比为,此值即为落地速度与水平方向的夹角θ的余弦值,cos θ=23 ,所以θ=30°. 答案:A 2、解析:由动能定理,对两车分别列式-F 1l 1=0-21m 1v ,-F 2l 2=0-21m 2v , F 1=μm 1g ,F 2=μm 2g .由以上四式联立得l 1∶l 2=4∶1,故选项D 是正确的. 答案:D3、解析:物块匀速向上运动,即向上运动过程中物块的动能不变,由动能定理知物块向上运动过程中外力对物块做的总功为0,即W F -mgh -W f =0①物块向下运动过程中,恒力F 与摩擦力对物块做功与上滑中相同,设滑至底端时的动能为E k ,由动能定理W F +mgh -W f =E k -0②将①式变形有W F -W f =mgh ,代入②有E k =2mgh . 答案:B【例1】解析:对物体m 用动能定理:WF N -mgH =21mv 2,故WF N =mgH +21mv 2,A 、B 均错,钢索拉力做的功WF 拉=(M +m )gH +21 (M +m )v 2,故C 错误,由动能定理知,合力对电梯M 做的功应等于电梯动能的变化21Mv 2,故D 正确. 答案:D变式1-1 解析:由题意画示意图可知,由动能定理对小物体:(F -F f )·(L +x )=21mv 2,故 A 正确.对木板:F f ·x =21Mv 2,故B 正确.物块克服摩擦力所做的功F f ·(L +x ),故C 错.物块和木板增加的机械能21mv 2+21Mv 2=F ·(L+x )-F f ·L =(F -F f )·L + F ·x ,故D 错. 答案:AB【例2】解析:(1)小球恰能到达最高点B ,有mg =,得v B =.(2)由A →B 由动能定理得:,可求出:v 0=(3)由动能定理得:,可求出:W F f =411mgL .变式2-1 解析:当mg =kv 0时,即v 0=时,环做匀速运动,W f =0,环克服摩擦力所做的功为零;当mg >kv 0时,即v 0<时,环在运动过程中,速度减小,F 减小,摩擦力F f 增 大,最终环静止W f =0- 21mv ,环克服摩擦力所做的功为 21mv . 当mg <kv 0时,即v 0>时,环在运动过程中,速度减小,F 减小,摩擦力F f 减小到mg =kv 时,环做匀速运动,,即环克服摩擦力所做的功为. 答案:ABD【例3】 解析:(1)小球从初始位置到达缝隙P 的过程中,由动能定理有: mg (H +3R )-W F =21mv 2-0 代入数据得W F =2 J.(2)设小球到达最高点N 时的速度为v N,对由P →N 过程由动能定理得mg ·4R =在最高点N 时,根据牛顿第二定律有:F N +mg =联立解得F N =-mg =35 N所以小球在最高点N 时对轨道的作用力为35 N.(3)小球从初始位置到达C 点的过程中,由动能定理有mg (H +R )-W F =解得v C =6.93 m/s.小球从C 点离开“9”管道之后做平抛运动,竖直方向:2R =,解得t =0.4 s ;水平方向:DE =v C t =2.77 m ,所以平抛运动的水平位移为2.77 m.解析:小球落地时竖直方向上的速度v ⊥=gt =4 m/s ,所以落地时速度的大小v E ==8 m/s.变式3-1 解析:(1)当整体所受合外力为零时,整体速度最大,设整体质量为m ,则 mg sin θ=μ21mg cos θ,得μ=2tan θ.(2)设物块停止时下端距A 点的距离为x ,根据动能定理 mg (2L +x )sin θ-21μmg cos θL -μmg cos θ(x -L )=0,解得x =3L ,即物块 的下端停在B 端. (3)设静止时物块的下端距A 的距离为s ,物块的上端运动到A 点时速度为v ,根据动能定理mg (L +s )sin θ- 21μmgcos θL = 21 mv 2,物块全部滑上AB 部分后,小方块间无弹力作用,取最上面一小块为研究对象,设其质量为m 0,运动到B 点时速 度正好减到0,根据动能定理m 0g 3L sin θ-μm 0g 3L cos θ=0-21 m 0v 2,得s =3L . 【例4】 解析:(:小球在B 点满足: mg =, 由A →E →B ,由动能定理得:,联立以上两式可得v A =v 0=. 在A 点满足:F N -mg = ,将F N =4mg 代入解之得: v A =gR 3设克服摩擦力做功为W f,小球从B →F →A 的过程中由动能定理可得 2mgR -W f = ,联立以上几式可得W f =mgR .【巩固提高】1、解析:物体的动能全部用来克服摩擦阻力做功,有E k =μmgl ⇒l =E k μmg ,质量小,滑行距离大.而t =v a = 2E km μg,质量小,滑行时间长. 答案:BD2、解析:设子弹深入木块深度为d ,木块移动s ,则子弹对地位移为d +s ;设子弹与木块的相互作用力为f ,由动能定理,子弹损失的动能等于子弹克服木块阻力所做的功,即ΔE 1=f (d +s ),木块所获得的动能等于子弹对木块作用力所做的功,即ΔE 2=fs ,子弹和木块共同损失的动能为ΔE 3=ΔE 1-ΔE 2=fd ,即三者之比为(d +s )∶s ∶d =3∶1∶2.答案:A3、解析:根据动能定理W F -W G =mv 2/2,W G =mgh ,所以W F =mv 2/2+mgh ,A 正确,B 、C 错误;物体克服重力所做的功,等于物体重力势能的增量,D 错误. 答案:A4、解析:设小球上升离地高度h 时,速度为v 1,地面上抛时速度为v 0,下落至离地面高度h 处速度为v 2,设空气阻力为f上升阶段:-mgH -fH =-12mv 20,-mgh -fh =12mv 21-12mv 20 又2mgh =12mv 21 下降阶段:mg (H -h )-f (H -h )=12mv 22,mgh =2×12mv 22 由上式联立得:h =49H . 答案:D5、解析:由题意“在C 点处小球速度达到最大”,可知C 点是平衡位置,小球受到的重力与弹力平衡,该位置与h无关,B 项正确;根据动能定理有mg (h +x 0)-E p =12mv 2C =E k ,其中x 0与弹性势能E p 为常数,可判断出C 项正确. 答案:BC6、解析:物块滑到b 点时,mgR =12mv 2-0,v =2gR ,A 不正确.在b 点,F N -mg =m v 2R,F N =3mg ,B 正确.从a 点到c 点,机械能损失了mgR ,D 正确.mgR -μmgs =0-0,s =R μ,C 正确. 答案:BCD 7、解析:A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则有B 对A 的摩擦力所做的功,等于A 的动能的增量,即B 对.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A ,B 对地的位移不等,故二者做功不等,C 错.对B 物体应用动能定理,W F -W f =ΔE k B ,即W F =ΔE k B +W f ,就是外力F 对B 做的功等于B 的动能增量与B 克服摩擦力所做的功之和,D 对.由前述讨论知B 克服摩擦力所做的功与A 的动能增量(等于B 对A 的摩擦力所做的功)不等,故A 错.答案:BD8、解析:设自行车与路面的摩擦阻力为F f ,由图可知,关闭自动充电装置时,由动能定理得:0-E k 0=-F f ·x 1,可得F f =50 N ,启动自充电装置后,自行车向前滑行时用于克服摩擦做功为:W =F f x 2=300 J ,设克服电磁阻力做功为W ′,由动能定理得:-W ′-W =0-E k 0,可得W ′=200 J. 答案:A9、解析:木箱加速上滑的过程中,拉力F 做正功,重力和摩擦力做负功.支持力不做功,由动能定理得:W F -W G-W f =12mv 2-0.即W F =W G +W f +12mv 2.A 、B 错误,又因克服重力做功W G 等于物体重力势能的增加,所以W F =ΔE p +ΔE k +W f ,故D 正确,又由重力做功与重力势能变化的关系知C 也正确. 答案:CD10、解析:(1)在小球下落到最低点的过程中,设小球克服摩擦力做功为W f ,由动能定理得: mg (H +R )-W f =12mv 2-0从小球下落到第一次飞出半圆形槽上升到距水平地面h 高度的过程中,由动能定理得mg (H -h )-2W f =0-0联立解得:h =v 2g -H -2R =10210 m -5 m -2×0.4 m=4.2 m. (2)设小球最多能飞出槽外n 次,则由动能定理得:mgH -2nW f =0-0解得:n =mgH 2W f =mgH 2⎣⎢⎡⎦⎥⎤mg (H +R )-12mv 2=gH 2g (H +R )-v 2=6.25 故小球最多能飞出槽外6次.11、解析:(1)如果物块只在圆轨道上运动,则由动能定理得mgH =12mv 2解得v =2gH ; 由向心力公式F N -mg =m v 2R ,得F N =m v 2R +mg =2mg RH +mg ; 结合PQ 曲线可知mg =5得m =0.5 kg.(2)由图象可知2mg R=10得R =1 m .显然当H =0.2 m 对应图中的D 点, 所以cos θ=1-0.21=0.8,θ=37°. (3)如果物块由斜面上滑下,由动能定理得:mgH -μmg cos θ(H -0.2)sin θ=12mv 2解得mv 2=2mgH -83μmg (H -0.2) 由向心力公式F N -mg =m v 2R 得F N =m v 2R +mg =2mg -83μmg R H +1.63μmg +mg 结合QI 曲线知1.63μmg +mg =5.8,解得μ=0.3.。

高一物理动能定理的理解试题答案及解析

高一物理动能定理的理解试题答案及解析

高一物理动能定理的理解试题答案及解析1.(12分)某校课外兴趣小组正在进行遥控电动小车性能测试,如图所示,AB段是粗糙的水平路面,长s=7.5m,在AB段小车受到的阻力为车重的0.1倍;BCD是一段半径R=4 m的光滑圆弧路面,最高点C, 圆心O,∠BOC=37°。

若小车的质量为m=2kg,保持小车功率P=10W不变,自A点由静止开始运动,在AB段达到最大速度后,并保持此速度匀速运动到B点,这时,停止遥控(关闭小车上的电动机),而让小车继续沿光滑圆弧路面滑行。

(不计小车经过B点时的能量损失,取g=10m/s2,已知sin37°=0.6;cos37°=0.8)。

求:(1)小车在AB段运动的最大速度大小;(2)小车到达C点时速度的大小;(3)小车在AB段运动的时间。

【答案】(1)5m/s;(2)3m/s;(3)4s。

【解析】(1)小车在AB段运动的最大速度为:(2)由B-C过程,小车机械能守恒由:,其中vB =v="5m/s" ,解得vC="3m/s" ;(3)由A到B过程,根据动能定理:,解得t=4s。

【考点】机械能守恒定律及动能定理的应用。

2.关于运动物体所受的合外力、合外力做的功、物体的动能变化三者之间的关系,下列说法正确的是( )A.运动物体所受的合外力不为零,合外力必做功,物体的动能肯定要变化B.运动物体所受的合外力为零,则物体的动能肯定不变C.运动物体的动能保持不变,则该物体所受合外力一定为零D.运动物体所受合外力不为零,则该物体一定做变速运动,其动能一定要变化【答案】B【解析】物体做匀速圆周运动,合外力不为零,但合外力不做功,所以动能不变,ACD错。

运动物体所受的合外力为零,因此合外力做功为零,则物体的动能肯定不变,B对。

【考点】动能定理点评:本题考查了对动能定理的理解,其中匀速圆周运动是其中一个比较特殊的例子。

3.一物体做变速运动时,下列说法中正确的是()A.合外力一定对物体做功,使物体动能改变;B.物体所受合外力一定不为零;C.合外力一定对物体做功,但物体动能可能不变;D.以上说法都不对。

动能定理有详解答案

动能定理有详解答案

2015动能定理试题一、选择题(题型注释)1.如图所示,一个质量为m,均匀的细链条长为L,置于光滑水平桌面上,用手按住一端,使L/2长部分垂在桌面下,(桌面高度大于链条长度,取桌面为零势能面),则链条的重力势能为()2.如图4所示,一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球。

不计空气阻力,分析小球由静止开始运动到最低点的过程,以下结论正确的有A.小球的速率不断增大B.重力的功率不断增大C.绳子的拉力不断增大D.绳子拉力的功率不断增大3.将横截面积为S的玻璃管弯成如图5-4-5所示的连通器,放在水平桌面上,左、右管处在竖直状态,先关闭阀门K,往左、右管中分别注入高度为h1和h2、密度为ρ的液体,然后打开阀门K,直到液体静止.在上述过程中,液体的重力势能减少量为()A.ρgS(h1-h2)(h1-h2)2 图5-4-5(h1-h2)2(h1-h2)45-4-8所示,重物A质量为m.弹簧长为L,劲度系数为k,下端与物体A相拴接.现将弹簧上端点P缓慢地竖直提起一段高度h使重物A离开地面.这时重物具有的重力势能为(以地面为零势能面)()A.mg(L-h)B.mg(h-L+mg/k)C.mg(h-mg/k)D.mg(h-L-mg/k)5.一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P点很缓慢地移动到Q点,如图7-5-11所示.则水平力F所做的功为()图7-5-11A.mgL cosθB.mgL(1-cosθ)C.FL sinθD.FLθ6.一质量均匀的不可伸长的绳索(其重不可忽略),A、B两端固定在天花板上,如图7-5-7所示,今在最低点C施加一竖直向下的力将绳索拉至D点,在此过程中,绳索的重心位置将( )图7-5-7A.逐渐升高B.逐渐降低C.先降低后升高D.始终不变7.质量为30 kg 的小孩从高度为2.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( )A.支持力做功50 JB.阻力做功540 JC.合外力做功60 JD.重力做功500 J8.如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力F 作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大9.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面。

动能定理试题及答案详解

动能定理试题及答案详解

动能定理试题及答案详解The document was prepared on January 2, 2021第七节 动能和动能定理例1 一架喷气式飞机,质量m =5×103kg,起飞过程中从静止开始滑跑的路程为s =×102m 时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的倍k =,求飞机受到的牵引力.例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力.g 取10m/s 2例3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为A .Δv=0 B. Δv=12m/s C. W=0 D. W=例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为A. gh v 20+B. gh v 20-C. gh v 220+ D. gh v 220-例5 一质量为m 的小球,用长为l 的轻绳悬挂于O 点.小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为A. mgl cos θB. mgl 1-cos θC. Fl cos θD. Flsin θ2-7-32-7-2例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处.已知工件与传送带间的动摩擦因数23=μ,g 取10m/s 2. 1试通过计算分析工件在传送带上做怎样的运动2工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功.例8如图4所示,AB 为1/4圆弧轨道,半径为R=0.8m,BC 是水平轨道,长S=3m,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.例9电动机通过一条绳子吊起质量为8kg 的物体.绳的拉力不能超过120N,电动机的功率不能超过1200W,要将此物体由静止起,用最快的方式将物体吊高90m 已知物体在被吊高90m 以前已开始以最大速度匀速上升,所需时间为多少g 取10 m/s 22-7-4例10一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.2-7-6例11 从离地面H高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的kk<1倍,而小球与地面相碰后,能以相同大小的速率反弹,求:1 小球第一次与地面碰撞后,能够反弹起的最大高度是多少2 小球从释放开始,直至停止弹跳为止,所通过的总路程是多少例12某同学从高为h处水平地投出一个质量为m的铅球,测得成绩为s,求该同学投球时所做的功.例13如图所示,一根长为l的细线,一端固定于O点,另一端拴一质量为m 的小球,当小球处于最低平衡位置时,给小球一定得初速度v,要小球能在竖直平面内作圆周运动并通过最高点P,v至少应多大例14 新疆达坂城风口的风速约为v=20m/s,设该地空气的密度为ρ=1.4kg/m3,若把通过横截面积S=20m2的风能的50%转化为电能,利用上述已知量推导计算电功率的公式,并求出发电机电功率的大小.例15 质量为M、长度为d的木块,放在光滑的水平面上,在木块右边有一个销钉把木块挡住,使木块不能向右滑动.质量为m的子弹以水平速度V射入木块,刚好能将木块射穿.现在拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度V射入静止的木块.设子弹在木块中受阻力恒定.求:1子弹射入木块的深度2从子弹开始进入木块到与木块相对静止的过程中,木块的位移是多大例16如图2-7-19所示的装置中,轻绳将A、B相连,B置于光滑水平面上,拉力F使B以1m/s匀速的由P运动到Q,P、Q处绳与竖直方向的夹角分别为α1=37°,α2=60°.滑轮离光滑水平面高度h=2m,已知mA=10kg,mB=20kg,不计滑轮质量和摩擦,求在此过程中拉力F做的功取sin37°=,g取10m/s2lS2-7-7d V参考答案:1、解答:取飞机为研究对象,对起飞过程研究.飞机受到重力G 、支持力N 、牵引力F 和阻力f 作用,如图2-7-1所示2-7-1各力做的功分别为W G =0,W N =0,W F =Fs,W f =-kmgs.起飞过程的初动能为0,末动能为221mv据动能定理得:代入数据得: 2、石头在空中只受重力作用;在泥潭中受重力和泥的阻力.对石头在整个运动阶段应用动能定理,有00)(-=-+h F h H mg .所以,泥对石头的平均阻力 10205.005.02⨯⨯+=⋅+=mg h h H F N=820N.3、解答 由于碰撞前后速度大小相等方向相反,所以Δv=v t --v 0=12m/s,根据动能定理答案:BC4、解答 小球下落为曲线运动,在小球下落的整个过程中,对小球应用动能定理,有222121mv mv mgh -=, N Gf F 0212-=-mv kmgs Fs N sv m kmg F 42108.12⨯=+=02121ΔE 202K =-==mv mv W t解得小球着地时速度的大小为 =v gh v 220+.正确选项为C.5、解答 将小球从位置P 很缓慢地拉到位置Q 的过程中,球在任一位置均可看作处于平衡状态.由平衡条件可得F=mg tan θ,可见,随着θ角的增大,F 也在增大.而变力的功是不能用W= Fl cos θ求解的,应从功和能关系的角度来求解.小球受重力、水平拉力和绳子拉力的作用,其中绳子拉力对小球不做功,水平拉力对小球做功设为W ,小球克服重力做功mgl 1-cos θ.小球很缓慢移动时可认为动能始终为0,由动能定理可得 W -mgl 1-cos θ=0,W = mgl 1-cos θ.正确选项为B.6、32FR7、解答 1工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 可得)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g m F a m/s 2=2.5m/s 2. 设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得 5.2222220⨯==a v x m=0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动.2在工件从传送带底端运动至h =2m 高处的过程中,设摩擦力对工件做功W f ,由动能定理221mv mgh W f =-, 可得 210102120⨯⨯=+=mv mgh W f J 221021⨯⨯+J=220J.8、解答:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR,f BC =umg,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR-umgS-W AB =0即W AB =mgR-umgS=1×10××10×3/15=6J9、解答 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊.在匀加速运动过程中,加速度为8108120⨯-=-=m mg F a m m/s 2=5 m/s 2, 末速度 1202001==m m t F P v m/s=10m/s, 上升时间 5101==a v t t s=2s, 上升高度 52102221⨯==a v h t m=10m. 在功率恒定的过程中,最后匀速运动的速度为1082001⨯==mg P v m m m/s=15m/s, 由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间2001)1015(821)1090(108)(21)(222212-⨯⨯+-⨯⨯=-+-=m t m P v v m h h mg t s=. 所以,要将此物体由静止起,用最快的方式将物体吊高90m,所需时间为t=t 1+t 2=2s+=.10、解答 设该斜面倾角为α,斜坡长为l,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则对物体在全过程中应用动能定理:ΣW=ΔEk.mglsinα-μmglcosα-μmgS 2=0得 h -μS 1-μS 2=0. 式中S1为斜面底端与物体初位置间的水平距离.故11、解答:1 设小球第一次与地面碰撞后,能够反弹起的最大高度是h,则由动能定理得:mgH-h-kmgH+h=0αμcos 1mgl W f -=mghmgl W G ==αsin解得 H kkh +-=11 2、设球从释放开始,直至停止弹跳为止,所通过的总路程是S,对全过程由动能定理得mgH-kmgS=0解得 kH S =12、解答 同学对铅球做的功等于铅球离手时获得的动能,即212-=mv W铅球在空中运动的时间为g h t 2=铅球时离手时的速度t s v =1314、解答 首先建立风的“柱体模型”,如图2-7-7所示,设经过时间t 通过截面S 的空气的质量为m ,则有m =ρV=ρSl=ρSvt . 这部分空气的动能为t Sv v Svt mv E 322212121ρρ=⋅⋅==∆. 因为风的动能只有50%转化为电能,所以其电功率的表达式为 3341%5021%50Sv t tSv t E P ρρ=⨯=⨯∆=.代入数据得 320204.141⨯⨯⨯=P W=×104W.15. 1 X = Md/M +m 2 S 2=2)(m M Mmd+16.2-7-7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节 动能和动能定理例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.2-7-3 θ F O PQ l h H 2-7-2例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

已知工件与传送带间的动摩擦因数23=μ,g 取10m/s 2。

(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?.例8如图4所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。

求物体在轨道AB 段所受的阻力对物体做的功。

例9电动机通过一条绳子吊起质量为8kg 的物体。

绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2)2-7-4例10一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.2-7-6例11 从离地面H高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k(k<1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?例12某同学从高为h处水平地投出一个质量为m的铅球,测得成绩为s,求该同学投球时所做的功.例13如图所示,一根长为l的细线,一端固定于O点,另一端拴一质量为m的小球,v,要小球能在竖直平面内作圆周运动当小球处于最低平衡位置时,给小球一定得初速度v至少应多大?并通过最高点P,例14新疆达坂城风口的风速约为v=20m/s,设该地空气的密度为ρ=1.4kg/m3,若把通过横截面积S=20m2的风能的50%转化为电能,利用上述已知量推导计算电功率的公式,并求出发电机电功率的大小。

Sl2-7-7例15 质量为M、长度为d的木块,放在光滑的水平面上,在木块右边有一个销钉把木块挡住,使木块不能向右滑动。

质量为m的子弹以水平速度V0射入木块,刚好能将木块射穿。

现在拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度V0射入静止的木块。

设子弹在木块中受阻力恒定。

求:(1)子弹射入木块的深度(2)从子弹开始进入木块到与木块相对静止的过程中,木块的位移是多大?dV0例16如图2-7-19所示的装置中,轻绳将A、B相连,B置于光滑水平面上,拉力F使B以1m/s匀速的由P运动到Q,P、Q处绳与竖直方向的夹角分别为α1=37°,α2=60°.滑轮离光滑水平面高度h=2m,已知m A=10kg,m B=20kg,不计滑轮质量和摩擦,求在此过程中拉力F做的功(取sin37°=0.6,g取10m/s2)参考答案:1、解答:取飞机为研究对象,对起飞过程研究。

飞机受到重力G 、支持力N 、牵引力F 和阻力f 作用,如图2-7-1所示2-7-1各力做的功分别为W G =0,W N =0,W F =Fs ,W f =-kmgs .起飞过程的初动能为0,末动能为221mv 据动能定理得: 代入数据得: 2、石头在空中只受重力作用;在泥潭中受重力和泥的阻力。

对石头在整个运动阶段应用动能定理,有00)(-=-+h F h H mg 。

所以,泥对石头的平均阻力10205.005.02⨯⨯+=⋅+=mg h h H F N=820N 。

3、解答 由于碰撞前后速度大小相等方向相反,所以Δv=v t -(-v 0)=12m/s,根据动能定理答案:BC4、解答 小球下落为曲线运动,在小球下落的整个过程中,对小球应用动能定理,有2022121mv mv mgh -=, 解得小球着地时速度的大小为 =v gh v 220+。

正确选项为C 。

5、解答 将小球从位置P 很缓慢地拉到位置Q 的过程中,球在任一位置均可看作处于平衡状态。

由平衡条件可得F=mg tan θ,可见,随着θ角的增大,F 也在增大。

而变力的功是不能用W= Fl cos θ求解的,应从功和能关系的角度来求解。

小球受重力、水平拉力和绳子拉力的作用,其中绳子拉力对小球不做功,水平拉力对小球做功设为W ,小球克服重力做功mgl (1-cos θ)。

小球很缓慢移动时可认为动能始终为0,由动能定理可得 W -mgl (1-cos θ)=0,W = mgl (1-cos θ)。

正确选项为B 。

6、32FR N G f F 0212-=-mv kmgs Fs N s v m kmg F 42108.12⨯=+=02121ΔE 202K =-==mv mv W t7、解答 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin可得 )30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g m F a m/s 2=2.5m/s 2。

设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得 5.2222220⨯==a v x m=0.8m <4m 。

故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。

(2) 在工件从传送带底端运动至h =2m 高处的过程中,设摩擦力对工件做功W f ,由动能定理 2021mv mgh W f =-, 可得 210102120⨯⨯=+=mv mgh W f J 221021⨯⨯+J=220J 。

8、解答:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。

根据动能定理可知:W 外=0,所以mgR-umgS-W AB =0即W AB =mgR-umgS=1×10×0.8-1×10×3/15=6(J)9、解答 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。

在匀加速运动过程中,加速度为8108120⨯-=-=m mg F a m m/s 2=5 m/s 2, 末速度 1202001==m m t F P v m/s=10m/s , 上升时间 5101==a v t t s=2s , 上升高度 52102221⨯==a v h t m=10m 。

在功率恒定的过程中,最后匀速运动的速度为 1082001⨯==mg P v m m m/s=15m/s , 由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间2001)1015(821)1090(108)(21)(222212-⨯⨯+-⨯⨯=-+-=m t m P v v m h h mg t s=5.75s 。

所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为 t=t 1+t 2=2s+5.75s=7.75s 。

10、解答 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则对物体在全过程中应用动能定理:ΣW=ΔEk.mglsinα-μmglcosα-μmgS 2=0得 h -μS 1-μS 2=0.式中S1为斜面底端与物体初位置间的水平距离.故11、解答:(1) 设小球第一次与地面碰撞后,能够反弹起的最大高度是h ,则由动能定理得:mg(H-h)-kmg(H+h)=0解得 H kk h +-=11 (2)、设球从释放开始,直至停止弹跳为止,所通过的总路程是S ,对全过程由动能定理得mgH-kmgS=0解得 kH S = 12、解答 同学对铅球做的功等于铅球离手时获得的动能,即0212-=mv W铅球在空中运动的时间为g h t 2=铅球时离手时的速度t sv = 13、5gl14、解答 首先建立风的“柱体模型”,如图2-7-7所示,设经过时间t 通过截面S 的αμcos 1mgl W f -=mgh mgl W G ==αsin空气的质量为m ,则有m =ρV=ρSl=ρSvt 。

这部分空气的动能为 t Sv v Svt mv E 322212121ρρ=⋅⋅==∆。

因为风的动能只有50%转化为电能,所以其电功率的表达式为3341%5021%50Sv t t Sv t E P ρρ=⨯=⨯∆=。

相关文档
最新文档