第三讲 MATLAB预测(1)回归分析

合集下载

用MATLAB求解回归分析

用MATLAB求解回归分析


F值、与F对应的概率p

相关系数 r2 越接近 1,说明回归方程越显著;
.


省显
时著
为性
0
水 平
05

F > F1-α(k,n-k-1)时拒绝 H0,F 越大,说明回归方程越显著;
与 F 对应的概率 p 时拒绝 H0,回归模型成立.
3、画出残差及其置信区间: rcoplot(r,rint)
例1 解:1、输入数据:
stats = 0.9702 40.6656
0.0005
1、回归:
非线性回 归
是事先用m-文件定 义的非线性函数
(1)确定回归系数的命令: [beta,r,J]=nlinfit(x,y,’model’, beta0)
估计出的 回归系数
残差 Jacobian矩阵
输入数据x、y分别为 n m矩阵和n维列向 量,对一元非线性回 归,x为n维列向量。
r2=0.9282, F=180.9531, p=0.0000
p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.
3、残差分析,作残差图: rcoplot(r,rint)
从残差图可以看出,除第二个数据外,其余数据的残
差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点.
2、预测和预测误差估计:
(1)Y=polyval(p,x)求polyfit所得的回归多项式在 x处 的预测值Y; (2)[Y,DELTA]=polyconf(p,x,S,alpha)求 polyfit所得的回归多项式在x处的预测值Y及预测值的 显著性为 1-alpha的置信区间Y DELTA;alpha缺省时为0.5

matlab回归分析

matlab回归分析
则 x ,x 就 是 所 求 的 x 的 控 制 区 间 .
2019/9/8
返回
13
四、可线性化的一元非线性回归 (曲线回归)
例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀, 容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:
使用次数
解 得 估 计 值 ˆ X T X 1 X T Y注 意 : ˆ 服 从 p + 1 维 正 态 分
得 到 的 ˆ i代 入 回 归 平 面 方 程 得 :
y ˆ 0 ˆ 1 x 1 . . ˆ k x k .
布 , 且 为 的 无 偏 估
计 , 协 方 差 阵 为 2 C .
y 的 置 信 水 平 为 1 的 预 测 区 间 近 似 为


y ˆ ˆ e u 1 2 , y ˆ ˆ e u 1 2
2019/9/8
12
(2)控制
要 求 : y 0 1 x 的 值 以 1 的 概 率 落 在 指 定 区 间 y , y
yi ˆ0 ˆ1xi
2

n
(yi yˆi )2
i1
i1
称 Qe 为残差平方和或剩余平方和.
2 的无偏估计为
ˆ
2 e
Qe
(n 2)
称ˆ
2 e
为剩余方差(残差的方差), ˆ
2 e
分别与ˆ0 、ˆ1
独立 。
ˆe 称为剩余标准差.
2019/9/8
返回
7
三、检验、预测与控制
y 0 的 置 信 水 平 为 1 的 预 测 区 间 为

MATLAB回归分析工具箱使用方法

MATLAB回归分析工具箱使用方法

MATLAB回归分析工具箱使用方法1.数据准备在使用回归分析工具箱进行分析之前,首先需要准备好要使用的数据集。

数据集通常包含自变量和因变量,自变量是预测因变量的变量。

将数据集导入MATLAB中,并确保数据格式正确,可以使用MATLAB内置的导入工具或手动输入数据。

2.回归模型的选择在进行回归分析之前,需要选择适当的回归模型。

回归模型决定了如何拟合数据和生成预测。

常见的回归模型包括线性回归、多项式回归、逻辑回归等。

根据数据的特征和目的选择合适的回归模型。

3.拟合数据选择适当的回归模型后,可以使用回归分析工具箱中的函数来拟合数据。

常用的函数包括“fitlm”(线性回归)、“fitpoly”(多项式回归)、“fitglm”(逻辑回归)等。

将自变量和因变量传入对应的函数中,并得到拟合的模型。

例如,对于线性回归可以使用以下代码进行拟合:```mdl = fitlm(X,Y,'linear');```其中,X为自变量数据,Y为因变量数据,'linear'表示选择线性回归模型。

4.模型评估在拟合数据后,需要对模型进行评估以确定其拟合程度和预测性能。

可以使用回归分析工具箱中的函数来评估模型,如“plotResiduals”(绘制残差图)、“predict”(预测值)、“coefTest”(参数显著性检验)等。

通过观察残差图、计算R²值、进行参数显著性检验等方法,评估模型的拟合效果。

5.预测拟合好模型后,可以使用该模型进行预测未来的趋势。

使用“predict”函数可以生成预测值,并与实际值进行比较以评估模型的预测能力。

例如```Ypred = predict(mdl,Xnew);```其中,Xnew为新的自变量数据,Ypred为预测的因变量值。

6.结果可视化最后,可以使用MATLAB中的绘图工具来可视化回归分析的结果。

可以绘制拟合曲线、残差图、预测结果等,以便更直观地理解数据和模型。

用MATLAB求解回归分析讲解共28页文档

用MATLAB求解回归分析讲解共28页文档

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭ห้องสมุดไป่ตู้为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
用MATLAB求解回归分析讲 解
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。

利用Matlab进行线性回归分析

利用Matlab进行线性回归分析

利用Matlab进行线性回归分析回归分析是处理两个及两个以上变量间线性依存关系的统计方法;可以通过软件Matlab实现;1.利用Matlab软件实现在Matlab中,可以直接调用命令实现回归分析,1b,bint,r,rint,stats=regressy,x,其中b是回归方程中的参数估计值,bint是b的置信区间,r和rint分别表示残差及残差对应的置信区间;stats 包含三个数字,分别是相关系数,F统计量及对应的概率p值;2recplotr,rint作残差分析图;3rstoolx,y一种交互式方式的句柄命令;以下通过具体的例子来说明;例现有多个样本的因变量和自变量的数据,下面我们利用Matlab,通过回归分析建立两者之间的回归方程;% 一元回归分析x=1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3, 55 3372;%自变量序列数据y=698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825;%因变量序列数据X=onessizex',x',pauseb,bint,r,rint,stats=regressy',X,,pause%调用一元回归分析函数rcoplotr,rint%画出在置信度区间下误差分布;% 多元回归分析% 输入各种自变量数据x1= 8 3 3 8 9 4 5 6 5 8 6 4 7';x2=31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 7040 50 62 59'; x3=10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9';x4=8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11';%输入因变量数据y= 160 155 195';X=onessizex1,x1,x2,x3,x4;b,bint,r,rint,stats=regressy,X%回归分析Q=r'rsigma=Q/18rcoplotr,rint;%逐步回归X1=x1,x2,x3,x4;stepwiseX1,y,1,2,3%逐步回归% X2=onessizex1,x2,x3;% X3=onessizex1,x1,x2,x3;% X4=onessizex1,x2,x3,x4;% b1,b1int,r1,r1int,stats1=regressy,X2% b2,b2int,r2,r2int,stats2=regressy,X3;% b3,b3int,r3,r3int,stats3=regressy,X4;。

利用MATLAB进行回归分析

利用MATLAB进行回归分析

利用MATLAB进行回归分析一、实验目的:1.了解回归分析的基本原理,掌握MATLAB实现的方法;2. 练习用回归分析解决实际问题。

二、实验内容:题目1社会学家认为犯罪与收入低、失业及人口规模有关,对20个城市的犯罪率y(每10万人中犯罪的人数)与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数3x(千人)进行了调查,结果如下表。

(1)若1x~3x中至多只许选择2个变量,最好的模型是什么?(2)包含3个自变量的模型比上面的模型好吗?确定最终模型。

(3)对最终模型观察残差,有无异常点,若有,剔除后如何。

理论分析与程序设计:为了能够有一个较直观的认识,我们可以先分别作出犯罪率y与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数x(千人)之间关系的散点图,根据大致分布粗略估计各因素造3成的影响大小,再通过逐步回归法确定应该选择哪几个自变量作为模型。

编写程序如下:clc;clear all;y=[11.2 13.4 40.7 5.3 24.8 12.7 20.9 35.7 8.7 9.6 14.5 26.9 15.736.2 18.1 28.9 14.9 25.8 21.7 25.7];%犯罪率(人/十万人)x1=[16.5 20.5 26.3 16.5 19.2 16.5 20.2 21.3 17.2 14.3 18.1 23.1 19.124.7 18.6 24.9 17.9 22.4 20.2 16.9];%低收入家庭百分比x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 7.6 4.9 6.4 6.0 7.4 5.8 8.6 6.5 8.36.7 8.6 8.4 6.7];%失业率x3=[587 643 635 692 1248 643 1964 1531 713 749 7895 762 2793 741 625 854 716 921 595 3353];%总人口数(千人)figure(1),plot(x1,y,'*');figure(2),plot(x2,y,'*');figure(3),plot(x3,y,'*');X1=[x1',x2',x3'];stepwise(X1,y)运行结果与结论:犯罪率与低收入散点图犯罪率与失业率散点图犯罪率与人口总数散点图低收入与失业率作为自变量低收入与人口总数作为自变量失业率与人口总数作为自变量在图中可以明显看出前两图的线性程度很好,而第三个图的线性程度较差,从这个角度来说我们应该以失业率和低收入为自变量建立模型。

第三讲 MATLAB预测(1)回归分析

第三讲 MATLAB预测(1)回归分析

ˆ 489.2946 s t 2 65.8896 t 9.1329
方法二
化为多元线性回归:
t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
3
1
模型:记血压为 y ,年龄为 x1 ,体重指数为 x2 ,吸烟习惯为 x3 , 用Matlab将 y 与 x2 的数据做散点图,看出大致也呈线性关系,建立 模型: y 0 1 x1 2 x2 3 x3 由数据估计系数 0,2,3,4 ,也可看做曲面拟合(其实为 超平面)
T=[ones(14,1) t‘ (t.^2)'];
[b,bint,r,rint,stats]=regress(s',T); b,stats
得回归模型为 :
ˆ 9.1329 65.8896 s t 489.2946 t2
预测及作图
Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')
(二)多元二项式回归
命令:rstool(x,y,’model’, alpha)
nm矩阵
n维列向量
显著性水平
(缺省时为0.05)
由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型): linear(线性): y 0 1 x1 m xm purequadratic(纯二次): interaction(交叉): y
其中 x=(x1,x2,„,xn) ,y=(y1,y2 ,„,yn) ; m m-1 p=(a1,a2,„,am+1)是多项式 y=a1x +a2x +„+amx+am+1 的系数;S 是一个矩阵,用来估计预测误差.

利用 Matlab作回归分析

利用 Matlab作回归分析

利用 Matlab 作回归分析一元线性回归模型:2,(0,)y x N αβεεσ=++求得经验回归方程:ˆˆˆyx αβ=+ 统计量: 总偏差平方和:21()n i i SST y y ==-∑,其自由度为1T f n =-; 回归平方和:21ˆ()n i i SSR y y ==-∑,其自由度为1R f =; 残差平方和:21ˆ()n i i i SSE y y ==-∑,其自由度为2E f n =-;它们之间有关系:SST=SSR+SSE 。

一元回归分析的相关数学理论可以参见《概率论与数理统计教程》,下面仅以示例说明如何利用Matlab 作回归分析。

【例1】为了了解百货商店销售额x 与流通费率(反映商业活动的一个质量指标,指每元商品流转额所分摊的流通费用)y 之间的关系,收集了九个商店的有关数据,见下表1.试建立流通费率y 与销售额x 的回归方程。

表1 销售额与流通费率数据【分析】:首先绘制散点图以直观地选择拟合曲线,这项工作可结合相关专业领域的知识和经验进行,有时可能需要多种尝试。

选定目标函数后进行线性化变换,针对变换后的线性目标函数进行回归建模与评价,然后还原为非线性回归方程。

【Matlab数据处理】:【Step1】:绘制散点图以直观地选择拟合曲线x=[1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5];y=[7.0 4.8 3.6 3.1 2.7 2.5 2.4 2.3 2.2];plot(x,y,'-o')输出图形见图1。

510152025图1 销售额与流通费率数据散点图根据图1,初步判断应以幂函数曲线为拟合目标,即选择非线性回归模型,目标函数为:(0)b y ax b =< 其线性化变换公式为:ln ,ln v y u x == 线性函数为:ln v a bu =+【Step2】:线性化变换即线性回归建模(若选择为非线性模型)与模型评价% 线性化变换u=log(x)';v=log(y)';% 构造资本论观测值矩阵mu=[ones(length(u),1) u];alpha=0.05;% 线性回归计算[b,bint,r,rint,states]=regress(v,mu,alpha)输出结果:b =[ 2.1421; -0.4259]表示线性回归模型ln=+中:lna=2.1421,b=-0.4259;v a bu即拟合的线性回归模型为=-;y x2.14210.4259bint =[ 2.0614 2.2228; -0.4583 -0.3934]表示拟合系数lna和b的100(1-alpha)%的置信区间分别为:[2.0614 2.2228]和[-0.4583 -0.3934];r =[ -0.0235 0.0671 -0.0030 -0.0093 -0.0404 -0.0319 -0.0016 0.0168 0.0257]表示模型拟合残差向量;rint =[ -0.0700 0.02300.0202 0.1140-0.0873 0.0813-0.0939 0.0754-0.1154 0.0347-0.1095 0.0457-0.0837 0.0805-0.0621 0.0958-0.0493 0.1007]表示模型拟合残差的100(1-alpha)%的置信区间;states =[0.9928 963.5572 0.0000 0.0012] 表示包含20.9928SSR R SST==、 方差分析的F 统计量/963.5572//(2)R E SSR f SSR F SSE f SSE n ===-、 方差分析的显著性概率((1,2))0p P F n F =->≈; 模型方差的估计值2ˆ0.00122SSE n σ==-。

基于MATLAB的回归分析模型在经济预测分析中的应用

基于MATLAB的回归分析模型在经济预测分析中的应用

一、灰色预测模型的原理
一、灰色预测模型的原理
灰色预测模型通过将原始数据序列进行累加生成具有指数规律的新数据序列, 然后建立GM(1,1)模型进行预测。该模型使用一阶微分方程来描述数据的生成过 程,并利用最小二乘法估计参数。通过预测得到的新数据序列可以还原为原始数 据的预测值。
二、MATLAB实现灰色预测模型
五、结论
五、结论
回归分析模型在经济预测分析中具有重要的应用价值,而基于MATLAB的回归 分析工具箱为其提供了强大的支持。通过使用MATLAB回归分析工具箱,经济学家 可以更加准确地建立回归模型、评估模型性能并进行预测。这些功能和应用场景 使得基于MATLAB的回归
五、结论
分析模型成为经济学领域中一种非常有价值的分析工具。
二、MATLAB回归分析工具箱
二、MATLAB回归分析工具箱
MATLAB是一款广泛应用于科学计算、工程学、数学等领域的数据分析软件。 其中,MATLAB回归分析工具箱是一款强大的数据分析工具,用于进行回归分析模 型的建立、评估和预测。通过MATLAB回归分析工具箱,用户可以轻松地处理数据、 选择合适的回归模型、进行模型评估和预测等任务。
五、结论
未来研究方向包括进一步优化回归分析模型算法以提高预测精度、研究更加 复杂的模型类型以适应更多元化的数据关系、以及将回归分析模型应用于更多领 域的经济预测和分析中。此外,如何有效地将人工经验与机器学习相结合,也是 未来研究的一个重要方向。
参考内容
内容摘要
灰色预测模型(Grey Model, GM)是一种广泛使用的预测方法,特别是在处 理具有不完全信息和不确定因素的数据时。它利用生成数据序列来建立预测模型, 进而预测未来发展趋势。本篇文章将探讨如何使用MATLAB实现灰色预测模型,并 展示其在经济分析中的应用。

Matlab中的回归分析与多元统计分析

Matlab中的回归分析与多元统计分析

Matlab中的回归分析与多元统计分析Matlab是一种功能强大的数值计算和科学编程软件,广泛应用于各个领域中数据处理和分析的任务。

在统计学中,回归分析和多元统计分析是常见的方法,它们能够帮助我们揭示数据之间的隐藏关系和趋势。

本文将探讨在Matlab环境下如何进行回归分析和多元统计分析。

一、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它可以分析自变量(或称预测变量)与因变量之间的相关性,并通过建立数学模型来预测未知的观测值。

在Matlab中,我们可以使用regress函数进行简单回归分析。

假设我们有两个变量X和Y,我们想要探索它们之间是否存在线性关系。

首先,我们需要导入数据,并绘制散点图以观察数据分布的趋势:```matlabdata = [X, Y]; % 导入数据scatter(X, Y); % 绘制散点图```接下来,我们可以使用regress函数进行回归分析:```matlabmdl = regress(Y, [ones(size(X)), X]); % 进行简单线性回归```regress函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl(1:end-1); % 提取回归系数residuals = mdl(end); % 提取残差```此外,我们还可以使用mdl对象进行预测:```matlaby_pred = [ones(size(X)), X] * coef; % 根据模型预测Y的值```二、多元统计分析多元统计分析是指研究多个变量之间关系的统计方法。

与简单回归分析不同,多元统计分析考虑了多个自变量对因变量的影响。

在Matlab中,我们可以使用fitlm函数进行多元线性回归分析。

假设我们有三个自变量X1、X2和X3,一个因变量Y,我们想要研究它们之间的关系。

首先,我们同样需要导入数据,并绘制散点图以观察数据分布:```matlabdata = [X1, X2, X3, Y]; % 导入数据scatter3(X1, X2, X3, Y); % 绘制散点图```接下来,我们可以使用fitlm函数进行多元线性回归分析:```matlabmdl = fitlm([X1, X2, X3], Y); % 进行多元线性回归```fitlm函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl.Coefficients.Estimate; % 提取回归系数residuals = mdl.Residuals.Raw; % 提取残差```同样,我们可以使用mdl对象进行预测:```matlaby_pred = predict(mdl, [X1, X2, X3]); % 根据模型预测Y的值```除了多元线性回归,Matlab还提供了其他多元统计分析的方法,如主成分分析(PCA)和因子分析。

用MATLAB求解回归分析课件

用MATLAB求解回归分析课件
感谢观看
用Matlab求解 回归分析课件
目 录
• 回归分析简介 • Matlab基础操作 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • Matlab在回归分析中的应用实例
01
CATALOGUE
回归分析简介
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来预测因变量的值。
显著性检验
对回归模型的显著性进行检验,如F 检验、t检验等。
预测精度评估
使用均方误差、均方根误差等指标评 估模型的预测精度。
可解释性
评估模型的解释性,即模型是否易于 理解,自变量对因变量的影响是否合 理。
06
CATALOGUE
Matlab在回归分析中的应用实例
用Matlab进行线性回归分析的实例
迭代法
对于一些复杂的回归模型,可能 需要使用迭代法进行求解,如梯 度下降法、牛顿法等。
Matlab函数
在Matlab中,可以使用内建的回 归分析函数来求解多元回归模型 ,如 `fitlm`、`fitlm2` 等。
多元回归模型的评估
残差分析
对回归模型的残差进行分析,检查残 差是否满足正态分布、同方差等假设 。
要点一
总结词
要点二
详细描述
多元回归分析是处理多个自变量和因变量之间关系的回归 分析方法,通过Matlab可以方便地进行多元回归分析。
在Matlab中,可以使用`fitlm`函数对一组数据进行多元回 归分析。首先需要准备数据,然后使用`fitlm`函数拟合多 元线性模型,最后通过模型进行预测和评估。
THANKS
使用预测值与实际值之间的误差评估模型的预测 能力,如均方误差、平均绝对误差等指标。

matlab回归分析方法

matlab回归分析方法
=0.9527,由finv(0.95,1,13)= 4.6672,即 = 4.6672<F=261.6389,p<0.0001,说明模型有效且有改进,因此我们得到身高与腿长的关系 。
当然,也可以利用直线拟合得到同一方程。只不过不能得到参数置信区间和对模型进行检验。拟合程序如下:
y=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164];
8.2多元线性回归分析
8.2.1多元线性回归模型的建模步骤及其MATLAB实现
如果根据经验和有关知识认为与因变量有关联的自变量不止一个,那么就应该考虑用最小二乘准则建立多元线性回归模型。
设影响因变量 的主要因素(自变量)有m个,记 ,假设它们有如下的线性关系式:

如果对变量 与自变量 同时作n次观察(n>m)得n组观察值,采用最小二乘估计求得回归方程
(1)收集一组包含因变量和自变量的数据;
(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;
(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型;
(4)判断得到的模型是否适合于这组数据;
(5)利用模型对因变量作出预测或解释。
应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。

关于matlab的回归分析

关于matlab的回归分析
和 x ,即 yˆ (x) y, yˆ (x) y .
则x, x 就是所求的 x 的控制区间.
2019/7/22
返回
13
四、可线性化的一元非线性回归 (曲线回归)
例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀, 容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:

kk
yˆ1 yˆ ˆ e 1 cij xi x j t1 / 2 (n k 1)
称为回归多项式.上面的回归模型称为多项式回归.
令xi xi ,i=1,2,…,k 多项式回归模型变为多元线性 回归模型.
返回
2019/7/22
19
三、多元线性回归中的检验与预测
1、线性模型和回归系数的检验
假设
H 0 : 0 1 ... k 0
(Ⅰ)F检验法
U /k
当 H0 成立时, F Qe /(n k 1) ~ F (k, n k 1)


X


1
x21
x22
...
x2k




1




2

...
... ... ... ... ...
...
...

y
n


1
x n1
xn2
...
x
n
k


k


n

y 0 1x1 ... k xk 称为回归平面方程.
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102

第三讲MATLAB预测1回归分析

第三讲MATLAB预测1回归分析
9
剔除第二个点后得到的结果:
回归系数 0 1 R2=0.7123
回归系数估计值 回归系数置信区间
96.8665
[85.4771, 108.2559]
0.9533
[0.7140, 1.1925]
F=66.8358 p<0.0001 s2=91.4305
对50岁的人血压进行预测,得到结果为:
yˆ0 ˆ0 ˆ1x0 96.8665 0.9533x0 144.5298
56
22
142
50
3
138
45
13
140
59
23
120
39
4
145
47
14
110
34
24
120
21
5
162
65
15
128
42
25
160
44
6
142
46
16
130
48
26
158
53
7
170
67
17
135
45
27
144
63
8
124
42
18
114
18
28
130
29
9
158
67
19
116
20
29
125
25
10
回归系数估计值 回归系数置信区间
98.4084
[74.7484, 118.0683]
0.9732
[0.5601 1.3864]
F=23.2834 p<0.001 s2=273.7137
从以下几点可以看出模型是有效的:参数的置信区间不含0 点;p小于显著性水平;用Matlab可以求出F1-α(1,n-2)=4.1960,显 然小于F值。

关于matlab的回归分析

关于matlab的回归分析
称为经验回归平面方程.ˆi 称为经验回归系数.
布,且为 的无偏估
计,协方差阵为 2C . C=L-1=(cij), L=X’X
2019/10/14
18
2、多项式回归
设变量 x、Y 的回归模型为 Y 0 1x 2 x2 ... p x p
其中 p 是已知的,i (i 1,2,, p) 是未知参数, 服从正态分布 N (0, 2 ) .
2n
n
其中Lxx (xi x)2 xi2 nx 2
i 1
i 12019/10/149(Ⅲ)r检验法n
(xi x)( yi y)

r
i 1
n
n
(xi x)2 ( yi y)2
i 1
i 1
当|r|> r1-α 时,拒绝 H0;否则就接受 H0.
(Ⅰ)F检验法
U /k
当 H0 成立时, F Qe /(n k 1) ~ F (k, n k 1)
如果 F > F1-α (k,n-k-1),则拒绝 H0,认为 y 与 x1,…, xk 之间显著
地有线性关系;否则就接受 n
H0,认为
y

x1,… n ,
xk
之间线性关系不
显著. 其中 U yˆi y2 (回归平方和) Qe ( yi yˆi )2 (残差平方和)
Y 0 1x 2 x2 ... k xk
称为回归多项式.上面的回归模型称为多项式回归.
令xi xi ,i=1,2,…,k 多项式回归模型变为多元线性 回归模型.
返回
2019/10/14
19
三、多元线性回归中的检验与预测

matlab回归分析

matlab回归分析
令xi xi ,i=1,2,…,k 多项式回归模型变为多元线性 回归模型.
返回
2019/6/23
19
三、多元线性回归中的检验与预测
1、线性模型和回归系数的检验
假设
H 0 : 0 1 ... k 0
(Ⅰ)F检验法
U /k
当 H0 成立时, F Qe /(n k 1) ~ F (k, n k 1)
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
解答
102
100
98
y 0 1x
96
94
92
90
88
86
84
140
145
150
155
160
165
y0 的置信水平为1 的预测区间为
yˆ0 (x0 ), yˆ0 (x0 )
其中 (x0 ) ˆ et1 (n 2) 2
1 1 x0 x2
n
Lxx
特别,当 n 很大且 x0 在x 附近取值时,
y 的置信水平为1 的预测区间近似为




yi 0 x1 i , i 1,2,..., n E i 0, D i 2 且1 2,..., n相互独立
n
n

Q Q(0 , 1)

2 i

yi 0 1xi 2
i 1
i 1
最小二乘法就是选择0 和 1 的估计ˆ0 , ˆ1 使得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法一
直接作二次多项式回归: t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90
85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为 :
ˆ 0 u s, y ˆ0 u s] ,可以得到其置信度为0.95 根据预测区间 [ y 1 1
2 2
的置信区间为:[125.7887,163.2708].
10
同样方法做问题二 第一次做多元回归结果: 回归系数 回归系数估计值 45.3636 0.3604 回归系数置信区间 [3.5537 87.1736] [-0.0758 0.7965]
0 1 2
3.0906
11.8246
[1.0530 5.1281]
[-0.1482 23.7973]
3
R2=0.6855
F=18.8906 p<0.0001 s2=169.7917
通过残差分析图可以得到第2个点和第10个点为异常点,删除后重 新进行回归分析,可以得到下面表:
11
回归系数
回归系数估计值
9
剔除第二个点后得到的结果: 回归系数 回归系数估计值
96.8665 0.9533 F=66.8358
回归系数置信区间
[85.4771, 108.2559] [0.7140, 1.1925]
0 1
R2=0.7123
p<0.0001 s2=91.4305
对50岁的人血压进行预测,得到结果为: ˆ ˆ x 96.8665 0.9533 x 144.5298 ˆ0 y 0 1 0 0
表 2
序号 血压 年龄 1 2 3 4 5 6 7 8 9 10 144 215 138 145 162 142 170 124 158 154 39 47 45 47 65 46 67 42 67 56 体重 吸烟 体重 吸烟 体重 吸烟 序号 血压 年龄 序号 血压 年龄 指数 习惯 指数 习惯 指数 习惯 24.2 0 11 162 64 28.0 1 21 136 36 25.0 0 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 1 0 1 1 0 1 0 1 0 12 13 14 15 16 17 18 19 20 150 140 110 128 130 135 114 116 124 56 59 34 42 48 45 18 20 19 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 0 0 0 0 1 0 0 0 0 22 23 24 25 26 27 28 29 30 142 120 120 160 158 144 130 125 175 50 39 21 44 53 63 29 25 69 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4 1 0 0 1 1 0 1 0
先来看两个例子:
问题1 (血压与年龄)
为了了解血压随着年龄的增长而升高的关系,调查了30个成年人的血压, 如表所示,我们希望用这组数确定血压与年龄之间的关系,并且由此从年 龄预测血压可能的变化范围。 表 1
序号 1 2 3 4 5 6 7 8 9 10 血压 144 215 138 145 162 142 170 124 158 154 年龄 39 47 45 47 65 46 67 42 67 56 序号 11 12 13 14 15 16 17 18 19 20 血压 162 150 140 110 128 130 135 114 116 124 年龄 64 56 59 34 42 48 45 18 20 19 序号 21 22 23 24 25 26 27 28 29 30 血压 136 142 120 120 160 158 144 130 125 175 年龄 36 50 39 21 44 53 63 29 25 69
4
第三讲 MATLAB预测方法(1)回归分析
多元线性回归
y 0 1 x1 ... p x p
1、确定回归系数的点估计值:
b=regress( Y, X )
Y1 Y Y 2 ... Yn
ˆ 0 ˆ 1 b ... ˆ p
%已知的因变量数组
%已知的自变量数组 %已知的数据容量 %1与自变量组成的输入矩阵 %回归分析程序(显著性水平为0.05) %输出回归系数及其置信区间和统计量 %残差及其置信区间作图
输出结果为: b= 98.4084 0.9732 bint = s= 0.4540 23.2834 0.0000 273.7137
模型:记血压为y,年龄为x,可以做出如上图所示的散点图,从图形 上直观的可以看出,y与x大致呈线性关系,即有:
y 0 1 x ˆ , ˆ 。 需要由数据确定系数 0 , 1 的估计值 0 1
此函数为一元线性函数!!
2
问题2 (血压与年龄,体重指数,吸烟习惯)
世界卫生组织颁布的“体重指数”的定义是体重(kg)除以身高(m)的平 方,下表给出了30个人的体重指数等数据,其中,0表示不吸烟,1表示吸 烟,怎么考虑吸烟这个因素,此因素对于血压升高有影响吗,并对体重指 数为25,50岁的吸烟者的血压做出预测。
78.7484 118.0683
0.5601 1.3864
7
结果整理为下表: 回归系数 回归系数估计值
98.4084 0.9732 F=23.2834
回归系数置信区间
[74.7484, 118.0683] [0.5601 1.3864]
0 1
R2=0.4540
p<0.001 s2=273.7137
回 归 系 数 的 区 间 估 计 残 差 置 信 区 间 用于检验回归模型的统计量, 有三个数值:R2、F值、与F 对应的概率p、以及残差的方 差的估计值
R2 越接近 1,说明回归方程越显著;
( 缺 省显 时著 为性 水 平 )
F F1 (k , n k 1) 时,F 越大,说明回归方程越显著;
1 x11 1 x 21 X ... ... 1 x n1
x12 x 22 ... xn2
... x1 p ... x 2 p ... ... ... x np
对一元线性回归,取 p=1 即可
2、求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha)
3
1
模型:记血压为 y ,年龄为 x1 ,体重指数为 x2 ,吸烟习惯为 x3 , 用Matlab将 y 与 x2 的数据做散点图,看出大致也呈线性关系,建立 模型: y 0 1 x1 2 x2 3 x3 由数据估计系数 0,2,3,4 ,也可看做曲面拟合(其实为 超平面)
(二)多元二项式回归
命令:rstool(x,y,’model’, alpha)
nm矩阵
n维列向量
显著性水平
(缺省时为0.05)
由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型): linear(线性): y 0 1 x1 m xm purequadratic(纯二次): interaction(交叉): y
用上面的参数通过计算可以得到: 50岁,体重指数为25,吸烟的人的血压预测为:148.9525 置信度为0.95的置信区间为:[134.5951,163.3099]
12
多项式回归 (一)一元多项式回归 1、回归: y=a1xm+a2xm-1+…+amx+am+1
(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)
与 F 对应的概率 p 时回归模型成立,否则,则说明回归方程中 有多余的自变量,可以将这些多余的自变量从回归方程中剔除
0.05
3、画出残差及其置信区间:
rcoplot(r,rint)
6
问题1的求解:
y=[„„];
x=[„„]; n=„„; X=[ones(n,1),x’]; [b,bint,r,rint,s]=regress(y’,X); b, bint, s, rcoplot(r,rint)
从以下几点可以看出模型是有效的:参数的置信区间不含0 点;p小于显著性水平;用Matlab可以求出F1-α(1,n-2)=4.1960,显 然小于F值。 但是由于β1的置信区间过长,R2较小,说明模型的精度不 高!
8
残差图如图所示:
图中第二个点的残差置信区间中不包含0点,由于残差服从均值为0的正 态分布,因此可以认为这个点为异常数据,偏离数据整体的变化范围, 应该剔除,重新进行回归分析!! 残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一 定的规律性,如果是这样,就说明回归分析做得比较理想。
T=[ones(14,1) t‘ (t.^2)'];
[b,bint,r,rint,stats]=regress(s',T); b,stats
得回归模型为 :
ˆ 9.1329 65.8896 s t 489.2946 t2
预测及作图
Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')
ˆ 489.2946 s t 2 65.8896 t 9.1329
方法二
化为多元线性回归:
t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
相关文档
最新文档