MATLAB统计工具箱中的回归分析命令

合集下载

matlab中基本统计和回归命令(可编辑)

matlab中基本统计和回归命令(可编辑)

matlab中基本统计和回归命令(可编辑)例3 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 法一直接用多元二项式回归: x1[1000 600 1200 500 300 400 1300 1100 1300 300]; x2 [5 7 6 6 8 7 5 4 3 9];y [100 75 80 70 50 65 90 100 110 60]'; x [x1' x2']; rstoolx,y,'purequadratic' 在画面左下方的下拉式菜单中选”all”, 则beta、rmse和residuals都传送到Matlab工作区中. 在左边图形下方的方框中输入1000,右边图形下方的方框中输入6。

则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在Matlab工作区中输入命令: beta, rmse 结果为: b 110.53130.1464 -26.5709 -0.00011.8475 stats 0.9702 40.6656 0.0005 法二将化为多元线性回归: 非线性回归 (1)确定回归系数的命令: [beta,r,J] nlinfit(x,y,’model’, beta0) (2)非线性回归命令:nlintool (x,y,’model’, beta0,alpha) 1、回归: 残差 Jacobian矩阵回归系数的初值是事先用m-文件定义的非线性函数估计出的回归系数输入数据x、y 分别为矩阵和n维列向量,对一元非线性回归,x为n维列向量。

2、预测和预测误差估计: [Y,D ELTA] nlpredci(’model’, x,beta,r,J) 求nlinfit 或nlintool所得的回归函数在x处的预测值Y及预测值的显著性为1-alpha的置信区间Y DELTA. * * 一、数据的录入、保存和调用例1 上海市区社会商品零售总额和全民所有制职工工资总额的数据如下统计工具箱中的基本统计命令 1、年份数据以1为增量,用产生向量的方法输入。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立.⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、多项式回归(一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];[p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 10075 80 70 50 65 90 100 110 60收入 1000 600 1200500 300 400 1300 1100 1300 300 价格 5 7 6 6 8 7 5 4 3 9解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.00011.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值.(2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,StepwiseHistory.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。

用MATLAB求解回归分析

用MATLAB求解回归分析

(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) ) 2、预测和预测误差估计: 、预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或nlintool所得的回归函数在x处的预测值Y及预测值的显 著性为1-alpha的置信区间Y ± DELTA.
4、预测及作图: [;,x',beta,r ,J); plot(x,y,'k+',x,YY,'r')
例5 财政收入预测问题:财政收入与国民收入、工业总产值、 农业总产值、总人口、就业人口、固定资产投资等因素有关。 下表列出了1952-1981年的原始数据,试构造预测模型。
得结果:b = -16.0730 0.7194 stats = 0.9282 180.9531 0.0000 bint = -33.7071 0.6047 1.5612 0.8340
ˆ ˆ ˆ ˆ 即 β 0 = −16.073, β 1 = 0.7194 ; β 0 的置信区间为[-33.7017,1.5612], β 1 的置信区间为[0.6047,0.834];
回 归 系 数 的 区 间 估 计 F 检验回归模型的 计 数 : 系数r2、 、 F 的 p 差 区 间 时 为 水 0 平 05 ) . 性 残 信 省 著 置 (缺 显
系数 r2 F > F1F k 的 n-k-1
1
回归 H0 F H0 回归模型 回归 .
p< α
3、 、
区间: 区间:
rcoplot
r2=0.9282, F=180.9531, p=0.0000 p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.

Matlab中的回归分析技术实践

Matlab中的回归分析技术实践

Matlab中的回归分析技术实践引言回归分析是统计学中常用的一种分析方法,用于研究因变量和一个或多个自变量之间的关系。

Matlab是一种强大的数值计算软件,具有丰富的统计分析工具和函数。

通过Matlab中的回归分析技术,我们可以深入理解数据背后的规律,并预测未来的趋势。

本文将介绍Matlab中常用的回归分析方法和技巧,并通过实例演示其实践应用。

一、简单线性回归分析简单线性回归是回归分析的最基本形式,用于研究一个自变量和一个因变量之间的线性关系。

在Matlab中,可以使用`fitlm`函数进行简单线性回归分析。

以下是一个示例代码:```Matlabx = [1, 2, 3, 4, 5]';y = [2, 4, 6, 8, 10]';lm = fitlm(x, y);```这段代码中,我们定义了两个向量x和y作为自变量和因变量的观测值。

使用`fitlm`函数可以得到一个线性回归模型lm。

通过这个模型,我们可以获取回归系数、拟合优度、显著性检验等信息。

二、多元线性回归分析多元线性回归分析允许我们研究多个自变量与一个因变量的关系。

在Matlab中,可以使用`fitlm`函数进行多元线性回归分析。

以下是一个示例代码:```Matlabx1 = [1, 2, 3, 4, 5]';x2 = [0, 1, 0, 1, 0]';y = [2, 4, 6, 8, 10]';X = [ones(size(x1)), x1, x2];lm = fitlm(X, y);```这段代码中,我们定义了两个自变量x1和x2,以及一个因变量y的观测值。

通过将常数项和自变量组合成一个设计矩阵X,使用`fitlm`函数可以得到一个多元线性回归模型lm。

通过这个模型,我们可以获取回归系数、拟合优度、显著性检验等信息。

三、非线性回归分析在实际问题中,很多情况下变量之间的关系并不是线性的。

非线性回归分析可以更准确地建模非线性关系。

如何使用Matlab进行线性回归与非线性回归

如何使用Matlab进行线性回归与非线性回归

如何使用Matlab进行线性回归与非线性回归使用Matlab进行线性回归与非线性回归简介:线性回归和非线性回归是统计分析中常用的两种回归模型。

线性回归假设自变量与因变量之间存在线性关系,而非线性回归则假设二者之间存在非线性关系。

本文将介绍如何使用Matlab进行线性回归和非线性回归分析,并分析其应用领域和优缺点。

一、线性回归分析线性回归是一种最基本的回归分析方法,广泛应用于统计学、经济学、金融学等领域。

在Matlab中,可以使用fitlm函数进行线性回归分析。

回归模型的基本形式如下所示:Y = β0 + β1X1 + β2X2 + ... + ε其中Y是因变量,X1,X2等是自变量,β0,β1,β2等是回归系数,ε是误差项。

线性回归模型的参数估计可以采用最小二乘法。

在Matlab中,可以使用fitlm 函数进行参数估计和显著性检验。

显著性检验可以帮助我们确定回归系数的是否显著不等于零,从而判断自变量对因变量的影响是否显著。

二、非线性回归分析在某些情况下,变量之间的关系不是线性的,而是呈现出曲线的形式。

这时,我们需要使用非线性回归模型进行分析。

在Matlab中,可以使用cftool函数进行非线性回归分析。

cftool是一个交互式的拟合工具箱,通过界面操作可以方便地进行曲线拟合。

用户可以选择不同的拟合模型,并根据数据点进行拟合。

cftool提供了各种常见的非线性回归模型,如指数模型、幂函数模型、对数模型等。

用户可以根据实际需求选择合适的模型进行分析。

非线性回归模型的参数估计可以使用最小二乘法、最大似然估计等方法。

在Matlab的cftool中,可以直接进行参数估计,并生成相应的拟合曲线。

三、线性回归与非线性回归的应用领域线性回归和非线性回归分析在各个领域都有广泛的应用。

线性回归常用于预测、趋势分析、经济建模等方面。

非线性回归则更适用于描述非线性关系的数据,常用于生物医学、环境科学、物理学等领域。

以医学领域为例,线性回归可以用于预测患者的生存时间、评估药物的剂量-效应关系等。

MATLAB统计工具箱中的回归分析命令

MATLAB统计工具箱中的回归分析命令

佛山科学技术学院上机报告课程名称数学应用软件上机项目 MATLAB统计工具箱中的回归分析命令专业班级一. 上机目的本节课我们认识了用MA TALB统计工具箱中的回归命令,主要有以下内容:regress命令即可用于多元回归分析也可用于一元线性回归,其格式如下:1.确定回归系数的命令是regress,用命令:b=regress(Y,X).2.求回归系数的点的估计和区间估计,并检验回归模型,用命令:[b,bint,r,rint,stats]=regress(Y,X,alpha)3.画出残差及其置性区间,用命令:rcoplot(r,rint)二元多项式回归:[p,S]=polyfit(x,y,2)二. 上机内容1.第十六章课后习题1;2.第十六章课后习题2;3.第十六章课后习题3。

三. 上机方法与步骤给出相应的问题分析及求解方法,并写出Matlab程序,并有上机程序显示截图。

第1题:要求一元线性回归方程及检验其显著性,用命令[b,bint,r,rint,stats]=regress(Y,X);求置信区间和预测值用命令rstool(x,y,'purequadratic')回归方程及检验其显著性:x=[20 25 30 35 40 45 50 55 60 65]';X=[ones(10,1) x];Y=[13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.2 22.5 24.3]';[b,bint,r,rint,stats]=regress(Y,X);b,bint,stats残差分析,作残差图:rcoplot(r,rint)预测及作图:z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')预测值及置信区间:x=[20 25 30 35 40 45 50 55 60 65]';y=[13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.2 22.5 24.3]'; rstool(x,y,'purequadratic')第2题:要求二元多项式回归方程用命令[p,S]=polyfit(x,y,2)二元回归方程:用polyfit命令编程:x=0:2:20;y=[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7]; [p,S]=polyfit(x,y,2)用regress命令编程:x=[0 2 4 6 8 10 12 14 16 18 20];Y=[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7]'; X=[ones(11,1) x' (x.^2)'];[b,bint,r,rint,stats]=regress(Y,X);b,stats预测及作图:Y=polyconf(p,x,y)plot(x,y,'k+',x,Y,'r')第3题:要求lny a b x=+型回归方程,用命令[beta,r,J]=nlinfit(x',y','volum3',beta0);function y=volum3(beta,x)y=beta(1)+beta(2)*log(x);x=[2 3 4 5 7 9 12 14 17 21 28 56];y=[35 42 47 53 59 65 68 73 76 82 86 99];beta0=[1 1]';[beta,r,J]=nlinfit(x',y','volum3',beta0);beta四.上机结果学会了编写程序,运用上机语言求出问题结果,验证结果。

regress()函数

regress()函数

一、回归分析1.多元线性回归在Matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl = regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性回归,取k=1即可。

alpha为显著性水平(缺省时设定为0.05),输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R 是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立。

画出残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中COD浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输入数据x1=[1.376, 1.375, 1.387, 1.401, 1.412, 1.428, 1.445, 1.477]x2=[0.450, 0.475, 0.485, 0.500, 0.535, 0.545, 0.550, 0.575]x3=[2.170 ,2.554, 2.676, 2.713, 2.823, 3.088, 3.122, 3.262] x4=[0.8922, 1.1610 ,0.5346, 0.9589, 1.0239, 1.0499, 1.1065, 1.1387] y=[5.19, 5.30, 5.60,5.82,6.00, 6.06,6.45,6.95](2)保存数据(以数据文件.mat形式保存,便于以后调用)save data x1 x2 x3 x4 yload data (取出数据)(3)执行回归命令x =[ones(8,1),];[b,bint,r,rint,stats] = regress得结果:b = (-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats = (0.9908,80.9530,0.0022)即= -16.5283 + 15.7206xl + 2.0327x2 - 0.2106x3 + 0.1991x4R2 = 0.9908,F = 80.9530,P = 0.00222.非线性回归非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j] = nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x 为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是Jacobian矩阵,它们是估计预测误差需要的数据。

matlab 二元逻辑回归

matlab 二元逻辑回归

matlab 二元逻辑回归
在Matlab中进行二元逻辑回归分析,通常可以使用统计和机器
学习工具箱中的函数来实现。

首先,你需要准备你的数据集,确保
数据集中包含自变量和因变量。

接下来,你可以按照以下步骤进行
二元逻辑回归分析:
1. 加载数据集,使用Matlab的数据导入功能,将你的数据集
导入到工作空间中。

2. 数据预处理,对数据进行必要的清洗和预处理,例如处理缺
失值、标准化或归一化数据等。

3. 拟合逻辑回归模型,使用`fitglm`函数来拟合逻辑回归模型。

你需要指定自变量和因变量,以及选择适当的链接函数(如logit
链接函数)和分布类型(二项分布)。

4. 模型评估,使用`predict`函数来对模型进行预测,并使用
混淆矩阵、准确率、召回率、精确率等指标来评估模型的性能。

5. 可视化结果,使用Matlab的绘图功能,可以绘制ROC曲线、
学习曲线等来可视化模型的性能和表现。

此外,还可以使用交叉验证、特征选择等技术来进一步改进和优化逻辑回归模型。

总的来说,在Matlab中进行二元逻辑回归分析需要结合数据处理、模型拟合、评估和可视化等多个步骤,以全面地分析和解释数据。

希望这些信息能够帮助你进行二元逻辑回归分析。

Matlab中的回归分析与多元统计分析

Matlab中的回归分析与多元统计分析

Matlab中的回归分析与多元统计分析Matlab是一种功能强大的数值计算和科学编程软件,广泛应用于各个领域中数据处理和分析的任务。

在统计学中,回归分析和多元统计分析是常见的方法,它们能够帮助我们揭示数据之间的隐藏关系和趋势。

本文将探讨在Matlab环境下如何进行回归分析和多元统计分析。

一、回归分析回归分析是一种用于研究变量之间关系的统计方法。

它可以分析自变量(或称预测变量)与因变量之间的相关性,并通过建立数学模型来预测未知的观测值。

在Matlab中,我们可以使用regress函数进行简单回归分析。

假设我们有两个变量X和Y,我们想要探索它们之间是否存在线性关系。

首先,我们需要导入数据,并绘制散点图以观察数据分布的趋势:```matlabdata = [X, Y]; % 导入数据scatter(X, Y); % 绘制散点图```接下来,我们可以使用regress函数进行回归分析:```matlabmdl = regress(Y, [ones(size(X)), X]); % 进行简单线性回归```regress函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl(1:end-1); % 提取回归系数residuals = mdl(end); % 提取残差```此外,我们还可以使用mdl对象进行预测:```matlaby_pred = [ones(size(X)), X] * coef; % 根据模型预测Y的值```二、多元统计分析多元统计分析是指研究多个变量之间关系的统计方法。

与简单回归分析不同,多元统计分析考虑了多个自变量对因变量的影响。

在Matlab中,我们可以使用fitlm函数进行多元线性回归分析。

假设我们有三个自变量X1、X2和X3,一个因变量Y,我们想要研究它们之间的关系。

首先,我们同样需要导入数据,并绘制散点图以观察数据分布:```matlabdata = [X1, X2, X3, Y]; % 导入数据scatter3(X1, X2, X3, Y); % 绘制散点图```接下来,我们可以使用fitlm函数进行多元线性回归分析:```matlabmdl = fitlm([X1, X2, X3], Y); % 进行多元线性回归```fitlm函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl.Coefficients.Estimate; % 提取回归系数residuals = mdl.Residuals.Raw; % 提取残差```同样,我们可以使用mdl对象进行预测:```matlaby_pred = predict(mdl, [X1, X2, X3]); % 根据模型预测Y的值```除了多元线性回归,Matlab还提供了其他多元统计分析的方法,如主成分分析(PCA)和因子分析。

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数matlab回归分析regress,nlinfit,stepwise函数回归分析1.多元线性重回在matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl=regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性重回,挑k=1即可。

alpha为显著性水平(缺省时预设为0.05),输入向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats就是用作检验重回模型的统计数据量,存有三个数值,第一个就是r2,其中r就是相关系数,第二个就是f统计数据量值,第三个就是与统计数据量f对应的概率p,当p拒绝h0,回归模型成立。

图画出来残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中cod浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输出数据x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]x2=[0.450,0.475,0.485,0.50 0,0.535,0.545,0.550,0.575]x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]y=[5.19,5.30,5.60,5.82,6.00,6.06,6.45,6.95](2)留存数据(以数据文件.mat形式留存,易于以后调用)savedatax1x2x3x4yloaddata(抽出数据)(3)继续执行重回命令x=[ones(8,1),];[b,bint,r,rint,stats]=regress得结果:b=(-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats=(0.9908,80.9530,0.0022)即为=-16.5283+15.7206xl+2.0327x2-0.2106x3+0.1991x4r2=0.9908,f=80.9530,p=0.00222.非线性重回非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j]=nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是jacobian矩阵,它们是估计预测误差需要的数据。

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

回归分析1.多元线性回归在Matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl = regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性回归,取k=1即可。

alpha为显著性水平(缺省时设定为0.05),输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立。

画出残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中COD浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输入数据x1=[1.376, 1.375, 1.387, 1.401, 1.412, 1.428, 1.445, 1.477]x2=[0.450, 0.475, 0.485, 0.500, 0.535, 0.545, 0.550, 0.575]x3=[2.170 ,2.554, 2.676, 2.713, 2.823, 3.088, 3.122, 3.262]x4=[0.8922, 1.1610 ,0.5346, 0.9589, 1.0239, 1.0499, 1.1065, 1.1387]y=[5.19, 5.30, 5.60,5.82,6.00, 6.06,6.45,6.95](2)保存数据(以数据文件.mat形式保存,便于以后调用)save data x1 x2 x3 x4 yload data (取出数据)(3)执行回归命令x =[ones(8,1),];[b,bint,r,rint,stats] = regress得结果:b = (-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats = (0.9908,80.9530,0.0022)即= -16.5283 + 15.7206xl + 2.0327x2 - 0.2106x3 + 0.1991x4R2 = 0.9908,F = 80.9530,P = 0.00222.非线性回归非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j] = nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x 为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是Jacobian矩阵,它们是估计预测误差需要的数据。

在MATLAB中使用高斯过程进行回归分析

在MATLAB中使用高斯过程进行回归分析

在MATLAB中使用高斯过程进行回归分析随着数据科学和机器学习的发展,回归分析成为了一种非常常见和有用的数据分析工具。

而高斯过程作为一种统计建模工具,在回归分析中具有广泛的应用。

在本文中,我们将介绍如何在MATLAB中使用高斯过程进行回归分析。

高斯过程,也被称为基于核函数的回归(Kriging)或者高斯过程回归(Gaussian Process Regression,简称GPR),是一种概率模型,广泛应用于回归分析中。

它通过对数据进行建模,将数据与潜在函数之间的关系进行学习和预测。

在MATLAB中,可以使用Statistics and Machine Learning Toolbox来进行高斯过程回归分析。

首先,我们需要准备一些数据来进行回归分析。

假设我们想要预测一个物体的重量,我们可以将物体的尺寸作为输入变量,将物体的重量作为输出变量。

我们可以通过测量一系列物体的尺寸和重量来获得这些数据。

在MATLAB中,我们可以使用`fitrgp`函数来进行高斯过程回归的建模和预测。

首先,我们需要将数据拆分成输入变量和输出变量。

假设我们的输入变量存储在一个名为`X`的矩阵中,输出变量存储在一个名为`Y`的向量中。

我们可以使用以下代码进行拆分:```matlabX = [尺寸1; 尺寸2; 尺寸3; ...; 尺寸n];Y = [重量1; 重量2; 重量3; ...; 重量n];```接下来,我们可以使用`fitrgp`函数来建立高斯过程回归模型:```matlabmodel = fitrgp(X, Y);```在这个过程中,`fitrgp`函数将自动选择核函数和其他参数,来对输入变量和输出变量之间的关系进行建模。

但是,我们也可以通过指定自定义的核函数和参数来调整建模的过程。

建立了模型之后,我们可以使用`predict`函数来对新的数据进行预测。

假设我们想要预测一个新物体的重量,我们可以将其尺寸作为输入变量传递给`predict`函数:```matlabnew_size = [新物体的尺寸];predicted_weight = predict(model, new_size);````predict`函数将返回一个预测的重量值,这个值可以帮助我们了解新物体的重量。

Matlab统计回归详解

Matlab统计回归详解

统计回归一、一元线性回归回归分析中最简单的形式是x y 10ββ+=,y x ,均为标量,10,ββ为回归系数,称一元线性回归。

这里不多做介绍,在线性回归中以介绍多元线性回归分析为主。

二、多元线性回归(regress )多元线性回归是由一元线性回归推广而来的,把x 自然推广为多元变量。

m m x x y βββ+++= 110 (1)2≥m ,或者更一般地)()(110x f x f y m m βββ+++= (2)其中),,(1m x x x =,),,1(m j f j =是已知函数。

这里y 对回归系数),,,(10m ββββ =是线性的,称为多元线性回归。

不难看出,对自变量x 作变量代换,就可将(2)化为(1)的形式,所以下面以(1)为多元线性回归的标准型。

1.1 模型在回归分析中自变量),,,(21m x x x x =是影响因变量y 的主要因素,是人们能控制或能观察的,而y 还受到随机因素的干扰,可以合理地假设这种干扰服从零均值的正态分布,于是模型记作⎩⎨⎧++++=),0(~2110σεεβββN x x y m m (3) 其中σ未知。

现得到n 个独立观测数据),,,(1im i i x x y ,m n n i >=,,,1 ,由(3)得⎩⎨⎧=++++=ni N x x y i i im m i i ,,1),,0(~2110 σεεβββ (4) 记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nm n m x x x x X 111111, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n y y Y 1 (5) T n ][1εεε =,T m ][10ββββ =(4)表示为 ⎩⎨⎧+=),0(~2σεεβN X Y (6) 1.2 参数估计用最小二乘法估计模型(3)中的参数β。

由(4)式这组数据的误差平方和为∑=--==ni T i X Y X Y Q 12)()()(ββεβ (7)求β使)(βQ 最小,得到β的最小二乘估计,记作βˆ,可以推出 Y X X X T T 1)(ˆ-=β(8) 将βˆ代回原模型得到y 的估计值mm x x y βββˆˆˆˆ110+++= (9) 而这组数据的拟合值为βˆˆX Y =,拟合误差Y Y e ˆ-=称为残差,可作为随机误差ε的估计,而∑∑==-==n i ni i i iy y e Q 1122)ˆ( (10) 为残差平方和(或剩余平方和),即)ˆ(βQ 。

MATLAB回归分析

MATLAB回归分析

MATLAB回归分析回归分析是一种通过建立数学模型来研究变量之间的关系的统计方法。

在MATLAB中,我们可以使用回归分析工具箱来进行回归分析。

回归分析的目标是找到一个能够最好地描述自变量和因变量之间关系的数学模型。

在这篇文章中,我们将介绍回归分析的基本原理、MATLAB中的回归分析工具箱的使用以及如何解释回归分析的结果。

回归分析的基本原理回归分析建立在线性回归的基础上。

线性回归假设因变量与自变量之间存在一个线性关系。

回归分析通过找到最佳拟合线来描述这种关系。

最常用的回归方程是一元线性回归方程,它可以表示为:y=β0+β1x+ε,其中y是因变量,x是自变量,β0和β1是回归系数,ε是误差项。

- regress函数:用于计算多元线性回归模型,并返回回归系数、截距和残差。

例如,[B, BINT, R]=regress(y, X)用于计算因变量y和自变量矩阵X之间的回归模型。

- fitlm函数:用于拟合线性回归模型并返回拟合对象。

例如,mdl= fitlm(X, y)用于拟合因变量y和自变量矩阵X之间的线性回归模型,并返回mdl拟合对象。

- plot函数:用于绘制回归分析的结果。

例如,plot(mdl)用于绘制fitlm函数返回的拟合对象mdl的结果。

- coefCI函数:用于计算回归系数的置信区间。

例如,CI =coefCI(mdl)用于计算拟合对象mdl中回归系数的置信区间。

解释回归分析的结果回归分析的结果通常包括拟合曲线、回归系数以及模型的可靠性指标。

拟合曲线描述了自变量和因变量之间的关系。

回归系数可以用来解释自变量对因变量的影响。

模型的可靠性指标包括截距、回归系数的显著性检验以及相关系数等。

拟合曲线可以通过调用plot函数来绘制。

回归系数可以通过调用coef函数来获取。

对回归系数的显著性检验可以利用置信区间来判断,如果置信区间包含0,则说明回归系数不显著。

相关系数可以通过调用corrcoef函数来计算。

用MATLAB求解回归分析-文档资料

用MATLAB求解回归分析-文档资料
统计工具箱中的回归分析命令
多元线性回归
y x ... x 0 1 1 p p
1、确定回归系数的点估计值:
b=regress( Y, X )
ˆ 0 ˆ b 1 .. ˆ p
Y1 Y Y 2 ... Y n
3、残差分析,作残差图: rcoplot(r,rint) 从残差图可以看出,除第二个数据外,其余数据的残 差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点.
Residual Case Order Plot 4
方法一
直接作二次多项式回归: t=1/30:1/30:14/30; s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为 : 2 ˆ s 489 . 2946 t 65 . 8896 t 9 . 1329

1 x1 1 x1 2 1 x x2 2 21 X ... ... ... 1 xn1 xn2
... x1 p ... x2 p ... ... ... xn p
对一元线性回归,取p=1即可。
2、求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha)
法二 化为多元线性回归: t=1/30:1/30:14/30; s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T); b,stats 得回归模型为 : 2 ˆ s 9 . 1329 65 . 8896 t 489 . 2946 t

MAAB统计工具箱中的回归分析命令

MAAB统计工具箱中的回归分析命令
To MATLABliti31
法二
将 y 0 1 x 1 2 x 2 1 x 1 2 1 2 x 2 2 2
化为多元线性回归:
X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];
[b,bint,r,rint,stats]=regress(y,X);
b,stats
据可视为异常点
4 预测及作图: z=b1+b2* plotx;Y;'k+';x;z;'r'
Residuals
4 3 2 1 0 -1 -2 -3 -4 -5
2
Residual Case Order Plot
4
6
8
10 12 14 16
Case Number
To MATLABliti12 返回
多项式回归
x1p
x2
p
1 xn1
xn 2...ຫໍສະໝຸດ xnp2 求回归系数的点估计和区间估计 并检验回归模型: b; bint;r;rint;stats=regressY;X;alpha
回 归 系
残 差
置 信 区


显著性水平 (缺省时为0.05)

用于检验回归模型的统计量,

有三个数值:相关系数r 2、
间 估
法一 直接用多元二项式回归:
x1=1000 600 1200 500 300 400 1300 1100 1300 300; x2=5 7 6 6 8 7 5 4 3 9; y=100 75 80 70 50 65 90 100 110 60'; x=x1' x2'; rstoolx;y;'purequadratic'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.求回归系数: [beta,r ,J]=nlinfit(x',y','volum',beta0); beta 即得回归模型为: 得结果:beta =
11.6036 -1.0641
To MATLAB(liti41)
y = 11.6036e

1.0641 x
4.预测及作图: [YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r') To MATLAB(liti42)
统计工具箱中的回归分析命令
1.多元线性回归 . 2.多项式回归 . 3.非线性回归 4.逐步回归 . 返回
多元线性回归
y = β 0 + β 1 x1 + ... + β p x p
1.确定回归系数的点估计值: .确定回归系数的点估计值:
b=regress( Y,
ˆ β0 ˆ β1 b= M β ˆ p
由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型): linear(线性): y = β 0 + β 1 x1 + L + β m x m purequadratic(纯二次): interaction(交叉): y =
y = β 0 + β 1 x1 + L + β m x m + ∑ β jj x 2 j
在MATLAB工作区中输入命令: beta, rmse
得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362 2 2 故回归模型为: y = 110.5313 + 0.1464 x1 − 26.5709 x 2 − 0.0001x1 + 1.8475x 2 剩余标准差为 4.5362, 说明此回归模型的显著性较好.
例 4 对第一节例2,求解如下:
1. 对将要拟合的非线性模型 y=a e
b/ x
题目
,建立 M 文件 volum.m 如下:
function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x);
2.输入数据:
x=2:16; y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]';
(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) ) 2.预测和预测误差估计: .预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的 显著性水平为1-alpha的置信区间Y ± DELTA.
r2=0.9282, F=180.9531, p=0.0000 p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.
3.残差分析,作残差图: .残差分析,作残差图: rcoplot(r,rint) 从残差图可以看出,除第二个数据外,其余数据的残 差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点.
Y1 Y Y = 2 M Yn
X )
1 x11 1 x 21 X = M M 1 xn1 x12 L x1 p x22 L x2 p M M xn 2 ... xnp
对一元线性回归,取 p=1 即可
2.求回归系数的点估计和区间估计、并检验回归模型: .求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha)
Residual Case Order Plot 4
4.预测及作图: .预测及作图: z=b(1)+b(2)* plot(x,Y,'k+',x,z,'r')
3 2 1 Residuals 0 -1 -2 -3 -4 -5 2 4 6 8 10 Case Number 12 14 16
To MATLAB(liti12) 返回
x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';
2.回归分析及检验: .回归分析及检验: [b,bint,r,rint,stats]=regress(Y,X) b,bint,stats To MATLAB(liti11)
得结果:b = -16.0730 0.7194 stats = 0.9282 180.9531 0.0000 bint = -33.7071 0.6047 1.5612 0.8340
ˆ ˆ ˆ ˆ 即 β 0 = −16.073, β 1 = 0.7194 ; β 0 的置信区间为[-33.7017,1.5612], β 1 的置信区间为[0.6047,0.834];
法一 直接用多元二项式回归:
x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9]; y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2']; rstool(x,y,'purequadratic')
需求量 收入 价格 100 1000 5 75 600 7 80 1200 6 70 500 6 50 300 8 65 400 7 90 1300 5 100 1100 4 110 1300 3 60 300 9
2 2 选择纯二次模型,即 y = β 0 + β 1 x1 + β 2 x 2 + β 11 x1 + β 22 x 2
s (cm)
法一 直接作二次多项式回归: 直接作二次多项式回归:
t=1/30:1/30:14/30; s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2)
将左边图形下方方框中的“800”改成1000,右边图形下方的方框 中仍输入6.则画面左边的“Predicted Y”下方的数据由原来的“86.3791” 变为88.4791,即预测出平均收入为1000.价格为6时的商品需求量为 88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta.rmse和residuals都 传送到MATLAB工作区中.
j =1
n
β 0 + β 1 x1 + L + β m x m +
1≤ j ≠ k ≤ m

β jk x j x k β jk x j x k
quadratic(完全二次): y =
β 0 + β 1 x1 + L + β m x m +
1≤ j , k ≤ m

例3 设某商品的需求量与消费者的平均收入、商品价格的统计数 据如下,建立回归模型,预测平均收入为1000、价格为6时 的商品需求量.
得回归模型为 : ˆ s = 489.2946t 2 + 65.8896t + 9.1329
To MATLAB(liti21)
法二 化为多元线性回归: 化为多元线性回归:
t=1/30:1/30:14/30; s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T); b,stats
1. 对回归模型建立M文件 . 对回归模型建立 文件model.m如下 如下: 文件 如下 function yy=model(beta0,X) a=beta0(1); b=beta0(2); c=beta0(3); d=beta0(4); e=beta0(5); f=beta0(6); x1=X(:,1); x2=X(:,2); x3=X(:,3); x4=X(:,4); x5=X(:,5); x6=X(:,6); yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6;
多项式回归 (一)一元多项式回归 y=a1xm+a2xm-1+…+amx+am+1 1.回归: .回归: (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m) ) 其中 x=(x1,x2,…,xn) ,y=(y1,y2,…,yn) ; p=(a1,a2,…,am+1)是多项式 y=a1xm+a2xm-1+…+amx+am+1 的系数;S 是一个矩阵,用来估计预测误差. 2) (2)一元多项式回归命令:polytool(x,y,m) 2.预测和预测误差估计: .预测和预测误差估计: (1)Y=polyval(p,x)求polyfit所得的回归多项式 在x处 的预测值Y; (2)[Y,DELTA]=polyconf(p,x,S,alpha) 求polyfit所得的回归多项式在x处的预测值Y及预测值的显 著性为1-alpha的置信区间Y±DELTA;alpha缺省时为0.5.
相关文档
最新文档