呼吸生理

合集下载

第7章.呼吸生理ppt

第7章.呼吸生理ppt

第三节 呼吸运动的调节
一、呼吸中枢的调控 l 呼吸中枢:是指中枢神经系统中与产生和调节
呼吸运动有关的神经细胞群。 l 延髓—呼吸的基本中枢 产生基本呼吸节律 l 脑桥—呼吸调整中枢 完善正常呼吸节律 l 大脑皮质—呼吸高级中枢 随意控制呼吸
二、呼吸的反射性调节
(一)肺牵张反射 (黑-伯氏反射):
胸膜腔内压
1、胸膜腔内压的概念 胸膜腔内压—简称胸内压,是指胸膜腔内的压力。
l 胸膜腔为密闭、潜在的腔。 l 通常胸内压低于大气压,又称为胸内负压。 l 气胸—指胸膜破裂,空气进入胸膜腔。
2、胸膜腔负压的形成原理
l 形成前提:胸膜腔的密闭性 l 二种作用力:肺内压,肺回缩力
胸内压=肺内压-肺回缩力 吸气及呼气末肺内压=大气压 胸内压=大气压-肺回缩力 以1个大气压的值为0则: 胸内压= -肺回缩力 l 胸膜腔负压是由肺的回缩力所造 成.
织液中的H+浓度变化。 l 当脑脊液中H+浓度升高时,
中枢化学感受器兴奋,反射 性使呼吸运动增强。 l 血液中H+浓度变动对其作用 不大。不能感受低O2的刺激。
2、CO2、低O2、H+对呼吸的影响
(1)CO2对呼吸的影响: l CO2是调节呼吸运动最重要的化学因素,是促进呼吸的
生理性刺激。 当吸入气中CO2适当增加,可使呼吸加深加快; 当过度通气排出CO2过多,可使呼吸减弱甚至暂停; 当吸入CO2过多,体内CO2堆积,可抑制呼吸中枢。
抑制作用,表现为呼吸抑制。
(3)H+对呼吸的影响
l 动脉血中pH值减小,呼吸加强;pH值增大,呼 吸减弱。
l 作用途径:血液中H+不易通过血-脑屏障,主要 通过刺激外周化学感受器,引起呼吸中枢兴奋, 呼吸加强。

第5章 呼吸 生理学

第5章  呼吸 生理学

肺泡通气量
2.肺泡通气量:每分钟吸入到肺泡,并可与血
液进行有效气体交换的总气量。
解剖无效腔(从鼻至呼吸性细支气管, 生理无效腔 150ml)
肺泡无效腔( 肺泡内未发生其他交换,接近于零)
计算真正的有效的气体交换,须采用肺泡通气量
肺泡通气量=(潮气量-无效腔气量)x呼吸频率
不同呼吸频率、潮气量时的肺通气量及肺泡通气量
4、气体的扩散面积和距离和温度
气体的扩散面积和距离(A,d):
扩散速率与A呈正比;与d呈反比。
温度(T): 扩散速率与T呈正比。
综合以上因素, CO2的扩散速率是O2的 2倍,故临床更容易出现O2扩散的障碍导致 机体缺氧。
二、肺 换 气
肺泡与肺毛细血管血液之间的气体交换过程。
在气相与液相间完成
〔外界环境
肺毛细血管)
包括肺通气〔肺 外界空气〕
肺换气〔肺泡 肺毛细血管〕
〔2〕气体在血液中的运输。
〔3〕内呼吸又称组织换气
〔血液
组织细胞〕
第一节 肺 通 气
一、肺通气的原理
肺通气是肺与外界环境之间的气体交换过 程。
(一)肺通气的动力 直接动力:肺内压与大气压之差 原始动力:呼吸运动
1、呼吸运动
防止肺水肿。 ③降低吸气阻力,有利于肺的扩张。
正常及几种2、异胸常廓情弹况性下阻顺力应和性顺曲应线性
胸廓是一个双向弹性体,其弹性回缩力的方向视 胸廓所处的位置而定。
处于自然位置:肺容量 = 肺总容量的67% 无回弹力 小于自然位置:肺容量﹤肺总容量的67% 向外的回弹力
吸气的动力,呼气的阻力 大于自然位置:肺容量﹥肺总容量的67% 向内的回弹力
血氧指标
• 血红蛋白氧容量:特定条件下,每升(L)血液中血红蛋 白所能负载的最大氧量。〔190~200ml/ L血液〕

呼吸生理

呼吸生理

主要呼吸肌
吸气
呼气
膈肌和肋间外肌收缩,使 胸廓的上下、左右、前后 径增大,则胸腔和肺容积 增大,肺内压下降。
膈肌和肋间外肌弛缓,肺依靠 本身的回缩力量而回位。用力 呼气时,肋间内肌收缩,腹肌 收缩使隔肌向上移动。
(二)呼吸运动
1. 平静呼吸:安静状态下的呼吸,12-18次/分。 (1)平静吸气:
肺活量 =潮气量+补吸气量+补呼气量 肺活量是常用的肺通气功能指标,
2.用力呼气量 :用力吸气后,用力以 最快的速度尽力呼气,测定第1、2、3 秒内呼出的气体量,通常用它占用力 肺活量的百分数表示。
正常人分别1、2、3秒末为83%、 96%和99%, 如第1秒末低于65%, 提示有一定程度的气道阻塞。
膈肌⊕★→膈顶下降→胸廓上下径↑ 肋间外肌⊕→肋骨上提外展→胸廓前后左右径↑ -→肺随之扩大→肺内压↓(<大气压)→吸气入肺
(2)平静呼气:
膈肌(—)
肋间外肌ө
-→膈顶、肋骨、胸骨回位→胸廓↓→肺随之缩小→肺内压↑(>大气压)→呼气出肺
平静呼吸特点:吸气——膈肌、肋间外肌⊕引起——主动 呼气——吸气肌引起——被动
是呼气时胸内压都低于大气压, 故又称为胸内负压 。 平静吸气末:-5~-10 mmHg 平静呼气末:-3~-5 mmHg
2、 形成原因
胸内负压是由肺的回缩力形成的 两种力通过胸膜脏层作用于胸膜腔: 肺内压——使肺泡扩张 肺的回缩力——使肺泡缩小 ∴ 胸内压=肺内压-肺回缩力 在吸气末和呼气末,肺内压=大气压 ∴ 胸内压=大气压-肺回缩力 如以大气压为0,则:胸内压=-肺回缩力 吸气:肺扩张→肺回缩力↑→胸内压负值↑ 呼气:肺缩小→肺回缩力↓→胸内压负值↓
3. 无效腔和肺泡通气量

呼吸生理 生理学

呼吸生理 生理学
分通气量, 70-120L/min 。 通气贮量百分比 =(最大通气量 -平静通气量) /最
大通气量× 100% ,正常不小于 93%,反映通气功 能贮备。
肺泡通气量
无效腔
解剖无效腔 :鼻或口至终末细支气管无气体交换 功能的呼吸道腔隙,约 150ml 。
肺泡无效腔 :因血流分布不均匀而未能发生气体 交换的肺泡容量。
气体分压差·温度·扩散面积·溶解度 D∝
距离· √分子量
——————O——2、——C——O—2—扩——散——速——率——(——D—)——比——较—————————
分子量 血浆溶解度 肺泡 A血 V血 D
(ml/L) (KPa ) (KPa ) (KPa )
—————————————————————————————————————— O2 32 21.4 13.9 13.3 5.3 1 CO2 44 515.0 5.3 5.3 6.1 2 ———————————————————————————————————————
2、原动力:呼吸运动
① 呼吸肌: 吸气肌:膈肌、肋间外肌 呼气肌:肋间内肌、腹肌 辅助呼吸肌:斜角肌、胸锁乳突 肌
② 平静、用力呼吸 ③ 胸式、腹式、混合式 ④ 12~18次/分;小儿快,老人慢。
3、胸膜腔内压:将原动力 转化为 直接动力
胸膜腔内压 = 肺内压-肺弹性回缩力
决定因素:
1. 密闭潜在腔隙:少 量浆液 --润滑,内聚力。

(拟交感药物治疗哮喘)


注:体液因素(组胺、5-HT 、缓激肽等)→收缩

传入神经末梢---机械、化学感受器
肺泡:平均直径0.1mm
呼吸肌:肺通气动力
胸膜腔:负压

呼吸生理

呼吸生理

+ (2)H 浓度对呼吸的影响
①动脉血H+浓度增加,呼吸加深加快,
肺通气增加;
② [H+] ↓→呼吸受抑制。
③血[H+]↑→外周化学感受器→呼吸中
枢兴奋(动脉血H+难于通过血脑屏障) ④脑脊液中的H+→中枢化学感受器的最
有效刺激。
(3)低O2对呼吸的影响


吸入气PO2降低,动脉血PO2降低, 呼吸加深加快,肺通气量增加。 动脉血PO2↓<10.7kPa(80mmHg) 肺通气量方明显增加。
③ 降低吸气阻力,减少吸气作功。
4)胸廓弹性阻力

作用:肺容量 = 67%肺总量时 无回缩力 肺容量 < 67%肺总量时 吸气动力 呼气阻力 肺容量 > 67%肺总量时 呼气动力 吸气阻力
5)胸廓顺应性
胸廓的顺应性=
△V(胸腔容积)
△P(跨胸壁压)
肥胖、胸廓畸形 胸膜增厚 腹内占位病变

呼吸生理
呼吸环节:
1 外呼吸(肺通气+ 肺换气)
2 气体在血液中的运输 3 内呼吸(组织换气)
第一节 肺通气
一、定义
肺与外界环 境之间的气 体交换过程
二、肺通气原理
气体进出肺取决两方面因素: 动力:大气压与肺内压之间的压力差; 阻力:肺、气管的弹性阻力和非弹性阻力
二、肺通气原理
(一)肺通气的动力
呼吸过程:平静呼吸
(1)吸气运动(主动过程)
膈肌和肋间外肌收缩 → 膈顶下降、
肋骨和胸骨上举、肋骨下缘外翻→胸腔上
下径、前后径、左右径↑→ 胸腔容量↑ →
肺被动扩张 →肺容积↑→肺内压 ↓<大气压
→外界气体进入肺泡(主动吸气)

生理学第五章 呼吸生理

生理学第五章 呼吸生理
中具有重要意义。
意义:反映肺活量及呼吸阻力(弹性阻力及气道通
畅程度)。
(4)肺总量 = 肺活量 + 余气量 男:5000 ml; 女:3500 ml
(二)肺通气量和肺泡通气量
1. 肺通气量(pulmonary ventilation) = 潮气量 × 呼吸频率
最大随意通气量:尽力作深快呼吸时,每分钟所能吸入 或呼出的最大气量。
血氧容量、血氧含量、血氧饱和度
HbO2呈鲜红色, Hb呈蓝紫色
临床:发绀(Hb含量达5g/100ml),常表示缺氧。 例外:红细胞增多症;相反,严重缺氧和CO中毒
4. Hb与O2的结合或解离曲线呈S形 与Hb的变构效应有关 Hb为紧密型 HbO2为松弛型
(三)氧解离曲线
表示血液PO2与Hb氧饱和度关系的曲线
•胸廓容积>肺容积
•胸廓将肺拉大
•肺回缩
胸内负压
•胸内压=肺内压 - 肺回缩力 =大气压 - 肺回缩力 = - 肺回缩力
•平静呼吸时,胸膜腔内压为负压 呼气末:-3 ~ -5 mmHg 吸气末:-5 ~ -10 mmHg
临床:气胸
胸内负压的作用:
①利于肺扩张, 实现肺通气
②利于静脉血、 淋巴液回流
第五章 呼吸生理
第一节 第二节 第三节 第四节
肺通气 呼吸气体的交换 气体在血液中的运输 呼吸运动的调节
呼吸:机体与外界环境之间的气体交换过程。
呼吸的全过程包括:
1 外呼吸(肺通气+肺换气)
2 气体在血中的运输
3 内呼吸(组织换气+细胞内氧化)
血液循环
组织细胞

O2 CO2
O2 CO2
肺通气 肺换气 外呼吸

西医学概论_人体生理学第五章 呼吸

西医学概论_人体生理学第五章 呼吸
无效腔增大或肺动脉部分阻塞。 比值<0.84:可能肺通气不良,如哮喘发作─功能
性动-静脉短路。
第三节 气体在血液中的运输
一、O2和CO2在血液中存在的形式
血液O2和CO2的含量(ml/L血)
动脉血
静脉血
物理 化学 合 物理 化学 合 溶解 结合 计 溶解 结合 计
O2 3.0 200.0 203.0 1.2 152.0 153.2 CO2 26.2 464.0 490.2 30.0 500.0 530.0
呼吸性细支气管)。150ml 肺泡无效腔:因无血流通过而不能进行气体交换的
肺泡腔。 生理无效腔:解剖无效腔+肺泡无效腔
第二节 呼吸气体交换
一、气体交换的原理
原理:扩散。动力:膜两侧的气体分压差。 条件:气体的理化特性、膜通透性和面积、分压差。 速率:= 扩散速率(D)
分压差×温度×气体溶解度×扩散面积 扩散距离×√分子量
Hb氧含量和氧容量的百分比。
(三)氧离曲线
△ 概念: 表示血氧分压与血红蛋白氧饱和度关
系的曲线。
△ 意义: 表示在不同PO2下O2与Hb的分离或结合
的情况。呈“S”型。
1.上段:PO28.0~13.3kPa (60~100mmHg) 坡度较平坦。
表 明 : PO2 变 化 大 时 , 血氧饱和度变化小。 意义:保证低氧分压时的 高载氧能力。
直接动力:肺内压 与外界大气压间的压
吸气
呼气
力差。
3.胸膜腔内压
(1)胸内压的概念:胸膜腔内的压力,正常时,不 论吸气或呼气,胸膜腔内的压力总是低于大气 压,又称胸内负压。
(2)特点: 平静呼吸时胸内压始终为负压 用力呼吸时负压变动更大
(4)成因:

呼吸生理和呼吸参数调置

呼吸生理和呼吸参数调置

新观点:压力上升梯度(流量加速百分比)
使吸气流速的上升符合病人的需求 范围 1 - 100% (默认值 50%)
40
PCIRC
INSP
EXP
PLOT SETUP
30
20
10
0
10
-20
80
60
4020020-8040
60
V
.
0
4
8
12s
2
6
10
UNFREEZE
自主呼吸 压力支持(PSV): Pressure Support
设定:吸气压力、吸气时间、呼吸频率 流速波形:递减波,随气道阻力而变化 潮气量:随病人顺应性变化
压力-时间曲线
流量-时间曲线
监测潮气量是否满足病人需求: 根据病人理想公斤体重(IBW) 7-10ml/1kg
控制呼吸 压力控制(PCV): Pressure Control
优点 可减少气压伤的发生率 可使塌陷或过度膨胀的肺泡恢复 改善气体分布 缺点 当病人顺应性发生变化时,潮气量随着改变 (如 ARDS、肺水肿病人) 如吸气时间延长(适当的吸气时间延长以保证潮气量), 病人可能需要使用镇静剂或麻醉剂
压力-时间曲线
流量-时间曲线
1. 由病人触发呼吸: 压力触发,流速触发
2. 吸气压力固定 根据病人情况设定
3. 呼气灵敏度(PB840&760可调): 送气流速为峰值流速的25%时 由吸气转为呼气
吸气流速: 递减波 病人决定呼吸频率、峰流速 吸气时间和潮气量
当病人流速降到峰值流速百分比时,压力支持通气被终止 “呼气灵敏度”定义了在终止呼吸机送气时预计达到的吸气流量峰值百分比
呼吸机 (应用气插和气切): 吸入\呼出过滤器 电子湿化器\人工鼻

呼吸学知识点总结

呼吸学知识点总结

呼吸学知识点总结
1. 呼吸系统结构
人体呼吸系统主要由呼吸道和肺组成。

呼吸道包括鼻腔、口腔、咽部、气管和支气管。

肺是呼吸道的末端,是气体交换的主要场所。

2. 呼吸生理
呼吸生理包括肺通气、膜上的氧和二氧化碳交换以及肺动力学。

肺通气是指外界空气通过呼吸道进入肺腔的过程。

氧和二氧化碳交换是指在肺泡和毛细血管之间的气体交换过程。

肺动力学是指肺泡内气体的平衡过程。

3. 呼吸调节
呼吸的节律和深度由呼吸中枢和周围化学和机械感受器共同调节。

呼吸中枢位于延髓和脑干的呼吸中枢控制声门或膈肌。

而周围感受器通过检测动脉血氧和二氧化碳水平以及肺通气量来调节呼吸。

4. 呼吸功能检测
呼吸功能检测包括肺活量测定、呼吸频率、呼吸力学、最大呼吸等。

5. 呼吸系统疾病
呼吸系统疾病包括呼吸道感染、哮喘、慢性阻塞性肺病、肺部异常和睡眠呼吸暂停综合症等。

总而言之,呼吸学是研究呼吸系统和呼吸机能的学科,它包括呼吸系统的解剖结构、呼吸机能、呼吸调节、呼吸道疾病、呼吸功能检测等内容。

这些知识点对于了解和诊断呼吸系统疾病、改善呼吸功能和维护呼吸健康都具有重要意义。

第五章 生理学 呼 吸

第五章  生理学 呼 吸
肺通气量 = 潮气量×呼吸频率
平静呼吸时, 正常成人约为: 500ml×(12-18)次/分= 6-9L/min
最大随意通气量: 尽力作深、快呼吸时的肺通气量。 正常成人约为70-120L/min
通气贮量百分比——
衡量通气功能贮备能力的指标。
最大通气量—每分平静通气量 通气贮量百分比=——————————————
(2) 肺泡表面活性物质 合成与释放:
肺泡Ⅱ型细胞 主要成份:
二棕榈酰卵磷脂
肺泡 肺泡内液层
肺泡表面 活性物质
分布及特点: 呈单分子层分布在肺泡液体层表面 极性端插入液体层,非极性端朝向肺泡腔 分布密度与肺泡大小有关,小肺泡分布密
度大,大肺泡分布密度小。
* 肺表面活性物质的分布密度可随肺泡




作用:吸气时胸廓扩大,呼气时胸廓缩小
第二节 肺通气
----- 肺与外界环境之间的气体交换过程。 肺通气包括:吸气和呼气。
一、肺通气的动力
肺内压<大气压 肺内压>大气压
吸气
呼气
肺内压与大气压之差
作用:吸气时胸廓扩大,呼气时胸廓缩小
呼吸运动:呼吸肌收缩和舒张引起的胸廓节 律性扩大和缩小。
吸气肌 收缩 (呼气肌) 舒张


吸气
呼气
• 平静呼吸:安静状态下 平稳而均匀的自然呼吸。
– 吸气:膈肌和肋间 外肌收缩,主动过程
– 呼气:膈肌和肋间 外肌舒张,被动过程
膈肌收缩 呼吸运动
和肺内压 膈肌下降 的变化:
胸廓上下径
肋间外肌收缩 肋骨、胸骨上提 前后径、左右径增大
(1)平静吸气时
(主动过程)
胸腔扩大 肺扩张

呼吸生理学

呼吸生理学

3.胸膜腔与胸膜腔内压
胸膜腔:
由脏层胸膜 和壁层胸膜构 成;
是密闭的, 里面只有少量 浆液,没有气 体。
胸膜腔内浆液的作用: ①减小两层胸膜之间的摩擦力; ②能使两层胸膜贴附在一起不
易分开。
胸膜腔内压(intrapleural pressure) 相对于外界大气
压而言是负压(胸 内负压);
呼吸过程中的变化: 吸气—胸内压↓
一、气体交换原理
气体交换的动力:换气部位存在 的气体分压差。
气体交换的方式:扩散。
气体扩散速率(diffusion rate): 单位时间内气体扩散的容积。
影响扩散速率的因素: ①气体的分压差; ②气体的溶解度和分子量: 溶解度(s) 扩散速率(D)∝ √分子量(MW) CO2:√514.45 O2:√2.3124
—意义:保证代谢增强的组织得 到更多的氧,代表血液释放氧的贮 备。
影响氧解离曲线的因素:
①血液pH↓、PCO2↑→Hb与O2亲 和力↓→氧离曲线右移;相反时左 移。
血液pH对氧离曲线的影响,称 波尔效应(Bohr effect)。
• 生理意义:
促进肺毛细血管血液的氧合; 促进组织毛细血管血液释放O2
100m1血液中Hb所能结合的最大O2 量,称Hb氧容量。
正常人血液中Hb含量: 15g/100ml
Hb氧容量=15×1.34=20ml/100ml
100ml血液中血红蛋白实际结合 的O2量,称Hb氧含量。
动脉血: PO2 100 mmHg Hb氧含量 19.4ml/100ml
静脉血: PO2 40 mmHg Hb氧含量 14.4ml/100ml
补呼气量(expiratory reserve volume,ERV): 平静呼气末再尽力呼气,所能增加的 呼出气量(900-1200ml)。

生理学第五章呼吸系统

生理学第五章呼吸系统
第五章 呼吸系统
生理学第五章呼吸系统
第五章 呼吸系统
第一节 肺通气 第二节 呼吸气体的交换 第三节 气体在血液中的运输 第四节 呼吸运动的调节
生理学第五章呼吸系统
生理学第五章呼吸系统
生理学第五章呼吸系统
1.呼吸:指机体和外界环境之间的气体交换
过程。
2.呼吸的过程:
外呼吸
肺通气:外界空气和肺泡之间的气体交换; 肺换气:肺泡和肺泡毛细血管血液之间的气体交换;
生理学第五章呼吸系统
气体扩散的影响因素
分压差×扩散面积×温度×气体溶解度
扩散速率=———————————————
扩散距离×√分子量
生理学第五章呼吸系统
二. 肺泡气体交换和组织气体交换
生理学第五章呼吸系统
影响肺泡气体交换的因素
呼吸膜的面积 呼吸膜的厚度 通气/血流比值
指每分钟肺泡通气量和每分钟肺血流量的比值。
2.呼吸道的结构特征及功能
分泌粘液:湿润和清洁空气,受交感神经调节; 支气管及其分支:平滑肌收缩调节气道阻力,
受交感和副交感神经的调节。
生理学第五章呼吸系统
二.肺泡的结构和机能
(一)肺泡的结构
肺泡
肺泡上皮细胞:
I型:鳞状,95%; II型:圆形或立方状,5%,分泌肺泡表面活性物质。
基膜
肺泡隔:毛细血管网、弹力纤维、胶原纤维等。
原始动力——呼吸肌的运动 直接动力——气体压力差
(一)呼吸运动 (二)肺内压 (三)胸膜腔内压
生理学第五章呼吸系统
(一)呼吸运动——
指呼吸肌的舒缩引起的胸廓的扩大和缩小。
平静呼吸
吸气运动:吸气肌(肋间外肌和膈肌)收缩,胸廓扩 大。
——主动
呼气运动:吸气肌舒张,胸廓复位。

动物生理学-呼吸生理

动物生理学-呼吸生理

动物生理学-呼吸生理动物生理学-呼吸生理呼吸是动物生命活动所必需的基本生理过程。

通过呼吸,动物摄取氧气并排出二氧化碳,以维持细胞的新陈代谢,保持机体的稳态。

在动物界中,呼吸器官的结构和功能存在着很大的差异。

最为简单的呼吸器官是原生动物和海绵动物的全身表面,通过体表进行氧气和二氧化碳的交换。

而一些进化比较高级的动物,如鸟类和哺乳类,拥有复杂的呼吸系统,包括气管、支气管、肺泡等。

这些特殊的呼吸器官的存在,使动物能够更高效地进行气体交换。

呼吸过程主要分为两个步骤:吸气和呼气。

吸气是指氧气进入动物体内的过程。

动物通过不同的呼吸器官来吸入氧气。

例如,鸟类通过喉管、气管和支气管从嘴巴或鼻孔吸入氧气,进入肺泡进行气体交换。

哺乳类通过鼻腔、喉咙、气管和支气管从鼻孔或口腔吸入氧气。

吸入氧气的过程中,肺泡中的氧气通过薄膜扩散到血液中,与血液中的红细胞结合成氧合血红蛋白,输送到全身各个组织细胞中。

呼气是指动物体内二氧化碳的排出过程。

当动物进行体内新陈代谢时,产生了大量的二氧化碳,需要通过呼吸系统排出体外。

动物通过肺泡、支气管、气管和鼻腔之间的反向路径,将含有二氧化碳的呼吸气体排出体外。

呼吸的调节也是非常重要的。

动物的呼吸可以通过自主神经系统和中枢神经系统来控制。

自主神经系统通过调节呼吸肌肉的张力,控制呼吸频率和幅度。

中枢神经系统通过感受动脉血氧气体浓度、动脉血二氧化碳浓度和酸碱平衡情况,来调节呼吸频率和深度。

此外,动物的呼吸还受到外界环境的影响。

例如,大气中的氧气浓度和温度变化都会对动物的呼吸产生影响。

低氧环境下,动物的呼吸频率会增加,以增加体内的氧气供应。

高温环境下,动物的呼吸频率也会增加,以帮助散发热量。

总结起来,动物的呼吸是通过呼吸器官对外界气体进行交换,以维持体内氧气和二氧化碳的平衡。

呼吸的过程需要经过吸气和呼气两个步骤,同时受到自主神经系统、中枢神经系统和外界环境的调节。

对于不同动物而言,呼吸器官的结构和功能存在着差异,但呼吸的目的都是为了保持机体的正常生命活动。

生理学呼吸(一)

生理学呼吸(一)

生理学呼吸(一)引言概述:呼吸是人类生命所必须的基本生理功能之一。

通过呼吸,人体摄取氧气,排出二氧化碳,维持体内氧气和二氧化碳的平衡。

本文将探讨生理学呼吸的相关知识,包括呼吸器官、呼吸机制、呼吸的调节以及呼吸与其他生理过程的关系。

正文内容:1. 呼吸器官- 鼻腔和喉咙的作用:过滤空气、加热和湿润空气、帮助发音。

- 气管和支气管:将空气输送至肺部。

- 肺部:负责气体交换,将氧气吸入血液,将二氧化碳排出体外。

- 膈肌:主要负责呼吸过程中的吸气和呼气。

2. 呼吸机制- 无意识呼吸:由脑干的呼吸中枢控制,包括自主呼吸和高级呼吸调节。

- 呼吸肌肉的参与:膈肌、肋间肌、颈部肌肉等。

- 呼吸的节律:正常情况下,每分钟呼吸次数约为12-20次。

3. 呼吸的调节- 化学调节:血液中的氧气浓度、二氧化碳浓度和酸碱平衡等因素均可以通过化学传感器来感知,并调节呼吸频率和深度。

- 神经调节:迷走神经和交感神经对呼吸过程进行调节,其中迷走神经主要控制呼吸的减慢,交感神经则主要控制呼吸的加深和加快。

4. 呼吸与其他生理过程的关系- 呼吸与心血管系统:正常呼吸对心血管系统的功能有重要影响,包括心率、血压和血液循环等。

- 呼吸与代谢过程:呼吸过程中产生的氧气为细胞内的氧化代谢提供能量,并排出代谢产生的二氧化碳。

- 呼吸与神经系统:呼吸与大脑的功能紧密相连,呼吸的调节和控制受到大脑的影响。

总结:生理学呼吸涉及鼻腔、喉咙、气管、支气管、肺部和膈肌等多个器官和肌肉的协调工作。

呼吸的机制通过化学和神经调节来维持正常呼吸频率和深度。

呼吸与心血管系统、代谢过程和神经系统密切相关,对人体的正常功能发挥起着重要作用。

呼吸生理及呼吸机工作原理

呼吸生理及呼吸机工作原理

呼吸生理及呼吸机工作原理一、呼吸生理人体的呼吸是一种将氧气输送到细胞,并将二氧化碳从体内排出的重要生理过程,主要由呼吸系统和循环系统共同完成。

1.呼吸系统呼吸系统包括鼻腔、喉咙、气管、支气管和肺部。

人体的呼吸过程可分为外呼吸和内呼吸两个阶段。

外呼吸:氧气从外界经过鼻腔和喉咙进入气管,再通过支气管进入肺部,并与肺泡内的血液接触。

氧气通过肺泡壁进入血液,血液中的氧气与血红蛋白结合,形成氧合血红蛋白。

同时,体内的二氧化碳从血液中通过肺泡壁排出,通过支气管和气管最终从鼻腔排出体外。

内呼吸:氧合血红蛋白通过血管系统运送到体内各个细胞,在细胞内与细胞呼吸过程中释放出能量,并产生二氧化碳。

二氧化碳进入血液,与血红蛋白结合形成碳酸血红蛋白,通过血管循环系统运送到肺部,再从肺部排出体外。

呼吸机是一种可以辅助或替代患者自主呼吸的装置,通过给予气流来维持呼吸功能。

呼吸机工作的基本原理是负压通气和正压通气。

负压通气:负压通气是指通过产生外部负压来吸引空气进入肺部。

负压通气主要应用于体外膜肺氧合(ECMO)或铁肺治疗等特定情况。

正压通气:正压通气是指通过外部装置提供压力将空气推入肺部。

呼吸机通过一系列的装置和传感器监测和调节气流压力、呼吸频率和气流吸入时间等参数。

正压通气的主要步骤包括:1)吸气:呼吸机通过连接管道输送氧气(或空气)至患者的呼吸系统。

2)气流传递:气流通过呼吸系统进入肺部,填充肺泡,从而维持氧气摄入和二氧化碳排出。

3)压力释放:患者呼气的时候,呼吸机减少气流压力,使肺部能够排出二氧化碳。

4)回流:重复以上步骤,持续为患者提供足够的氧气和排出二氧化碳。

呼吸机在调节和维持患者的呼吸功能方面发挥重要作用,特别是在一些严重疾病或手术后需要长期机械辅助通气的情况下。

总结:呼吸生理是人体为了维持正常功能所必需的过程,包括外呼吸和内呼吸两个阶段。

呼吸机是一种可以辅助或替代患者自主呼吸的设备,可通过负压通气或正压通气的方式来维持呼吸功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
氧离 曲线:
精品课件
二、CO2的运输 1.主要以碳酸氢盐的形式
CA=碳酸 酐酶;
以这种 形式运 输的CO2 约占血 液中CO2 总量的 75%。
精品课件
2. 氨基甲酸血红蛋白(氨甲酰血红蛋白) 的形式:
HbNH2 + CO2 HbNHCOO- + H+
HbNHCOOH
以这种形式运输的CO2约占CO2运输总量的20%。
精品课件
第4节 呼吸的调节
一、呼吸肌的神经支配
精品课件
二、各级呼吸中枢及其相互关系 (一)脑干各级呼吸中枢 1、延髓呼吸中枢 基本呼吸中枢 2、脑桥呼吸中枢 上1/3有呼吸调整中枢 下2/3有长吸中枢 (二)大脑皮层对呼吸运动的调节
精品课件
精品课件
三、呼吸的反射性调节 ()肺牵张反射(黑-伯反射,HeringBreuer reflex) 1、肺扩张反射(肺充气反射,迷走吸气抑
特点:Hb + O2
O2分压高处 O2分压低处
HbO2
注意下列几个概念:氧分压;氧合血红蛋白;去 氧血红蛋白;血红蛋白的氧容量;血红蛋白的氧 含量;血红蛋白的氧饱和度;
精品课件
氧容量— 全部血红蛋白都结合了氧,此 时,每100ml血液中所含的氧量约为20ml, 称为血红蛋白的氧容量。 氧含量—每100ml血液中血红蛋白实际结合 的氧量,称为血红蛋白的氧含量。
肋间外肌收缩 膈肌收缩 (二)呼气动作的产生与肺内压的变化 肋间外肌舒张 膈肌舒张
精品课件
二、呼吸过程中胸膜腔内压的变化 1. 胸膜腔的概念 鸟类以下的动物无胸膜腔 2.胸膜腔内压
肺的弹性回缩力
气胸
精品课件
第2节 气体的 交换
精品课件
第3节 血液中气体的运输
一、O2的运输 靠红细胞内的血红蛋白
精品课件
血红蛋白的氧饱和度—血红蛋白的氧含量 占血红蛋白的氧容量的百分比称为血红蛋 白的氧饱和度。 或者理解成:
血液中实际与氧结合的血红蛋白 的量 占总血红蛋白的量的百分比。
人体动脉血中血红蛋白的氧饱和 度约
精品课件
98%(接近100%);静脉血中血红蛋白的 氧饱和度约为75%。 如果每100ml动脉血 含氧量为20ml(此时血红蛋白的氧饱和度 按100%计),那么每100ml静脉血含氧量 约为20ml×75%=15ml。说明每100ml动脉 血流经组织细胞时向组织细胞释放了5mlO2。
精品课件
精品课件
精品课件
中枢化学感受器接受细胞外液中H+的刺 激。血液中的CO2能迅速透过血-脑屏障, 与脑脊液中的水结合成碳酸,碳酸解离出 H+,再对中枢化学感受器起刺激作用。 由于血液中的H+不易透过血-脑屏障,故 血液中H+浓度对中枢化学感受器的作用不 及CO2的大。
精品课件
与外周化学感受器不同,中枢化学感受器 不感受缺氧的刺激,但对CO2的敏感性却 较外周化学感受器高。
精品课件
精品课件
二是通过颈动脉体和主动脉体间接影响呼吸中枢, 但这条途径仅在血液中CO2分压增加较多时才表现出 来。
动脉血中CO2分压只需升高2 mmHg就可刺激中枢化 学感受器,出现肺通气增强的反应;而刺激外周化 学感受器,则需升高10 mmHg。可见中枢化学感受 器在CO2引起的通气反应中起主要作用。
精品课件
(四)低O2:动脉血中O2分压降低,呼吸运动加 深加快,肺通气量增加。但通常动脉血O2分压需 下降到80 mmHg以下时,肺通气量才出现可觉察 到的增加。
低O2对呼吸运动的刺激作用完全是通过外周化学 感受器实现的。因为切断动物外周化学感受器的 传入神经后,急性低O2的呼吸刺激效应完全消 失(下图)。
精品课件
颈动脉体的传入神经是窦神经,主动脉体 的传入神经是迷走神经,二者共同上行→ 延髓的孤束核,影响延髓内的呼吸神经元 和心血管神经元的兴奋性。 (下图)
精品课件
精品课件
2、中枢化学感受器 位于延髓腹外侧部的浅表部位,靠近舌咽 神经和迷走神经根部,左右对称。 (下图)
精品课件
精品课件
精品课件
精品课件
(二)CO2对呼吸的影响 CO2是促进呼吸的生理性刺激,是调节呼吸运动 的最重要体液因素。过度通气后的呼吸暂停、屏 息后的不自主地加强呼吸分别是血液中CO2分压 降低和升高所致。
CO2对呼吸的刺激作用是通过2条途径实现的: 一是通过刺激中枢化学感受器再兴奋呼吸中枢, 这是主要途径。因为:切断外周化学感受器的 传入神经,CO2对呼吸的调节作用依然保持不变 (下图)
精品课件
根据CO2对呼吸的刺激效应,临床上给病人输氧 时,往往采用含5%左右的CO2的混合气体,以达 到刺激呼吸中枢的目的。
(三)H+:动脉血中H+浓度升高,可导致呼吸 运动加深加快,肺通气量增加;H+浓度降低 时,效应相反。H+对呼吸的调节也是通过中枢 化学感受器和外周化学感受器实现的。中枢化学 感受器对H+的敏感性较外周化学感受器高,约 为后者的25倍。
第6章 呼吸
第1节 呼吸运动与肺通气 第2节 气体的交换 第3节 血液中气体的运输 第4节 呼吸的调节
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
第1节 呼吸运动与肺通气
一、呼吸运动 (一)吸气动作的产生与肺内压的变化
制反射) 2、肺萎陷反射(肺放气反射,迷走吸气兴
奋反射)
精品课件
四、化学因素对呼吸运动的调节 (一)化学感受器 1、外周化学感受器 指主动脉体和颈动脉体。对呼吸的调节,颈动脉 体的作用远较主动脉体的大。
颈动脉体和主动脉体分布在血管壁外的组织中, 含有丰富的血管和感觉神经末梢,是全身血液供 应最丰富的器官。
相关文档
最新文档