七年级数学专题——商品中的利润问题
初一数学——利润问题
一、销售利润问题商品的进货价格叫做进价。
商品预售的价格叫做标价或原价。
商品实际卖出的价格叫做售价。
商品利润=商品售价-商品进价。
商品售价=商品原价(或标价)×折数。
商品利润率=商品利润/商品进价=(商品售价-商品进价)/商品进价。
常见的利润问题有:(一)已知进价、售价、求利润率例1.脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
(二)已知进价和利润率,求标价或原价例2.某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元(三)已知进价、标价及利润率,求标价或原价的折数例3.某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
在这一类求折数的应用题中,以前通常都是设打x折,然后在列式时把售价列为"1500x",最后x=0.7=7折。
但我认为x=0.7的话,就说明是打0.7折,而不能说是7折,因此这种做法不妥当。
打7折就是原价的7/10,打8折就是原价的8/10。
按照这一原则,列式时我认为应将售价"1500x"列为"1500×x/10",这样才比较合理。
设商品打x折,方程的解x=7,那么商品就是打7折。
这样前后就显得比较一致.(四)已知利润率、标价求进价例4.商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
初一数学 利润问题
一、销售利润问题商品的进货价格叫做进价。
商品预售的价格叫做标价或原价。
商品实际卖出的价格叫做售价。
商品利润=商品售价-商品进价。
商品售价=商品原价(或标价)×折数。
商品利润率=商品利润/商品进价=(商品售价-商品进价)/商品进价。
常见的利润问题有:(一)已知进价、售价、求利润率例1.脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
(二)已知进价和利润率,求标价或原价例2.某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元(三)已知进价、标价及利润率,求标价或原价的折数例3.某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
在这一类求折数的应用题中,以前通常都是设打x折,然后在列式时把售价列为"1500x",最后x=0.7=7折。
但我认为x=0.7的话,就说明是打0.7折,而不能说是7折,因此这种做法不妥当。
打7折就是原价的7/10,打8折就是原价的8/10。
按照这一原则,列式时我认为应将售价"1500x"列为"1500×x/10",这样才比较合理。
设商品打x折,方程的解x=7,那么商品就是打7折。
这样前后就显得比较一致.(四)已知利润率、标价求进价例4.商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
初一 商品利润问题
一、利润问题(1)利润=售价-进价 (2)利润率=进价利润=进价进价售价 (3)打折销售中的售价=标价×10折数(4)售价=成本+利润 或 售价= 成本×(1+利润率) (5)利润=利润率×成本 (6)利息=本金×利率1、商店把某件商品按进价x 元加20%作为标价,则所标价格可以表示为: 。
2、某服装标价为m 元,打8折并减少30元 可以表示为: 。
3、某时装标价为650元,某女士以5折少30元购得,业主净赚50元,此时装进价为 。
3、电脑产品的进价是10000元,售价为12000元,此商品的利润是 。
利润率为 。
4.某商店进了一批商品,每件商品的进价为a 元,若要获利20%,则每件商品的零售价应定为( )5:某商场购进一批玩具,进价为50元,定价80元,打八折卖出,商场卖出一个玩具的利润是多少钱?利润率为百分之几?6:某商品的进价是250元,按标价的九折销售时,利润为20元,商品的标价是多少?7.商场在促销活动中,将标价为200元的商品,在打8折的基础上,又打8折出售,则该商品现在的售价为( )8. 某商品买入价(成本)是50元,以70元售出,获得利润的百分数是多少?9.一家商店将某种服装按成本价提高50%后进行标价,后因仓库积压,以8折优惠卖出,结果每件服装仍能获利20元,则这种服装每件的成本是多少元?10. 某商品成本是50元,按40%利润出售,这件商品的售价是多少元?11. 某商品按40%利润出售,售价是70元,这件商品的成本是多少元?12、商场将每台VCD 先按进价提高40%标出销售价,然后再以八五折优惠价出售,结果还赚了228元,那么每台VCD 进价多少元?13、某商店的一种商品按20%利润定价,然后又按八折出售,结果亏损了64元。
这种商品的成本是多少元?14、某商场将一套儿童服装按进价的50%加价后,再写上“大酬宾,八折优惠”,结果每套服装仍获利20元。
初中数学二次函数的应用题型分类——商品销售利润问题(精选50题 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题(精选50题附答案)1.某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.(1)求y关于x的函数关系;(2)试写出该公司销售该种产品的年获利W(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价为何值时年获利最大?并求这个最大值.2.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(单位:元)与每件涨价x(单位:元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.3.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?你若是商场经理,为获得最大利润,每件衬衫应降价多少元,此时最大利润是多少?4.银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.5.某商店销售一种商品,通过记录,发现该商品从开始销售至销售的第x天结束时(x 为整数)的总销量y(件)满足二次函数关系,销量情况记录如下表:(1)求y与x之间的函数关系式(不需要写自变量的取值范围);(2)求:销售到第几天结束时,该商品全部售完?(3)若第m天的销量为22件,求m的值.6.河西王府井销售一种T 恤衫,每件进价为40 元,经过市场调查,一周的销售量y 件与销售单价x 元/件满足某种函数关系:(1)请根据所学的知识,选择合适的函数模型,求出y 与x 的之间的函数关系式;(2)设一周的销售利润为w 元,请求出w 与x 的函数关系式,并确定当销售单价为多少时一周的销售利润最大,并求出最大利润;(3)商场决定将一周销售T 恤衫的利润全部捐给某村用于精准扶贫的水网改造项目,在商场购进该T 恤衫的资金不超过6000 元情况下,请求出该商场最大捐款数额是多少元?7.某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?8.某大型超市将进价为40 元的某种服装按50 元售出时,每天可以售出300 套,据市场调查发现,这种服装每提高1 元,销售量就减少5 套,如果超市将售价定为x 元,请你求出每天销售利润y 元与售价x 元的函数表达式.9.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之问存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助⑵中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?10.我市红领服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示:时间t(天)0 5 10 15 20 25 30 日销售量y t0 25 40 45 40 25 0 (百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如图所示.求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y 与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.11.某旅游度假区内某个宾馆有120间标准房,当标准房价格为每间200元时,每天都客满,经市场调查,标准房价格与平均入住房数之间的关系如下:(1)若日平均入住房数y(间)与日平均每间房价x(元)之间成一次函数关系,求出y关于x的函数关系式:(2)如果不考虑其他因素,宾馆的标准房日平均每间房价为多少元时,客房的日营业收入最大,最大日营业额为多少元?12.某商品现在的售价为每件25元,每天可售出30件.市场调查发现,售价每上涨1元,每天就少卖出2件.已知该商品的进价为每件20元,设该商品每天的销售量为y 件,售价为每件x元(x为正整数)(1) 求y与x之间的函数关系式;(2) 该商品的售价定为每件多少元时,每天的销售利润P(元)最大,最大利润是多少元?(3) 如果物价部门规定该商品每件的售价不得高于32元,若要每天获得的利润不低168元,请直接写出该商品的售价x(元)的取值范围.13.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)14.某商场将进货价30元的书包以40元售出,平均每月能售出600个。
七年级数学利润问题
在复杂的利润问题中,图形化表示可以帮助学生将问题简化,降低 解题难度。
梳理思路
通过图形展示,学生可以更加清晰地梳理出解题思路,避免在复杂 情境中迷失方向。
辅助决策
图形化表示可以辅助学生进行决策,比如在多种方案中选择最优方案。
图形化表示提高解题效率和准确性
提高效率
图形化表示可以帮助学生快速理解题意,缩短解 题时间,提高解题效率。
• 解析:此题可以利用利润公式和等量关系来设置方程并求解。同时,也可以利用图形化表示的方法,比如绘制 折线图来展示不同售出方式下的收益情况等信息,从而更加清晰地理解问题并找到解决方案。
06 总结回顾与拓展延伸
关键知识点总结回顾
1 2
利润与成本的概念及关系
利润是售价与成本的差额,成本包括进价和其他 费用。
03 多种商品组合买卖问题探 讨
不同种类商品组合销售策略
01
02
03
分类销售
根据商品性质、价格等因 素,将商品分成不同类别, 分别制定销售策略。
搭配销售
将不同种类的商品进行搭 配,以套餐或组合的形式 进行销售,提高整体销售 额。
关联销售
通过分析消费者购买行为, 将相关联的商品进行组合 销售,提高顾客购买意愿。
解析
先根据题意列出方程,再通过解方程求出商品的进价。
例题3
张师傅以每只2.8元的价格购进一批玩具兔,然后以每只 3.6元的价格卖出,当卖到总数的(5/6)时,不但收回了全 部成本,还赢利24元,张师傅一共购进多少只玩具兔?
解析
先求出每只玩具兔的利润,再根据已销售比例和盈利情况 推算出总购进量。
05 图形化表示在利润问题中 应用
准确性保障
通过图形展示,学生可以更加准确地把握问题的 关键信息,避免在解题过程中出现偏差。
七年级上册利润问题20道并带解答
七年级上册利润问题20道并带解答解设甲购进了x件,乙购进了(50-x)件因为甲进价35元,利润率为百分之20,那么甲一件商品就获利35*20%=7元乙进价20元,利润率15%,乙一件就赚20*15%=3元甲购进x件,一件获利7元,甲一共获利7x元乙购进(50-x)件,一件赚3元,乙一共赚3(50-x)元一共为278元所以7x+3(50-x)=278x为321,运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能完?还要运x次才能完29.5-3*4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。
初一数学利润问题
初一数学利润问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、销售利润问题商品的进货价格叫做进价。
商品预售的价格叫做标价或原价。
商品实际卖出的价格叫做售价。
商品利润=商品售价-商品进价。
商品售价=商品原价(或标价)×折数。
商品利润率=商品利润/商品进价=(商品售价-商品进价)/商品进价。
常见的利润问题有:(一)已知进价、售价、求利润率例1.脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
(二)已知进价和利润率,求标价或原价例2.某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元(三)已知进价、标价及利润率,求标价或原价的折数例3.某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
在这一类求折数的应用题中,以前通常都是设打x折,然后在列式时把售价列为"1500x",最后x=0.7=7折。
但我认为x=0.7的话,就说明是打0.7折,而不能说是7折,因此这种做法不妥当。
打7折就是原价的7/10,打8折就是原价的8/10。
按照这一原则,列式时我认为应将售价"1500x"列为"1500×x/10",这样才比较合理。
设商品打x折,方程的解x=7,那么商品就是打7折。
这样前后就显得比较一致.(四)已知利润率、标价求进价例4.商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
1.某网店经营一种品牌水果,其进价为 10 元/千克,保鲜期为 25 天,每天销售量 y (千 克)与销售单价 x (元/千克)之间的函数关系如图所示. (1)求 y 与 x 的函数关系式;
(2)当该品牌水果定价为多少元时,每天销售所获得的利润最大? (3)若该网店一次性购进该品牌水果 3000 千克,根据(2)中每天获得最大利润的方式进行 销售,发现在保鲜期内不能及时销售完毕,于是决定在保鲜期的最后 5 天一次性降价销 售,求最后 5 天每千克至少降价多少元才能全部售完?
A型
B型
合计
台灯数量(盏)
x
100
每盏台灯获利(元)
30
(2)当 A 型台灯所获得的利润比 B 型台灯所获得利润少 200 元时,求生产并销售 A, B 两种台灯各多少盏? (3)如何设计生产销售方案可以获得最大利润,最大的利润为多少元? 11.某商场销售一批名牌衬衫:平均每天可售出 20 件,每件盈利 40 元,为了扩大销售 量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现: 如果每件衬衫降价 1 元,那么平均每天就可多售出 2 件. (1)求出商场盈利与每件衬衫降价之间的函数关系式; (2)若每天盈利达 1200 元,那么每件衬衫应降价多少元? 12.某大学生利用暑假 40 天社会实践参与了一家网店经营,了解到一种新型商品成本
其中点 A 为抛物线的顶点.
1 结合图象,求出 y2 (万台)与外地广告费用 t (万元)之间的函数关系式; 2 求该产品的销售总量 y (万台)与本地广告费用 x (万元)之间的函数关系式;
3 如何安排广告费用才能使销售总量最大?
9.某电子厂生产一种新型电子产品,每件制造成本为 20 元,试销过程中发现,每月销 售量 y(万件)与销售单价 x(元)之间的关系可以近似地看作一次函数 y=﹣2x+100.(利 润=售价﹣制造成本) (1)写出每月的利润 z(万元)与销售单价 x(元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的利润为 400 万元? (3)根据相关部门规定,这种电子产品的销售单价不能高于 40 元,如果厂商每月的制 造成本不超过 520 万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大 利润为多少万元? 10.某灯具厂生产并销售 A,B 两种型号的智能台灯共 100 盏,生产并销售一盏 A 型智 能台灯可以获利 30 元;如果生产并销售不超过 20 盏 B 型台灯,则每盏 B 型台灯可以 获利 90 元,如果超出 20 盏 B 型台灯,则每超出 1 盏,每盏 B 型台灯获利将均减少 2 元.设生产并销售 B 型台灯 x 盏.(其中 x>20) (1)完成下列表格:
初中数学利润问题解题技巧
初中数学利润问题解题技巧
1. 嘿,同学们,要知道解利润问题首先得搞清楚成本和售价呀!就像去买东西,你知道进价和卖价的关系吧?比如一件商品进价50 元,卖80 元,这中间的 30 元不就是利润嘛!
2. 还有哦,一定要会找等量关系呀!这就好比找宝藏的线索一样重要呢。
比如说商店进了一批水果,卖了一部分后,剩下的和卖掉的有个数量关系,这就是解题的关键呀!
3. 利润问题常常会有一些陷阱呢,可别掉进去啦!就像在路上走着走着突然有个坑,得小心呀!比如题目说打八折销售,你得清楚那是在哪个价格上打八折。
4. 多设未知数有时候很有用哦!好比给自己找个小助手。
比如一道题里有多种商品,那就都设出来,让它们帮我们解题。
5. 大家一定要把那些公式牢记在心呀!就像记住自己好朋友的名字一样。
什么利润=售价-成本啦,要随时能想起来才行呢!
6. 遇到难题别害怕呀,勇往直前!就像打怪兽一样,鼓起勇气去战胜它。
比如一道利润问题看着很复杂,咱们一步一步分析,肯定能搞定的。
7. 别忘了要检查答案呀!就像出门前要照照镜子看看自己有没有穿戴整齐。
看看算出的利润合理不合理。
8. 可以多找些练习题来做呀,越做越熟练嘛!就像运动员训练一样,多练才能出好成绩。
想想做对一道难题那多有成就感呀!
9. 同学们,只要掌握了这些解题技巧,利润问题就不再是难题啦!相信自己,都能学好!
我的观点结论:初中数学利润问题并不可怕,只要大家用心去学,多练习,掌握这些技巧,一定都能轻松应对。
初中数学二次函数的应用题型分类——商品销售利润问题(精选60题 附答案)
7.某种商品的进价为每件 50 元,售价为每件 60 元,每个月可卖出 200 件;如果每件
商品的售价上涨 1 元,则每个月少卖 10 件.若商城某个月要盈利 1250 元,求每件商品
应上涨多少元?
8.为鼓励大学生毕业后自主创业,我市出台了相关政策:由政府协调,本市企业按成本价
提供产品给应届毕业生自主销售,成本价与出厂价之间的差价由政府承担.赵某按照相关
(2)设赵某获得的利润为 W(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种“儿童玩具枪”的销售单价不得高于 28 元.如果赵某想要每月获得
的利润不低于 3000 元,那么政府为他承担的总差价最少为多少元? 9.为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根 据场调查,在草莓上市销售的 30 天中,其销售价格 m (元/公斤)与第 x 天之间满足
销售利润=日销售额﹣日维护费)
(3)求日销售利润 y 的最大值及相应的 x .
10.某超市销售一种商品,成本每千克 40 元,规定每千克售价不低于成本,且不高于 80 元,经市场调查,每天的销售量 y(千克)与每千克售价 x(元)满足一次函数关系, 部分数据如下表:
售价 x(元/千克)
产品 每件售价(万 元)
每件成本(万 元)
每年其他费用(万 元)
每年最大产销量 (件)
甲6
a
20
200
乙 20
10
40+0.05x2
80
其中 a 为常数,且 3≤a≤5. (1) 若产销甲、 乙两种产品的年利润分别为 y1 万元、y2 万元,直接写出 y1、y2 与 x 的函数关系式;
(2)分别求出产销两种产品的最大年利润; (3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由. 5.为推进生态文明建设,加快发展新能源汽车,国家对新能源汽车实行补贴政策。一家 4S 店从事某品牌纯电动汽车和插电式混动汽车两种新能源汽车(以下简称电动车和混动 车)的销售,电动车每辆进价 16 万元,去年国家对该车每辆补贴 4.5 万元,补贴后每辆 售价 14 万元;混动车每辆进价 18 万元,去年国家对该车每辆补贴 2.8 万元,补贴后每 辆售价 18 万元。该 4S 店去年 12 月共销售这两种汽车 120 辆,获得利润 324 万元。 (1)求该 4S 店去年 12 月销售了多少辆混动车? (2)今年国家对该品牌新能源汽车的补贴有所下降,电动车每辆比去年少补贴 0.5 万元,混 动车每辆比去年少补贴 0.8 万元,该 4S 店为减少损失,今年 1 月把电动车的售价提高了
初一 商品利润问题
一、利润问题(1)利润=售价-进价 (2)利润率=进价利润=进价进价售价 (3)打折销售中的售价=标价×10折数(4)售价=成本+利润 或 售价= 成本×(1+利润率) (5)利润=利润率×成本 (6)利息=本金×利率1、商店把某件商品按进价x 元加20%作为标价,则所标价格可以表示为: 。
2、某服装标价为m 元,打8折并减少30元 可以表示为: 。
3、某时装标价为650元,某女士以5折少30元购得,业主净赚50元,此时装进价为 。
3、电脑产品的进价是10000元,售价为12000元,此商品的利润是 。
利润率为 。
4.某商店进了一批商品,每件商品的进价为a 元,若要获利20%,则每件商品的零售价应定为( )5:某商场购进一批玩具,进价为50元,定价80元,打八折卖出,商场卖出一个玩具的利润是多少钱?利润率为百分之几?6:某商品的进价是250元,按标价的九折销售时,利润为20元,商品的标价是多少?7.商场在促销活动中,将标价为200元的商品,在打8折的基础上,又打8折出售,则该商品现在的售价为( )8. 某商品买入价(成本)是50元,以70元售出,获得利润的百分数是多少?9.一家商店将某种服装按成本价提高50%后进行标价,后因仓库积压,以8折优惠卖出,结果每件服装仍能获利20元,则这种服装每件的成本是多少元?10. 某商品成本是50元,按40%利润出售,这件商品的售价是多少元?11. 某商品按40%利润出售,售价是70元,这件商品的成本是多少元?12、商场将每台VCD 先按进价提高40%标出销售价,然后再以八五折优惠价出售,结果还赚了228元,那么每台VCD 进价多少元?13、某商店的一种商品按20%利润定价,然后又按八折出售,结果亏损了64元。
这种商品的成本是多少元?14、某商场将一套儿童服装按进价的50%加价后,再写上“大酬宾,八折优惠”,结果每套服装仍获利20元。
人教版(2024)数学七年级上册 第五章 - 销售中的盈亏问题与比赛积分问题
的得分情况.
参赛者
A
B
C
D
E
答对题数
20
19
18
14
10
答错题数
0
1
2
6
10
得分
100
94
88
64
40
(1)填空:每答对一道题得
分,每答错一道题扣
(2)参赛者F得76分,他答对了几道题?
解:(1)5
1
(2)设参赛者F答对了x道题,答错了 (20-x) 道题.
D.25元
2.某商品的标价是300元,若按标价的9折销售,仍可获利35%,则这件商
品的进价为 200 元.
3.2023年杭州亚运会期间,亚运会吉祥物“琮琮,莲莲,宸宸”深受大
家的喜爱,在某平台销售火爆,某商家购进一批吉祥物玩偶套装标价
200元进行销售,在销售过程中发现,若按标价的5折销售,仍可获利
25%,则这批吉祥物玩偶套装的进价为 80 元.
由题意,得5x-(20-x)=76,
解得x=16,
所以参赛者F答对了16道题.
分.
(3)参赛者G说他得83分,你认为可能吗?请通过计算说明.
解:(3)假设参赛者 G 得 83 分,
设答对了 y 道题,答错了(20-y)道题.
由题意,得 5y-(20-y)=83,
解得 y=
,
因为 y 为整数,而
3 分,是不可能的.
11.(应用意识、运算能力)学校为开展“课后延时服务”,计划购买一批乒
乓球拍和羽毛球拍.已知一副羽毛球拍的单价比乒乓球拍贵20元,购买12副
最新初一数学——利润问题
初一数学——利润问题一、销售利润问题商品的进货价格叫做进价。
商品预售的价格叫做标价或原价。
商品实际卖出的价格叫做售价。
商品利润=商品售价-商品进价。
商品售价=商品原价(或标价)×折数。
商品利润率=商品利润/商品进价=(商品售价-商品进价)/商品进价。
常见的利润问题有:(一)已知进价、售价、求利润率例1.脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
(二)已知进价和利润率,求标价或原价例2.某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元(三)已知进价、标价及利润率,求标价或原价的折数例3.某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
在这一类求折数的应用题中,以前通常都是设打x折,然后在列式时把售价列为"1500x",最后x=0.7=7折。
但我认为x=0.7的话,就说明是打0.7折,而不能说是7折,因此这种做法不妥当。
打7折就是原价的7/10,打8折就是原价的8/10。
按照这一原则,列式时我认为应将售价"1500x"列为"1500×x/10",这样才比较合理。
设商品打x折,方程的解x=7,那么商品就是打7折。
这样前后就显得比较一致.(四)已知利润率、标价求进价例4.商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
初一数学商品销售问题公式
初一数学商品销售问题公式
在初一数学中,商品销售问题是一个常见的应用题类型。
这种问题主要涉及到利润、售价和进价的关系。
以下是一些相关的公式:
1. 售价-进价=利润:这个公式用于计算商品的利润。
假设商品的售价为P,进价为C,则利润L = P - C。
2. 利润率=利润/进价:利润率是衡量盈利能力的指标。
利润率通常用百分比表示。
假设商品的利润率为r,则r = L/C。
3. 售价=进价×(1+利润率):这个公式用于计算商品的售价,已知商品的进价和预期的利润率。
4. 利润=进价×利润率:这个公式用于计算在固定进价和利润率下的最大利润。
5. 总利润=单件利润×销售数量:这个公式用于计算在一定销售数量下的总利润。
这些公式可以帮助你理解和解决商品销售问题。
记住,这些公式是建立在一些假设之上的,例如没有其他费用或折扣。
在实际情况中,可能需要考虑更多的因素。
2020初中数学二元一次方程组典例应用:利润问题
2020初中数学二元一次方程组典例应用:利润问题
知识梳理:
商品利润=商品售价-商品进价;利润率=利润进价100%。
典型例题:
思路点拨:
本题有两个未知数,即商品本钱和预售总价,也有两个明显的等量关系,即两种打折出售的获利情况,根据售价-成本-存货费用=利润,可以列出方程组求解即可。
变式拓展:
思路点拨:
本题易知第一个等量关系为甲乙两种商品共50件,则有x+y=50。
根据甲乙商品的进价和利润率可知甲商品每件利润为350.2=7元,乙商品每件利润为200.15=3元,再由所获总利润得到第二个等量关系,组成方程组求解即可。
七年级数学利润问题
9 售价=进价+ 利润=进价×( 1+利润率)
提示:销售总金额=单价 x 销售量 利润=50×50%=25元
x 30 30 20 % 解:设每台DVD的进价是 元
如果你是这家大商场的老板,你觉得甲的方案符合你的利润要求吗?
来的利润率是多少? 台DVD的进价是多少元?
=进价×( 1+利润率) 标价为60元的商品,八折销售,则它的实际售价是多少元? 解:设该商品的标价是 元
x 解:设经销这种录音带原来的利润率是
磁带的原进价为 a元
a (1 x ) a (1 5 % 1 x ) 8 (%
解得 x0.52
答:经销这种磁带原来的利润率为52%
1 0 2、某电子商场将某种DVD产品按进价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每
台DVD的进价是多少元?
解得 x40 由于进货时价格比原进价降低了5%,而售价不变,使得利润率增加了8个百分点,已知原进价为12元,那么经销这种录音带原来的利
润率是多少? 答:经销这种磁带原来的利润率为52% 员工甲的方案是:把这件服装按进价提高1倍进行标价,然后打出“新款8折优惠”的广告。 2、某电子商场将某种DVD产品按进价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每 台DVD的进价是多少元?
假如你是老板?……
某大型服装商场内,一件新款服装的进价是 400元。为了吸引顾客,提高销售量,老板 向员工征集销售方案,要求保证50%的利润 率。员工甲的方案是:把这件服装按进价 提高1倍进行标价,然后打出“新款8折优 惠”的广告。如果你是这家大商场的老板, 你觉得甲的方案符合你的利润要求吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题专题——商品中的利润问题
一、有关知识导引
1.商品的利润是商品的售价与进价(成本)之差,也就是:
商品利润=商品售价-商品进价(成本),当售价大于进价时,赢利,反之,售价小于进价时,亏损,此时商品利润用负数表示.
2.商品的利润率是指商品的利润占商品进价(成本)的百分比,也就是:
商品利润率 = 商品利润成本
×100% , 利润率是正数,说明赢利,反之, 利润率是负数,说明亏损.
3.打几折是指按标价的百分之几十出售,也就是商品的标价×打折率.
二、典型例题分析;
例1:一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价
的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
例2: 若进货价降低8%,而售出价不变,那么利润可由目前的p%增加到(p+10)%,求p.
例3 某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后的利润为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?
例4. 2007年5月19日起,中国人民银行上调存款利率.人民币存款利率调整表:
储户的实得利息收益是扣除利息税后的所得利息,利息税率为20%.
(1)小明于2007年5月19日把3500元的压岁钱按一年期定期存入银行,到期时他实得利息收益是多少元?
(2)小明在这次利率调整前有一笔一年期定期存款,到期时按调整前的年利率2.79%计息,本金与实得利息收益的和为2555.8元,问他这笔存款的本金是多少元?
(3)小明爸爸有一张在2007年5月19日前存人的10000元的一年期定期存款单,为获取更大的利息收益,想把这笔存款转存为利率调整后的一年期定期存款.问他是否应该转存?请说明理由.约定:①存款天数按整数天计算,一年按360天计算利息.②比较利息大小是指从首次存入日开始的一年时间内.获得的利息比较.如果不转存,利息按调整前的一年期定期利率计算;如果转存,转存前已存天数的利息按活期利率计算,转存后,余下天数的利息按调整后的一年期定期利率计算(转存前后本金不变).
三、专项练习
(一)选择题
1.受季节影响,某种商品每件按原售价降价10%后,又降价a 元,现在每件的
售价为b 元,那么该商品每件的原价为( ) A.110%a b +-元 B.(1-10%)(a+b) C.110%b a --元 D.(1-10%)(a-b)
2.某商店有两种进价不同的计算器,都卖64元,其中一个盈利60%,另一个
亏本20%,则在这次买卖中,这家商店( )
A.赔了8元
B.赚了32元
C. 不赔不赚
D.赚了8元
3.某商店进了一批商品,每件商品的进价为a 元,若要获利20%,则每件商品
的零售价应定为( )
A.20%a 元
B.(1-20%)a 元
C. (1+20%)a 元
D.a ÷(1+20%)元
4.商场在促销活动中,将标价为200元的商品,在打8折的基础上,又打8折
出售,则该商品现在的售价为( )
A.160元
B.128元
C. 120元
D.8元
(二)解答题;
5.一商店把某种品牌的羊毛衫按标价的8折出售,仍可获利20%,若该品牌
的羊毛衫的进价是100元,则标价是多少元?
6.某商店进入一批商品,每件商品的进价为300元,若要获利20%,则每件
商品的零售价应定为多少元?
7.某商品的进价是500元,标价为725元,商店要求以利润不低于16%的的
售价打折出售,则售货员最低可以打几折出售此商品?
8.一家商店将某种服装按成本价提高50%后进行标价,后因仓库积压,以8
折优惠卖出,结果每件服装仍能获利20元,则这种服装每件的成本是多少元?
9.某商品月末的进货价比月初的进货价降了8%, 而销售价不变,这样,利
润率月末比月初高了10%, 则月初的利润率是多少?
10.果品公司购进苹果5.2万千克,每千克的进价是0.98元, 付运费的开支
是1840元,预计损耗为1%,如果全部销售后能获利17%, 则每千克苹果零售价应定为多少元?
11.某国家规定工资收入的个人所得税计算方法如下:
1)月收入不超过1200元的部分不纳税;
2)收入超过1200元至1700元部分按税率5%(这部分收入的5%,下同)征税;
3)收入超边1700元至3000元部分按税率10%征税。
(1)已知某人某月工资收入是1600元,问他应缴纳个人所得税多少元?
(2)若某人某月缴纳个人所得税65元,问此人本月收入为多少元?。