七年级数学完全平方公式
七年级数学-第03讲 平方差与完全平方公式(解析版)
![七年级数学-第03讲 平方差与完全平方公式(解析版)](https://img.taocdn.com/s3/m/1856c9d285868762caaedd3383c4bb4cf7ecb7db.png)
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第03讲平方差与完全平方公式【考点梳理】考点1:完全平方公式1.2222)(bab a b a +±=±公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
ab b a ab b a b a 2)(2)(2222-+=-+=+ab b a b a 4)()(22-+=-222)()]([)(b a b a b a +=+-=--222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2.三项式的完全平方公式:bcac ab c b a c b a 222)(2222+++++=++考点2:平方差公式22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
右边是相同项的平方减去相反项的平方。
如:))((z y x z y x +--+【题型归纳】题型一:完全平方公式1.(2022·全国·七年级)下列关系式中,正确的是()A .(a ﹣b )2=a 2﹣b 2B .(a +b )(﹣a ﹣b )=a 2﹣b 2C .(a +b )2=a 2+b 2D .(﹣a ﹣b )2=a 2+2ab +b 2【答案】D 【分析】根据完全平方公式判断即可.【详解】解:A 选项,原式=a 2﹣2ab +b 2,故该选项计算错误;B 选项,原式=﹣(a +b )2=﹣a 2﹣2ab ﹣b 2,故该选项计算错误;C 选项,原式=a 2+2ab +b 2,故该选项计算错误;D 选项,原式=[﹣(a +b )]2=(a +b )2=a 2+2ab +b 2,故该选项计算正确;故选:D .【点睛】本题考查了完全平方公式,掌握(a ±b )2=a 2±2ab +b 2是解题的关键.2.(2022·福建·厦门市第十一中学八年级期末)运用完全平方公式()2222a b a ab b -=-+计算212x ⎛⎫- ⎪⎝⎭,则公式中的2ab 是()A .12x B .﹣x C .x D .2x【答案】C 【分析】运用完全平方公式计算,然后和()2222a b a ab b -=-+对比即可解答.【详解】解:2222111122224x x x x x ⎛⎫⎛⎫-=-⨯+=-+⎪ ⎪⎝⎭⎝⎭对比()2222a b a ab b -=-+可得-2ab =-x ,则2ab =x .故选C.【点睛】本题主要考查了完全平方公式,理解完全平方公式的特征成为解答本题的关键.3.(2022·广东东莞·八年级期末)如果x 2﹣3x +k (k 是常数)是完全平方式,那么k 的值为()A .6B .9C .32D .94【答案】D 【分析】根据完全平方公式解答即可.【详解】解:∵x 2-3x +k (k 是常数)是完全平方式,∴x 2-3x +k =(x -32)2=x 2-3x +94,∴k =94.故选:D .【点睛】本题主要考查了完全平方公式的运用;其中两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.(2021·黑龙江·绥棱县克音河乡学校八年级期末)要使24x kx ++是完全平方式,那么k 的值是()A .4k =±B .4k =C .4k =-D .2k =±【答案】A 【分析】根据完全平方公式:222)2(a ab b a b ±+=±进行求解即可.【详解】∵24x kx ++是完全平方式,∴2()42k =,解得:4k =±,故选:A .【点睛】本题考查了完全平方式,解题的关键是掌握常数项是一次项系数一半的平方.5.(2022·辽宁庄河·八年级期末)若2a b +=-,3ab =,则代数式22a ab b -+的值是()A .5-B .13C .5D .9【答案】A 【分析】将2a b +=-两边平方,利用完全平方公式化简,把3ab =-代入求出22a b +的值,即可确定出所求式子的值.【详解】解:将2a b +=-两边平方得:222()24a b a b ab +=++=,把3ab =代入得:2264a b ++=,即222a b +=-,则22235a ab b -+=--=-,故选:A .【点睛】本题考查了完全平方公式,求代数式的值,解题的关键是熟练掌握完全平方公式.6.(2022·重庆·八年级期末)如果216x mx ++是完全平方式,那么m 的值是()A .8B .4C .4±D .8±【答案】D 【分析】先写出22816(4)x x x ±+=±,进一步求出m 的值,即可求解.【详解】解:∵22816(4)x x x ±+=±,且216x mx ++是完全平方式,∴8m =±;故选:D 【点睛】本题主要考查了完全平方式,掌握满足完全平方式的情况只有222a ab b ++和222a ab b -+两种,两种情况的熟练应用是解题关键.7.(2022·广东·塘厦初中八年级期末)下列运算中,结果正确的是()A .824a a a ÷=B .()222a b a b +=+C .()2242a b a b =D .()()2122a a a -+=-【答案】C 【分析】根据同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式的计算法则计算求解即可.【详解】解:A 、826a a a ÷=,计算错误,不符合题意;B 、()2222a b a ab b +=++,计算错误,不符合题意;C 、()2242a b a b =,计算正确,符合题意;D 、()()2212222a a a a a a a -+=+--=+-,计算错误,不符合题意;故选C .本题主要考查了同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式,熟知相关计算法则是解题的关键.8.(2022·北京·八年级期末)已知一个正方形的边长为a+1,则该正方形的面积为()A.a2+2a+1B.a2-2a+1C.a2+1D.4a+4【答案】A【分析】由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.【详解】解:该正方形的面积为(a+1)2=a2+2a+1.故选:A.【点睛】本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.9.(2022·甘肃·金昌市龙门学校八年级期末)若x2+mxy+25y2是一个完全平方式,那么m的值是()A.±10B.-5C.5D.±5【答案】A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.题型二:平方差公式11.(2022·全国·七年级)已知(2x+3y)2=15,(2x﹣3y)2=3,则3xy=()A.1B.32C.3D.不能确定【分析】根据平方差公式即可求出答案.【详解】解:2(23)15x y += ,2(23)3x y -=,22(23)(23)12x y x y ∴+--=,(2323)(2323)12x y x y x y x y ∴+-+++-=,6412y x ∴⋅=,332xy ∴=,故选:B .【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.12.(2022·全国·七年级)下列各式,能用平方差公式计算的是()A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(113a +)(﹣113a -)【答案】B 【分析】根据平方差公式为22()()a b a b a b +-=-逐项判断即可.【详解】A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式[][]()2()2a b a b =---+,符合平方差公式,故本选项符合题意;C .原式(23)(23)a b a b =---,只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式11(1)(1)33a a -++只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B .【点睛】本题考查平方差公式,掌握平方差公式为22()()a b a b a b +-=-是解答本题的关键.13.(2022·河南川汇·八年级期末)如图,在边长为()x a +的正方形中,剪去一个边长为a 的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x ,a 的恒等式是().A .()()22x a x a x a -=-+B .()222x ax x x a +=+C .()()222x a a x x a +-=+D .()()222x a x a a x +-=+【答案】C 【分析】根据公式分别计算两个图形的面积,由此得到答案.【详解】解:正方形中阴影部分的面积为22()x a a +-,平行四边形的面积为x (x +2a ),由此得到一个x ,a 的恒等式是()()222x a a x x a +-=+,故选:C .【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.14.(2021·福建同安·八年级期中)若02021a =,2201920212020b =⨯-,202020212332c ⎛⎫⎛⎫=-⨯ ⎪⎪⎝⎭⎝⎭则下列a ,b ,c 的大小关系正确的()A .a b c <<B .a c b<<C .b a c<<D .c b a<<【答案】C 【分析】利用零次幂的含义求解a 的值,利用平方差公式求解b 的值,利用积的乘方的逆运算求解c 的值,再比较大小即可.【详解】解: 020211,a ==()()222220192021202020201202012020=2020120201,b =⨯-=-+---=-()202020212020202023233331,3232222c ⎛⎫⎛⎫⎛⎫=-⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而311,2-<<,b ac \<<故选C 【点睛】本题考查的是零次幂的含义,平方差公式的应用,积的乘方运算的逆运算,先计算,,a b c 的值再比较大小是解本题的关键.15.(2022·黑龙江肇源·七年级期末)下列各式中,能用平方差公式计算的是()A .(a +b )(﹣a ﹣b )B .(a +b )(a ﹣b )C .(a +b )(a ﹣d )D .(a +b )(2a ﹣b )【答案】B 【分析】根据平方差公式(a +b )(a ﹣b )=a 2﹣b 2对各选项分别进行判断.【详解】解:A 、(a +b )(﹣a ﹣b )=﹣(a +b )(a +b )两项都相同,不能用平方差公式计算.故本选项不符合题意;B 、(a +b )(a ﹣b )存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C 、(a +b )(a ﹣d )中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D 、(a +b )(2a ﹣b )中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B .【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16.(2022·天津红桥·八年级期末)下列计算正确的是()A .22224a b a b +=+()B .2225225104x y x xy y -=-+()C .2221122x y x xy y-=-+()D .221111123439x x x +=++()【答案】D 【分析】根据完全平方公式逐项计算即可.【详解】解:A.22224+4a b a ab b +=+(),故不正确;B.2225225204x y x xy y -=-+(),故不正确;C.2221124x y x xy y -=-+(),故不正确;D.221111123439x x x +=++(),正确;故选D 【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.17.(2021·辽宁铁岭·八年级期末)若2210a b -=,2a b -=,则a b +的值为()A .5B .2C .10D .无法计算【答案】A 【分析】利用平方差公式:()()22a b a b a b -=+-进行求解即可.【详解】解:∵2a b -=,()()2210a b a b a b -=+-=,∴5a b +=,故选A .【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键.18.(2022·吉林通榆·八年级期末)从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【详解】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.19.(2021·河南原阳·八年级期中)下列各式中不能用平方差公式计算的是()A.(x-y)(-x+y)B.(-x+y)(-x-y)C.(-x-y)(x-y)D.(x+y)(-x+y)【答案】A【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【详解】解:A、(x−y)(−x+y)=−(x−y)(x−y),含y的项符号相同,含x的项符号相同,不能用平方差公式计算,故本选项正确;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算,故本选项错误;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算,故本选项错误;D、含y的项符号相同,含x的项符号相反,能用平方差公式计算.故本选项错误;【点睛】考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图分割的正方形,拼接成长方形的方案中,可以验证()A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()2a b a ab b -=--【答案】A【分析】对图形中阴影部分的面积进行计算即可得到相关的等式.【详解】解:如图所示,右边阴影部分面积为:22a b -,左边阴影部分面积为:()()a b a b +-,由阴影部分面积相等可得:()()22a b a b a b +-=-,故选A .【点睛】本题考查了平方差公式的几何背景.分别表示出图形阴影部分的面积是解题的关键.【双基达标】1.(2021·福建南安·八年级期中)若x 2+kx +25是一个完全平方式,则k 的取值是()A .5B .±5C .10D .±10【答案】D【解析】两个完全平方式:222a ab b ±+,利用完全平方式的特点可得答案.【详解】解: x 2+kx +25225,x kx =++而x 2+kx +25是一个完全平方式,2510,k \=贝=故选D【点睛】本题考查的是完全平方式,利用完全平方式的特点求解完全平方式中的字母系数是解题的关键.2.(2021·四川江油·八年级阶段练习)已知x ²-2mx +9是完全平方式,则m 的值为()A .±3B .3C .±6D .6【答案】A【解析】【分析】根据完全平方公式的形式,可得答案.【详解】解:已知x 2-2mx +9是完全平方式,∴m =3或m =-3,故选:A .【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.3.(2021·河南·郑州外国语中学九年级期中)无论a ,b 为何值代数式226112a b b a +++-的值总是()A .非负数B .0C .正数D .负数【答案】C【解析】【分析】把含a 的放一块,配成完全平方公式,把含b 的放一块,配成完全平方公式,根据平方的非负性即可得出答案.解:原式22(21)(69)1a ab b =-+++++22(1)(3)1a b =-+++,2(1)0a - ,2(3)0b +,22(1)(3)10a b ∴-+++>,即原式的值总是正数.故选:C .【点睛】本题考查了配方法的应用,解题的关键是掌握对代数式进行正确变形.4.(2021·全国·八年级课时练习)下列各式中,不能用平方差公式分解因式的是()A .2249-y x B .4149-x C .42--m n D .21()94+-p q 【答案】C【解析】【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A 、2249-y x =(y +7x )(y −7x ),可以用平方差公式分解因式,故此选项错误;B 、4149-x =(17+x 2)(17−x 2),可以用平方差公式分解因式,故此选项错误;C 、−m 4−n 2,不可以用平方差公式分解因式,故此选项正确;D 、21()94+-p q =(12p +12q +3)(12p +12q −3),可以用平方差公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.5.(2021·湖南双峰·七年级期中)下列多项式乘法,能用平方差公式进行计算的是()A .()()a b a b --+B .(2x 3y)(2x 3)z +-C .()()x y x y ---D .()()m n n m --【答案】C【解析】【分析】利用平方差公式的结构特征判断即可.【详解】解:A.()()a b a b --+不能用平方差进行计算,故不符合题意B.(2x 3y)(2x 3)z +-不能用平方差进行计算,故不符合题意C.()()x y x y ---能用平方差公式进行计算的是22()()x y x y y x ---=-,D.()()m n n m --不能用平方差进行计算,故不符合题意故选:C .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.(2022·全国·七年级)已知:13x x +=,则221x x+=____.【答案】7【解析】【分析】两边同时平方,再运用完全平方公式计算即可.【详解】解:13x x += ,21()9x x∴+=,22129x x ++=2217x x ∴+=,故答案为:7.【点睛】本题考查了完全平方公式的运算,解题关键是熟练运用完全平方公式进行运算.7.(2022·内蒙古·科尔沁左翼中旗教研室八年级期末)若a +b =8,ab =-5,则()2a b -=___________【答案】84【解析】【分析】根据完全平方公式的变形即可求解.【详解】∵a +b =8,ab =-5∴()2a b -=()24a b ab +-=64-4×(-5)=84故答案为:84.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形.8.(2022·全国·七年级)若(x 2+y 2+1)(x 2+y 2﹣1)=48,则x 2+y 2=___【答案】7【解析】【分析】首先利用平方差公式将已知化简,进而得出x 2+y 2的值.【详解】解:因为(x 2+y 2+1)(x 2+y 2﹣1)=48,所以(x 2+y 2)2﹣12=48,所以(x 2+y 2)2=49,x 2+y 2=±7(负值舍去).故答案为:7.【点睛】本题考查了平方差公式,熟记公式是解题的关键.9.(2022·全国·七年级)已知有理数x ,y 满足x +y 12=,xy =﹣3(1)求(x +1)(y +1)的值;(2)求x 2+y 2的值.【答案】(1)112-(2)164【解析】【分析】(1)(x +1)(y +1)=xy +(x +y )+1,再整体代入计算即可求解;(2)将x 2+y 2变形为(x +y )2-2xy ,再整体代入计算即可求解.(1)(1)解:(1)(x +1)(y +1)=xy +(x +y )+1=-3+12+1=112-;(2)(2)解:x 2+y 2=(x +y )2-2xy =164+,=164.【点睛】本题考查了完全平方公式,多项式乘多项式,解题关键是整体思想的应用.10.(2021·福建同安·八年级期中)计算:(1)()22436310a a a a ⋅+--(2)()()()211a a a a +-+-【答案】(1)0;(2)21a +【解析】【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1)()22436310a a a a ⋅+--6669100a a a =+-=(2)()()()211a a a a +-+-2221a a a =+-+=21a +【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.【高分突破】1.(2021·黑龙江·无八年级期末)已知x +y =4,xy =3,则x 2+y 2的值为()A .22B .16C .10D .4【答案】C【解析】【分析】根据完全平方公式变形,整体代入求值即可.【详解】解:()2222242316610x y x y xy +=+-=-⨯=-=.故选择C .【点睛】本题考查式子的值,求代数式的值,掌握完全平方公式变形的方法是解题关键.2.(2022·陕西陇县·八年级期末)下列运算正确的是()A .428a a a =·B .224()xy xy =C .623y y y ÷=D .222()2x y x xy y --=-+-【答案】D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A 、426=a a a g ,故此选项错误;B 、2224()xy x y =,故此选项错误;C 、624÷=y y y ,故此选项错误;D 、222()2x y x xy y --=-+-,正确;【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.3.(2021·四川省德阳市第二中学校八年级阶段练习)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是()A.a+b B.(a-b)2C.ab D.a2-b2【答案】B【解析】【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积-矩形的面积即可得出答案.【详解】解:图1是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2-4ab=(a-b)2.故选:B.【点睛】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.4.(2021·河南·永城市教育体育局教研室八年级期末)下列等式中,一定成立的是()A.(x - y)2 = (y - x)2B.(x + 6)(x - 6) = x2 - 6C.(x + y)2 = x2 + y2D.(x - y)2 = x2 + 2xy + y2【解析】【分析】分别根据完全平方公式和平方差公式判断各选项即可.【详解】解:A .22()()x y y x -=-成立,故选项A 正确;B .2(6)(6)36x x x +-=-,选项B 不成立;C .222()2x y x xy y +=++,选项C 不成立;D .222()2x y x xy y -=-+,选项D 不成立;故选:A【点睛】本题主要考查了乘法公式的应用,熟练掌握平方差公式和完全平方公式是解答本题的关键.5.(2021·全国·七年级期中)已知M 、N 表示两个代数式,M =(x +1)(x ﹣1)﹣2(y 2﹣y +1),N =(2x +y )(2x ﹣y ),则M 与N 的大小是()A .M >NB .M <NC .M =ND .无法确定【答案】B【解析】【分析】根据作差法进行比较即可;【详解】解:∵M =(x +1)(x ﹣1)﹣2(y 2﹣y +1),N =(2x +y )(2x ﹣y ),∴M -N =(x +1)(x ﹣1)﹣2(y 2﹣y +1)-(2x +y )(2x ﹣y ),=x 2-1-2y 2+2y -2-4x 2+y 2,=-3x 2-y 2-3<0,∴M <N ,故答案为:B .【点睛】本题主要考查了整式加减应用,涉及平方差公式等运算,熟练掌握相关运算法则、准确计算是解题的关键.6.(2021·江苏·如皋初级中学八年级阶段练习)若实数m ,n 满足m 2﹣m +3n 2+3n =﹣1,则m ﹣2﹣n 0=_____.【答案】3【解析】【分析】利用完全平方公式分别对等式中的m 、n 配方得到2211()3()022m n -++=,根据平方式的非负性求出m 、n 的值,再代入求解即可.【详解】解:由m 2﹣m +3n 2+3n =﹣1,得:m 2﹣m +3n 2+3n +1=0,∴2211()3()044m m n n -++++=,即2211()3()022m n -++=,∵21()02m -≥,213()02n +≥,∴102m -=,102n +=,解得:m =12,12n =-,∴m -2﹣n 0=201122-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=4-1=3.故答案为:3.【点睛】本题考查代数式的求值、完全平方公式、平方式的非负性、负整数指数幂、零指数幂,会利用完全平方公式求解是解答的关键.7.(2021·浙江·金华市第五中学九年级阶段练习)若a +b =3,ab =1,则(a ﹣b )2=________.【答案】5【解析】【分析】直接利用完全平方公式计算得出答案.【详解】解:∵a +b =3,ab =1,∴(a +b )2=9,则a 2+2ab +b 2=9,∴a 2+b 2=9-2=7;(a -b )2=a 2-2ab +b 2=7-2=5.故答案为:5.【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键.8.(2021·吉林·长春外国语学校八年级阶段练习)对于任意实数,若规定a b ad bc c d=-,则当2250x x --=时,121x x x +=-____.【答案】4【解析】【分析】先根据题意化简212211x x x x x +=---,将2250x x --=变形为225x x -=,再整体代入即可求解.【详解】解:由题意得()()212112211x x x x x x x x +=+--=---,∵2250x x --=,∴225x x -=,∴原式221=51=4x x ---.故答案为:4【点睛】本题考查了新定义问题,平方差公式,整体思想等知识,理解题意,将121x x x +-化简是解题关键.9.(2022·重庆·八年级期末)已知ax •ay =a 5,ax ÷ay =a .(1)求x +y 和x ﹣y 的值;(2)运用完全平方公式,求x 2+y 2的值.【答案】(1)x +y =5,x ﹣y =1;(2)13【分析】(1)根据同底数幂的乘除法法则解答即可;(2)根据完全平方公式解答即可.【详解】解:(1)因为ax •ay =a 5,ax ÷ay =a ,所以ax +y =a 5,ax ﹣y =a ,所以x +y =5,x ﹣y =1;(2)因为x +y =5,x ﹣y =1,所以(x +y )2=25,(x ﹣y )2=1,所以x 2+2xy +y 2=25①,x 2﹣2xy +y 2=1②,①+②,得2x 2+2y 2=26,所以x 2+y 2=13.【点睛】本题考查了同底数幂的乘除法,完全平方公式.解题的关键是掌握同底数幂的乘除法法则,以及完全平方公式:(a ±b )2=a 2±2ab +b 2.10.(2022·贵州黔西·八年级期末)如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a 2﹣b 2=24,2a +b =6,则2a ﹣b =;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.【答案】(1)22()()a b a b a b -=+-;(2)①4;②20100.【分析】(1)将两个图中阴影部分面积分别表示出来,建立等式即可;(2)①利用平方差公式得出224(2)(2)a b a b a b =+--,代入求值即可;②利用平方差公式将22200199-写成(200199)(200199)=200199+⨯-+,以此类推,然后化简求值.【详解】解:(1)图1中阴影部分面积22a b -,图2中阴影部分面积()()a b a b +-,所以,得到公式22()()a b a b a b -=+-故答案为22()()a b a b a b -=+-.(2)①∵22224(2)(2)(2)a b a b a b a b -=-=+-∴(2)(2)=24a b a b +-又∵2a +b =6,24a b ∴-=故答案为4.②222222222001991981974321-+-+⋯+-+-(200199)(200199)(198197)(198197)(43)(43)(21)(21)=+⨯-++⨯-+⋯++⨯-++⨯-2001991981974321=+++⋯++++20100=【点睛】本题考查平方差公式的应用.熟练掌握平方差公式是解题的关键.。
七年级数学下册知识讲义-9 完全平方公式-苏科版
![七年级数学下册知识讲义-9 完全平方公式-苏科版](https://img.taocdn.com/s3/m/e897c9bd561252d381eb6e50.png)
精讲精练【考点精讲】1. 完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,即两个数的和(或差)的平方等于这两个数的平方和与它们的积的2倍的和(或差)。
另外,这两个公式可以合记为:(a±b)2=a2±2ab+b2。
2. 完全平方公式的结构特征:完全平方公式的左边是一个二项式的完全平方,右边是三项式,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
可概括为“首平方,尾平方,乘积2倍放中央,中央符号回头望”。
3. 应用完全平方公式进行整式乘法运算的步骤:(1)确定首尾,分别平方;(2)确定中央项的系数和符号,得出结论。
【典例精析】例题1 计算:(1)(3+2x)2;(2)(-2a+3b)2;(3)(-2m-5n)2。
思路导航:应用完全平方公式计算,关键要分清公式中的a、b分别代表什么,然后直接套用公式计算即可。
答案:(1)(3+2x)2=32+2·3·2x+(2x)2=9+12x+4x2;(2)解法一:(-2a+3b)2=(-2a)2+2·(-2a)·3b+(3b)2=4a2-12ab+9b2;解法二:(-2a+3b)2=(3b-2a)2=(3b)2-2·3b·2a+(2a)2=9b2-12ab+4a2;(3)解法一:(-2m-5n)2=(-2m)2-2·(-2m)·5n+(5n)2=4m2+20mn+25n2;解法二:(-2m-5n)2=[-(2m+5n)]2=(2m+5n)2=(2m)2+2·2m·5n+(5n)2=4m2+20mn+25n2。
点评:完全平方公式有“和”、“差”两种形式,它们在某些条件下可以互相转化,如第(2)题解法一是用“和”的公式,而解法二利用的是“差”的公式;第(3)题的解法一是利用“差”的公式,解法二通过互为相反数的平方相等转化为利用“和”的公式。
七年级数学下册知识讲义-9完全平方公式-苏科版
![七年级数学下册知识讲义-9完全平方公式-苏科版](https://img.taocdn.com/s3/m/2a9f1ff614791711cd791768.png)
【考点精讲】1. 完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2,即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
这两个等式是完全平方式,它们由左到右的变形是多项式的因式分解,我们可以运用这个公式对某些多项式进行因式分解,这种方法叫做运用完全平方公式法。
2. 完全平方公式的特点:等式的左边是三项式,其中有两项同号,且能写成两数平方和的形式,另一项是这两数乘积的2倍;等式右边是这两数和(或差)的平方。
其中三项式可用口诀来记忆:首平方尾平方,二数乘积在中央。
【典例精析】例题1 把下列各式因式分解:(1)9x2+12xy+4y2;(2)4a2-36ab+81b2;(3)25x4+10x2+1;(4)4(m+n)2-28(m+n)+49。
思路导航:本例中的四个题目直接按完全平方公式分解因式即可,但一定要分清公式中的a,b,并适当地改写成公式的形式。
答案:(1)原式=(3x)2+2·3x·2y+(2y)2=(3x+2y)2;(2)原式=(2a)2-2·2a·9b+(9b)2=(2a-9b)2;(3)原式=(5x2)2+2·5x2·1+12=(5x2+1)2;(4)原式=[2(m+n)]2-2·2(m+n)·7+72=[2(m+n)-7]2=(2m+2n-7)2。
点评:通过本例,我们知道运用完全平方公式法因式分解的步骤:一变(将三项式转化成“首平方尾平方,乘积2倍在中央”的形式)、二套(直接套用完全平方公式进行分解因式分解)。
另外,第(4)题要利用整体思想,即公式中的a相当于2(m+n),并注意结果的化简。
例题2 (1)简便计算:20132-4026×2014+20142;(2)已知实数a、b、c满足a2+b2+c2=6a+8b+12c-61,求(a+b-c)2014的值。
初中数学七年级下册《完全平方公式》教案
![初中数学七年级下册《完全平方公式》教案](https://img.taocdn.com/s3/m/17adae0c6c175f0e7cd13738.png)
【学习课题】七年级下册 第一章 整式的运算 第八节 完全平方公式(1)【内容分析】本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础。
它是数学方法中配方的依据,能解决许多数学问题,是中考考察重点,有选择题和解答题。
初学完全平方公式时,由于对公式理解不深、记忆不牢,容易丢掉“加上(或减去积的2倍)”必须引起高度重视。
【学习目标】 1、经历探索完全平方公式的过程,进一步发展符号感和推理能力2、会推导完全平方公式,并会运用公式进行简单的计算3、了解完全平方公式的几何背景【学习重点】对完全平方公式的理解,以及公式的运用【学习难点】(1) 完全平方公式进行计算时,如何从广义上理解公式中的字母。
(2)在运算时明确是哪两数的和或差的平方。
【学习过程】学习准备:(1)学习本节内容需要熟悉‘多项式乘多项式’、‘幂的乘方’和‘积的乘方’的运算法则,学习前可先检查自己是否熟悉这几个法则;(2)利用多项式与多项式的乘法法则,前面已经推导出重要的乘法公式—平方差公式 (3)平方差公式大大提升了计算的难度和计算的准确度,是否渴望多一点这样的乘法公式呢?学完本节内容后你的这一愿望就会如愿以赏了!阅读理解:(一)解读教材1、请同学们阅读书上40页,观察下图回答问题: (1)第1块实验田面积为( )米2; (2)第2块实验田面积为( )米2; (3)第1块实验田面积为( )米2; (4)第1块实验田面积为( )米2; 这四块实验田总面积为( )米2。
若将这四块实验田看成一个大正方形,则其边长为( )米,面积为( )米。
可以得到结论: 请同学们想一想,能不能用多项式乘多项式得到这个结论呢?()()2a b b a b ++-思考:()2a b -=?有两种方法:①利用多项式乘法 (a-b)2=(a-b)(a-b) ②利用换元法 (a-b)2=[a+(-b)]22、通过以上的推导,得到两个完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2用自己的语言描述完全平方公式: 填空: (x+2y)2=( )2+2( )( )+( )2(2x-5y)2=( )2-2( )( )+( )23、仔细阅读下面的例题,然后仿照例子即时练习:例子:利用完全平方公式计算:(1)(a+2b)2(2)(a-2b)2解:∵ (a + b)2 =a 2+2 a b + b 2 ∵ (a - b)2 =a 2-2 a b+ b 2(a +2b)2=a 2+2 a (2b)+ (2b)2(a -2b)2=a 2-2 a (2b)+(2b)2= a 2+4ab+4b2= a 2-4ab+4b2遮住例1的答案,自已做一遍,然后对答案。
完全平方公式-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)
![完全平方公式-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)](https://img.taocdn.com/s3/m/846698fd5ebfc77da26925c52cc58bd631869392.png)
完全平方公式【知识梳理】一.完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.二.完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b 的长方形的面积和作为相等关系)【考点剖析】一.完全平方公式(共21小题)1.(2022秋•徐汇区期末)下列等式中,能成立的是()A.(a+b)2=a2+ab+b2B.(a﹣3b)2=a2﹣9b2C.(1+a)2=a2+2a+1D.(a+4)(a﹣4)=a2﹣4【分析】根据完全平方公式和平方差公式求出每个式子的值,再判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,故本选项错误;B、(a﹣3b)2=a2﹣6ab+9b2,故本选项错误;C、(1+a)2=1+2a+a2,故本选项正确;D、(a+4)(a﹣4)=a2﹣16,故本选项错误;故选:C.【点评】本题考查了完全平方公式,平方差公式的应用,注意:平方差公式是:(a+b)(a﹣b)=a2﹣b2,完全平方公式是:(a±b)2=a2±2ab+b2.2.(2022秋•静安区校级期中)计算:(a﹣2b+c)2.【分析】原式利用完全平方公式展开即可得到结果.【解答】解:原式=(a﹣2b)2+c2+2c(a﹣2b)=a2﹣4ab+4b2+c2+2ac﹣4bc.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.3.(2022秋•静安区校级期中)计算:(a﹣2b﹣3c)2=.【分析】原式可化为[(a﹣2b)﹣3c]2,再应用完全平方公式进行计算即可得出答案.【解答】解:(a﹣2b﹣3c)2=[(a﹣2b)﹣3c]2=(a﹣2b)2﹣6c(a﹣2b)+9c2=a2﹣4ab+4b2﹣6ac+12bc+9c2.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式进行求解是解决本题的关键.4.(2022秋•静安区校级期中)已知a+b=6,a2+b2=20,则ab的值为.【分析】根据a2+b2=(a+b)2﹣2ab,把相应数值代入即可求解.【解答】解:∵a+b=6,∴a2+b2=(a+b)2﹣2ab=20,即36﹣2ab=20,解得ab=8.故答案为:8.【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.5.(2022秋•青浦区校级期末)计算:(x+2)(4x﹣3)﹣(2x﹣1)2.【分析】先根据多项式乘以多项式,完全平方公式计算,再合并同类项,即可求解.【解答】解:(x+2)(4x﹣3)﹣(2x﹣1)2=4x2﹣3x+8x﹣6﹣4x2+4x﹣1=9x﹣7.【点评】本题主要考查了整式的混合运算,熟练掌握多项式乘以多项式法则,完全平方公式是解题的关键.6.(2022秋•静安区校级期中)已知ab=3,a﹣b=4,求2a2+7ab+2b2的值.【分析】根据a2+b2=(a﹣b)2+2ab,由ab=3,a﹣b=4,即可算出a2+b2的值,再由2a2+7ab+2b2,可得2(a2+b2)+7ab,代入计算即可得出答案.【解答】解:a2+b2=(a﹣b)2+2ab=42+2×3=22,2a2+7ab+2b2=2(a2+b2)+7ab=2×22+7×3=44+21=65.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式的变式应用进行求解是解决本题的关键.7.(2022秋•宝山区校级期中)计算:(a+2b)2﹣2b(a﹣b).【分析】根据完全平方公式及整式加减法则进行计算即可得出答案.【解答】解:原式=a2+4ab+4b2﹣2ab+2b2=a2+2ab+6b2.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式及整式加减法则进行求解是解决本题的关键.8.(2022秋•黄浦区期中)计算:(x+y)2﹣2(x﹣y)(2x+y).【解答】解:原式=x2+2xy+y2﹣2(2x2﹣xy﹣y2)=x2+2xy+y2﹣4x2+2xy+2y2=﹣3x2+4xy+3y2.【点评】此题主要考查了完全平方公式和平方差公式,掌握其公式结构是解题关键.9.(2022秋•奉贤区期中)计算:(2a+b)(a﹣2b)﹣(2a﹣b)2.【分析】根据完全平方公式、平方差公式即可求出答案.【解答】解:原式=2a2﹣3ab﹣2b2﹣(4a2﹣4ab+b2)=2a2﹣3ab﹣2b2﹣4a2+4ab﹣b2=﹣2a2+ab﹣3b2.【点评】本题考查完全平方公式、多项式乘多项式法则,本题属于基础题型.10.(2022秋•黄浦区期中)计算:(a﹣b+2c)2=.【分析】原式利用完全平方公式展开即可得到结果.【解答】解:原式=(a﹣b)2+4c(a﹣b)+4c2=a2﹣2ab+b2+4ac﹣4bc+4c2.故答案为:a2﹣2ab+b2+4ac﹣4bc+4c2.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.11.(2022秋•嘉定区校级期中)计算:(2x﹣5)2﹣(2x+3)(3x﹣2).【分析】利用完全平方公式以及多项式乘多项式运算法则计算得出答案.【解答】解:(2x﹣5)2﹣(2x+3)(3x﹣2)=4x2﹣20x+25﹣(6x2﹣4x+9x﹣6)=4x2﹣20x+25﹣6x2﹣5x+6=﹣2x2﹣25x+31.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则和公式是解题的关键.12.(2022秋•浦东新区期中)今年各地疫情时有出现,为了不影响学习,学校组织同学们进行网上学习,课堂上老师布置了四个运算题目,小刚给出了四个题的答案,小刚做对的题数是()A.0个B.1个C.2个D.3个【分析】根据积的乘方的运算法则、同底数幂的乘法法则、完全平方公式、合并同类项法则分别判断得出答案.【解答】解:①(﹣3a2)3=﹣27a6,原计算错误;②(﹣a2)⋅a3=﹣a5,原计算错误;③(2x﹣y)2=4x2﹣4xy+y2,原计算错误;④a2+4a2=5a2,原计算错误.所以小刚做对的题数是0个,故选:A.【点评】此题主要考查了积的乘方、同底数幂的乘法、完全平方公式、合并同类项,正确掌握积的乘方的运算法则、同底数幂的乘法法则、完全平方公式、合并同类项法则是解题的关键.13.(2022秋•浦东新区期中)如果a﹣b=4,ab=1,则a2+b2=.【分析】先根据完全平方公式进行变形,再代入求出即可.【解答】解:∵a﹣b=4,ab=1,∴a2+b2=(a﹣b)2+2ab=42+2×1=18,故答案为:18.【点评】本题考查了完全平方公式和立方差公式的应用,能灵活运用公式进行变形是解此题的关键.14.(2022秋•闵行区期中)已知x+y=6,xy=7,那么(3x+y)2+(x+3y)2的值为.【分析】先利用完全平方公式展开合并得到原式=10(x2+y2)+12xy,再进行配方得到原式=10(x+y)2﹣8xy,然后利用整体代入的方法计算即可.【解答】解:原式=9x2+6xy+y2+x2+6xy+9y2=10x2+12xy+10y2=10(x2+y2)+12xy=10(x+y)2﹣8xy,当x+y=6,xy=7,原式=10×62﹣8×7=304.故答案为:304.【点评】本题考查了完全平方公式.解题的关键是熟练掌握完全平方公式:(a±b)2=a2±2ab+b2.15.(2022秋•嘉定区校级期末)计算:(2x+y)2﹣y(y+4x)+(﹣2x)2.【分析】根据完全平方公式、单项式乘多项式的运算法则和积的乘方的运算法则进行计算即可.【解答】解:(2x+y)2﹣y(y+4x)+(﹣2x)2=4x2+4xy+y2﹣y2﹣4xy+4x2=8x2.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.16.(2022秋•嘉定区期中)已知(a+b)2=17,(a﹣b)2=13,求下列各式的值:(1)a2+b2;(2)ab.【分析】(1)先利用完全平方公式将等式(a+b)2=17,(a﹣b)2=13的左边展开,然后两式相加即可求得a2+b2的值;(2)先利用完全平方公式将等式(a+b)2=17,(a﹣b)2=13的左边展开,然后两式相减即可求得ab的值.【解答】解:(1)∵(a+b)2=a2+2ab+b2=17,(a﹣b)2=a2﹣2ab+b2=13,∴a2+b2=[(a+b)2+(a﹣b)2]÷2=(17+13)÷2=15;(2)∵(a+b)2=a2+2ab+b2=17,(a﹣b)2=a2﹣2ab+b2=13,∴ab=[(a+b)2﹣(a﹣b)2]÷4=(17﹣13)÷4=1.【点评】本题主要考查的是完全平方公式,能够运用完全平方公式对等式进行变形是解题的关键.17.(2022秋•闵行区期中)计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.【分析】先根据多项式乘多项式的运算法则和完全平方公式计算,再合并同类项即可求解.【解答】解:原式=6x²+4xy﹣9xy﹣6y²﹣(4x²﹣12xy+9y²)=6x²﹣5xy﹣6y²﹣4x²+12xy﹣9y²=2x²+7xy﹣15y².【点评】本题考查整式的运算,正确使用多项式乘多项式的运算法则和完全平方差公式是求解本题的关键.18.(2022秋•宝山区校级月考)解方程:2(x﹣3)2=(x+3)(2x﹣5).【分析】根据完全平方公式和多项式乘多项式的运算法则解答即可.【解答】解:2(x﹣3)2=(x+3)(2x﹣5),2(x2﹣6x+9)=2x2﹣5x+6x﹣15,2x2﹣12x+18=2x2+x﹣15,﹣13x=﹣33,∴x=.【点评】本题考查了完全平方公式和多项式乘多项式,解答本题的关键是熟练掌握完全平方公式和多项式乘多项式的运算法则.19.(2022秋•长宁区校级期中)已知x﹣=3,求x2+和x4+的值.【分析】把该式子两边平方后可以求得x2+的值,再次平方即可得到x4+的值.【解答】解:∵x﹣=3,(x﹣)2=x2+﹣2∴x2+=(x﹣)2+2=32+2=11.x4+=(x2+)2﹣2=112﹣2=119.【点评】本题考查了完全平方公式,利用x和互为倒数乘积是1与完全平方公式来进行解题.20.(2022秋•长宁区校级期中)已知x﹣y=2,xy=80,求x2+y2的值.【分析】利用完全平方公式得出x2+y2=(x﹣y)2+2xy,即可求出答案.【解答】解:∵(x﹣y)2=x2﹣2xy+y2,(2分)∴x2+y2=(x﹣y)2+2xy(2分),当x﹣y=2,xy=80时,x2+y2=22+2×80=164.(3分)若有其他方法,可参照答案,给分.【点评】此题主要考查了完全平方公式的应用,根据题意得出x2+y2=(x﹣y)2+2xy是解决问题的关键.21.(2022秋•静安区校级期中)阅读并思考:计算472时,山桂娜同学发现了一个简单的口算方法,具体步骤如下:第一步:47接近整十数50,50﹣47=3;第二步:取50的一半25,25﹣3=22;第三步:32=9第四步:把第二、三步综合起来,472=(25﹣3)×100+32=2209.(1)依此方法计算49:第一步:49接近整十数50,50﹣49=1;第二步:取50的一半25,25﹣1=24;第三步:12=1492=(﹣)×100+2=2401.(2)请你根据山桂娜同学的方法,填写出一个正确的计算公式.(50﹣n)2=(﹣)×100+2.(3)利用乘法运算说明第(2)小题中这个公式的正确性.(4)写出利用这个公式计算562=3136的过程.(5)计算63×67也有一个简单的口算方法,具体步骤如下:第一步:6×(6+1)=42;第二步:3×7=21第三步:前面两步的结果综合起来,63×67的结果是4221.写出上述过程所依据的计算公式.(6)利用乘法运算说明第(5)小题中这个公式的正确性.【分析】(1)根据材料中的方法计算即可;(2)同理可得结论;(3)根据乘法运算分别计算(2)中等式的左边和右边,从而得结论;(4)代入(2)中的公式可得结论;(5)根据材料中的具体步骤可得计算公式即可;(6)根据多项式乘以多项式法则计算即可.【解答】解:(1)依此方法计算49:第一步:49接近整十数50,50﹣49=1;第二步:取50的一半25,25﹣1=24;第三步:12=1;第四步:把第二、三步综合起来,492=(25﹣1)×100+12=2401.故答案为:25,1,1;(2)(50﹣n)2=(25﹣n)×100+n2.故答案为:25,n,n;(3)∵左边=2500﹣100n+n2,右边=n2﹣100n+2500,∴左边=右边,∴(50﹣n)2=(25﹣n)×100+n2;(4)562=(50+6)2=(25+6.(5)写出上述过程所依据的计算公式:(10a+b)[10a+(10﹣b)]=a(a+1)×100+b(10﹣b);故答案为:(10a+b)[10a+(10﹣b)]=a(a+1)×100+b(10﹣b);(6)∵左边=(10a+b)[10a+(10﹣b)]=(10a+b)(10a﹣b+10)=100a2﹣10ab+100a+10ab﹣b2+10b=100a2+100a+10b﹣b2,右边=a(a+1)×100+b(10﹣b)=100a(a+1)+b(10﹣b)=100a2+100a+10b﹣b2,∴(10a+b)[10a+(10﹣b)]=a(a+1)×100+b(10﹣b).【点评】本题考查了有理数的乘方和乘法的简便算法,理解材料中计算的方法和运用是解本题的关键.二.完全平方公式的几何背景(共5小题)22.(2022秋•嘉定区校级期末)一个正方形的边长为acm,若它的边长增加5cm,则新正方形面积增加了()cm2.A.25B.10a C.25+5a D.25+10a【分析】完全平方公式(a+b)=a2+2ab+b2的应用.【解答】解:原正方形的面积=a2(cm2)新正方形的面积=(a+5)2=(a2+10a+25)cm2所以增加的面积=(10a+25)cm2.故本题选D.【点评】本题主要是考查了完全平方公式的应用.23.(2022秋•宝山区校级期中)如图,将一张正方形纸片剪成四个面积相等的小正方形纸片,然后将其中一张小正方形纸片再剪成四个面积相等的小正方形纸片,如此剪下去,第n次剪好后,所得到的所有正方形纸片的个数是()A.4n B.3n C.3n+1D.2n+2【分析】通过观察已知图形可得:每剪一次都比上一次增加3个正方形纸片;所以可得规律为:第n次操作后共得到4+3(n﹣1).【解答】解:分析可得:每次都比上一次增加3个.∴第n次操作后共得到4+(n﹣1)×3=(3n+1)个.故选:C.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力.24.(2022秋•浦东新区期中)如果一个正方形的周长为(2a+b)(其中a>0,b>0),则该正方形的面积为()A.B.C.4a2+b2D.【分析】根据正方形的面积等于边长的平方求解.【解答】解:()2==++,故选:A.【点评】本题考查了完全平方公式,正方形的面积是解题的关键.25.(2022秋•静安区校级期中)如果一个正方形的周长为(8a+4b)(其中a>0,b>0),则该正方形的面积为.【分析】根据正方形的周长公式求出其边长,再根据面积公式进行计算即可.【解答】解:一个正方形的周长为(8a+4b),所以边长为(2a+b),所以面积为(2a+b)2=4a2+4ab+b2,故答案为:4a2+4ab+b2.【点评】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确解答的前提.26.(2022秋•嘉定区校级期中)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于b的等式.【分析】空白部分为一个正方形,找到边长,表示出面积;也可用大正方形的面积减去4个矩形的面积表示,然后让这两个面积相等即可.【解答】解:空白部分为正方形,边长为:(a﹣b),面积为:(a﹣b)2.空白部分也可以用大正方形的面积减去4个矩形的面积表示:(a+b)2﹣4ab.∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式中,能用完全平方公式计算的是( ) A .()()4774x y y x −−− B .()()4774x y x y −−+ C .()()4774x y y x −−+ D .()()4747x y x y −+【答案】C【分析】根据完全平方公式判断即可.【详解】A :()()4774(47)(47)x y y x x y x y −−−=−−+,不能用完全平方公式运算,不符合题意; B :()()()()47744774x y x y x y x y −−+=−++,不能用完全平方公式运算,不符合题意;C :()()()2477447x y y x x y −−+=−+,能用完全平方公式运算,符合题意;D :()()4747x y x y −+,不能用完全平方公式运算,不符合题意; 故选:C .【点睛】本题考查完全平方公式的应用,掌握完全平方公式的形式是解题的关键. 2.(2018秋·上海浦东新·七年级校联考期中)已知5x y +=−,3xy =,则22x y +=( )【答案】C【分析】根据完全平方公式,即可解答. 【详解】解:∵5x y +=−,3xy =, ∴()()2222252325619x y x y xy +=+−=−−⨯=−=,故选:C .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式. 3.(2023秋·上海青浦·七年级校考期末)下列计算中错误的有( )①()23320x x x −+⋅=;②222()2x y x xy y −−=−+;③248236x x x ⋅=;④22()()x y x y x y −−+=−A .1个B .2个C .3个D .4个【答案】D【分析】根据积的乘方、完全平方公式、单项式乘法的计算法则计算出结果即可判断.【详解】解:①()2523630x x x x x −++=⋅≠,原计算错误;②22222()22x y x xy y x xy y −−=++≠−+,原计算错误;③24682366x x x x ⋅=≠,原计算错误;④()22222(2)()x y x y y xy x y x x y =−−+=−+−≠−−−,原计算错误.综上,四个计算都是错误的, 故选:D .【点睛】本题考查了积的乘方、完全平方公式、单项式乘法,掌握运算法则是解题的关键.4.(2022秋·七年级单元测试)在数学活动课上,一位同学用四张完全一样的长方形纸片(长为a ,宽为b ,a b >)搭成如图一个大正方形,面积为132,中间空缺的小正方形的面积为28.下列结论中,正确的有( ).① ()228a b −=;② 26ab =;③ 2280a b +=;④ 2264a b −= A .①②③ B .①②④ C .①③④ D .②③④【答案】A【分析】根据拼图得出,(a+b )2=132,(a-b )2=28,ab=26,再根据公式变形逐项进行判断即可. 【详解】解:由拼图可知,大正方形的面积的边长为a+b ,中间的小正方形的边长为a-b ,∴(a+b )2=132,(a-b )2=28,ab=132284−=26,故①,②正确,∴a2+2ab+b2=132,∴a2+b2=132-2×26=80,故③正确, 由于(a+b )2=132,(a-b )2=28,而a >b ,∴,∴a2-b2=(a+b )(a-b )=④不正确, 故选:A .【点睛】本题考查平方差公式、完全平方公式的几何背景,掌握完全平方公式、平方差公式的结构特征是正确判断的前提.5.(2023秋·上海嘉定·七年级上海市育才中学校考期末)一个正方形的边长为cm a ,若它的边长增加5cm ,则新正方形面积增加了( )2cm .A .25B .10aC .255a +D .2510a +【答案】D【分析】根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:22(5)1025a a a +−=+,即新正方形的面积增加了()2510a +2cm ,故选:D .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.(2023·上海·七年级假期作业)已知:3a b c ++=,2223a b c ++=,则201120112011a b c ++的值是( ) A .0 B .3C .20052D .200532⋅【答案】B【分析】根据已知,得到()()222230a b c a b c ++−+++=,再利用完全平方公式,得出()()()2221110a b c −+−+−=,然后根据平方的非负性,求得1a b c ===,代入计算即可求出201120112011ab c ++的值.【详解】解:3a b c ++=,2223a b c ++=,()()2222332330a b c a b c ∴++−+++=−⨯+=,()()()2222121210a ab bc c ∴−++−++−+,()()()2221110a b c ∴−+−+−=,10a ∴−=,10b −=,10c −=, 1a b c ∴===,0201201120112111201120111111113a b c ∴++=+=++=+,故选B .【点睛】本题考查了完全平方公式的应用,平方的非负性,代数式求值,有理数的乘方,根据已知得出()()()2221110a b c −+−+−=是解题关键.二、填空题7.(2022秋·上海宝山·七年级校考期中)多项式291x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个答案即可)【答案】6x (答案不唯一)【分析】利用完全平方公式解答即可.【详解】解:()2296131x x x ++=+.故答案为:6x (答案不唯一)【点睛】本题考查完全平方公式,解题的关键是熟练掌握完全平方公式.8.(2022秋·上海·七年级校联考期末)若29x kx ++是完全平方式,则k 的值为__________. 【答案】6±【分析】这里首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3的积的2倍,故6k =±. 【详解】解:由题意可知,中间一项为加上或减去x 和3的积的2倍,6k ∴=±故答案为:6±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.(2021秋·上海嘉定·七年级统考期中)已知:二次三项式239x mx −+是一个完全平方式,则 m =__________. 【答案】2±【分析】由于m 的正负未知,根据完全平方公式可知()22239369x mx x x x −+=±=±+,从而得到2m =±.【详解】解:由完全平方公式可知()22239369x mx x x x −+=±=±+,36m ∴−=±,解得2m =±,故答案为:2±.【点睛】本题考查完全平方公式的运用,熟记并理解完全平方公式是解决问题的关键.10.(2022秋·上海·七年级校考阶段练习)已知3a b +=,2ab =,则代数式22a b +的值为_______. 【答案】5【分析】首先将22a b +变形为2()2a b ab +−,然后代入求解即可.【详解】∵3a b +=,2ab =,∴22a b +2()2a b ab =+−2322=−⨯5=.故答案为:5.【点睛】此题考查了代数式求值,完全平方公式,解题的关键是将22a b +变形为2()2a b ab +−.11.(2022秋·上海静安·七年级上海市市西中学校考期中)已知6a b +=,2220a b +=,则ab 的值为________. 【答案】8【分析】先把6a b +=两边进行平方,再根据2220a b +=,即可得到ab 的值.【详解】解:∵6a b +=,2220a b +=,∴222()236a b a b ab +=++=,即20236ab +=,∴8ab =, 故答案为:8.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形运用.【答案】2【分析】根据题意可知,12m m +=,将等式左右两边同时平方即可求出221m m +的值. 【详解】∵12m m +=, ∴21()4m m +=, ∴22124m m ++=, ∴2212m m +=【点睛】本题主要考查完全平方公式的变形,熟记完全平方公式的常见变形公式是解此类题的关键. 13.(2023·上海·七年级假期作业)已知3x y −=,2229x y +=,那么xy =________. 【答案】10【分析】根据完全平方公式变形即可求解.【详解】解:∵3x y −=,2229x y +=,∴()()222292920x y x y xy −−+=−=−=−∴10xy =, 故答案为:10.【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式是解题的关键.【答案】 14 194【分析】根据完全平方公式得出2221112x x x x x x ⎛⎫+=+−⋅⋅⎪⎝⎭,代入求出即可;根据完全平方公式得出2424211x x x x ⎛⎫+=+− ⎪⎝⎭ 2212x x ⋅⋅,代入求出即可.【详解】解: 14x x +=,∴2116x x ⎛⎫+= ⎪⎝⎭,∴221216x x ++=,∴22114x x +=∴2221196x x ⎛⎫+= ⎪⎝⎭∴4412196x x ++=∴441194x x +=.故答案为:14;194.【点睛】本题主要考查了完全平方公式的应用,能正确运用完全平方公式进行变形是解答此题的关键,注意:完全平方公式为()2222a b a ab b +=++和()2222a b a ab b −=−+.本题主要考查完全平方公式的变形转换的能力以及注意积累1x x +的变化方式.15.(2022秋·上海嘉定·七年级统考期中)若216x ax ++是一个完全平方式,则实数a 的值为___________ 【答案】8±/8−或8/8或8−【分析】根据完全平方式的一般形式222a ab b ±+求解即可.【详解】解:216x ax ++是一个完全平方式,248ax x x ∴=±⋅=±, 8a ∴=±,故答案为:8±.【点睛】本题考查完全平方式,熟记完全平方式的一般形式是解答的关键.【答案】7【分析】将方程两边同时除以字母x ,把整式方程化为分式方程,再结合完全平方公式及其变式即可求解. 【详解】解:将方程2310x x −+=两边同时除以字母x 得:130x x −+=,13x x ∴+=21()9x x ∴+=22129x x ∴++=2217x x ∴+=故答案为:7.【点睛】本题考查完全平方公式及其变式,掌握相关知识是解题关键.17.(2023·上海·七年级假期作业)如果25m m +=,那么代数式的()()222m m m −++值为___________. 【答案】14【分析】利用完全平方公式和单项式乘多项式的运算法则先计算乘方和乘法,然后合并同类项进行化简,最后利用整体思想代入求值. 【详解】解:()()222m m m −++22244m m m m =−+++ 2224m m =++∵25m m +=,∴原式()2=24=254=14m m ++⨯+.故答案为:14.【点睛】本题考查整式的混合运算,理解整体思想解题的应用,掌握完全平方公式()2222a b a ab b ±=±+是解题关键.18.(2023·上海·七年级假期作业)请同学运用计算()2222222a b c a b c ab ac bc ++=+++++,解决问题:已知x 、y 、z 满足2224y x z ++=,求()()()222x y y z z x −+−+−的最大值是______. 【答案】12【分析】根据已知条件化简()()()222x y y z z x −+−+−,根据完全平方公式的非负性求得原式的最大值,进而即可求解.【详解】∵2224y x z ++=, ∴()()()222x y y z z x −+−+−222222222x y y z z x xy yz xz =+++++−−−()2222x y z xy yz xz =++−−−()82xy yz zx =−++;∵()2222222x y z x y z xy xz yz++=+++++,∴()()2222222xy xz yz x y z x y z ++=+++−+∴原式=()22228x y z x y z +++−++()212x y z =−++, ()2x y z ++≥,∴原式12≤.故原式的最大值是12; 故答案为:12.【点睛】本题考查运用已知公式,及平方的非负性,掌握灵活运用题中给的公式是解题的关键.三、解答题【答案】222x y +,42【分析】根据完全平方公式展开,单项式乘以多项式把括号去掉,合并同类项,代入求值即可.【详解】解:22()[2()]x y x x x y −−−+22222(22)x xy y x x xy =−+−−− 2222222x xy y x x xy =−+−++222x y =+,把12x =,=2y −代入得,原式222211122(2)244242x y ⎛⎫=+=⨯+−=⨯+= ⎪⎝⎭. 【点睛】本题主要考查完全平方公式,整式的混合运算,掌握整式的混合运算法则是解题的关键. 20.(2022秋·上海·七年级校考期末)计算:()()()224321x x x +−−−. 【答案】97x −【分析】先根据多项式乘以多项式,完全平方公式计算,再合并同类项,即可求解.【详解】解:()()()224321x x x +−−224386441x x x x x =−+−−+−97x =−.【点睛】本题主要考查了整式的混合运算,熟练掌握多项式乘以多项式法则,完全平方公式是解题的关键. 21.(2023秋·上海浦东新·七年级校考期中)利用完全平方公式计算:230.2. 【答案】912.04【分析】根据完全平方公式计算即可. 【详解】解:230.2()2300.2=+22302300.20.2=+⨯⨯+900120.04=++912.04=【点睛】本题考查了完全平方公式,掌握2222a b a ab b ±=±+()是解题的关键. 22.(2022秋·上海·七年级上海市西延安中学校考期中)解方程:22(12)(1)3(1)(1)x x x x −−−=−+. 【答案】32x =【分析】利用完全平方公式及平方差公式去括号,再根据解方程的步骤求解即可.【详解】解:22(12)(1)3(1)(1)x x x x −−−=−+,2221441233x x x x x +−−−+=−,14123x x −−+=−, 23x −=−,解得:32x =.【点睛】此题考查了平方差公式,熟记平方差公式、完全平方公式及解一元一次方程的步骤是解题的关键.【答案】正方形ABGH 和ADEF 的面积之和为268cm .【分析】先根据题意列出长方形ABCD 关于周长和面积的代数式,再根据完全平方公式的变式应用即可求出答案.【详解】解:设长方形ABCD 的长为cm a ,则宽为cm b , ∵长方形ABCD 的周长为20cm ,面积为216cm , ∴1016a b ab +==,,正方形ABGH 和ADEF 的面积之和为22a b +,∵()()2222221021668cma b a b ab+=+−=−⨯=.∴正方形ABGH和ADEF的面积之和为268cm.【点睛】本题主要考查完全平方公式变式应用,根据题意列出等式是解决本题的关键.24.(2023·上海·七年级假期作业)一个正方形的边长增加3cm,它的面积增加了452cm.求这个正方形原来的边长.若边长减少3cm,它的面积减少了452cm,这时原来边长是多少呢?【答案】6cm;9cm【分析】设原来正方形的边长为x cm,根据:一个正方形的边长增加3cm,它的面积增加了452cm,列出方程即可求解;同样的方法即可解答边长减少问题.【详解】设原来正方形的边长为x cm.则()22345x x+=+,解得:6x=.∴正方形原来的边长为6cm.设原来正方形的边长为y cm,则()22345y y−=−,解得:9y=.∴正方形原来的边长为9cm.【点睛】本题主要考查完全平方公式在实际问题中的运用,正确理解题意、得出方程是解题的关键.【答案】(1)12(2)①6;②17 (3)92【分析】(1)利用完全平方公式即可求解;(2)注意整体法的运用,将(4-x )、(5-x )看成一个整体去求解;(3)表示两个正方形的面积1S 、2S ,得到2218AC BC +=,结合22()6AC BC +=,推出9AC BC =,再去计算阴影部分面积.(1)∵8x y +=,∴22()8x y +=,22264x xy y ++=, 又∵2240x y +=, ∴22264()xy x y =−+=64-40=24,∴12xy =;(2)①222(4)(4)2(4)x x x x x x −+=−+−−=16-10=6;②222(4)(5)[(4)(5)]2(4)(5)x x x x x x −+−=−−−+−−=2(1)28−+⨯=17;(3)∵AB =6,∴22()6AC BC +=,∴22236AC AC BC BC ++=,又∵1218S S +=,∴2218AC BC +=,∴9AC BC =,∵BC =CF , ∴1922ACF S AC CF ∆==.【点睛】本题考查了完全平方公式的灵活运用,其中既要注意整体法的运用,又要注意数形结合思维的培养.26.(2022秋·七年级单元测试)若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17请仿照上面的方法求解下面问题:(1)若x满足(5﹣x)(x﹣2)=2,求(5﹣x)2+(x﹣2)2的值(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF作正方形,求阴影部分的面积.【答案】(1)5;(2)28.【分析】(1)设(5﹣x)=a,(x﹣2)=b,根据已知等式确定出所求即可;(2)设正方形ABCD边长为x,进而表示出MF与DF,求出阴影部分面积即可.【详解】解:(1)设(5﹣x)=a,(x﹣2)=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,∴(5﹣x)2+(x﹣2)2=(a+b)2﹣2ab=32﹣2×2=5;(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x﹣1,DF=x﹣3,∴(x﹣1)·(x﹣3)=48,∴(x﹣1)﹣(x﹣3)=2,∴阴影部分的面积=FM2﹣DF2=(x﹣1)2﹣(x﹣3)2.设(x﹣1)=a,(x﹣3)=b,则(x﹣1)(x﹣3)=ab=48,a﹣b=(x﹣1)﹣(x﹣3)=2,∴a=8,b=6,a+b=14,∴(x﹣1)2﹣(x﹣3)2=a2﹣b2=(a+b)(a﹣b)=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式的几何背景,应从整体和部分两方面来理解完全平方公式的几何意义,主要围绕图形面积展开分析.。
冀教版数学七年级下册《完全平方公式》说课稿
![冀教版数学七年级下册《完全平方公式》说课稿](https://img.taocdn.com/s3/m/9e3becadfbb069dc5022aaea998fcc22bcd143fd.png)
冀教版数学七年级下册《完全平方公式》说课稿一. 教材分析冀教版数学七年级下册《完全平方公式》是初中数学的重要内容之一。
本节课主要介绍了完全平方公式的概念、推导过程以及如何运用完全平方公式解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固完全平方公式的应用,提高解决数学问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、完全平方根的概念等基础知识。
但部分学生对完全平方公式的理解和运用仍存在困难,需要通过本节课的学习进一步巩固和提高。
此外,学生对于解决实际问题的能力也亟待提高。
三. 说教学目标1.知识与技能目标:学生能够理解完全平方公式的概念,掌握完全平方公式的推导过程,并能够运用完全平方公式解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流等方式,培养学生主动探究、合作学习的习惯,提高学生解决数学问题的能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.教学重点:完全平方公式的概念及其推导过程。
2.教学难点:如何运用完全平方公式解决实际问题,以及完全平方公式的灵活运用。
五. 说教学方法与手段1.采用情境教学法,通过引入生活中的实际问题,激发学生的学习兴趣,引导学生主动探究。
2.运用小组合作、讨论交流等教学手段,培养学生主动参与、合作学习的习惯。
3.利用多媒体课件辅助教学,直观展示完全平方公式的推导过程,提高学生的理解能力。
4.注重练习与反馈,及时发现学生学习中存在的问题,并进行针对性的指导。
1.导入:以生活中的实际问题为切入点,引导学生思考如何解决这个问题,从而引出完全平方公式的概念。
2.新课讲解:介绍完全平方公式的定义、推导过程以及如何运用完全平方公式解决实际问题。
3.例题讲解:分析并解答教材中的典型例题,引导学生掌握完全平方公式的运用方法。
4.小组合作:学生分组讨论,探究如何运用完全平方公式解决实际问题,并分享讨论成果。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!
![北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!](https://img.taocdn.com/s3/m/ee910aff3086bceb19e8b8f67c1cfad6195fe92f.png)
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
七年级数学8.3平方差公式与完全平方公式讲解与例题
![七年级数学8.3平方差公式与完全平方公式讲解与例题](https://img.taocdn.com/s3/m/0f06bc7e77232f60ddcca19b.png)
8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x+2y)2=x2+2·x·2y+(2y)2=x2+4xy+4y2;(2)(2a-5)2=(2a)2-2·2a·5+52=4a2-20a+25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,S Ⅰ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a -b )2=a 2-2ab +b 2几何意义的阐释.正方形Ⅰ的面积可以表示为(a -b )2,也可以表示为S Ⅰ=S 大-S Ⅱ-S Ⅳ+S Ⅲ,又S 大,S Ⅱ,S Ⅲ,S Ⅳ分别等于a 2,ab ,b 2,ab ,所以SⅠ=a 2-ab -ab +b 2=a 2-2ab +b 2.从而验证了完全平方公式(a -b )2=a 2-2ab +b 2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a +b )2-4ab ,空白正方形的面积也等于它的边长的平方,即(a-b )2,根据面积相等有(a +b )2-4ab =(a -b )2.答案:(a +b )2-4ab =(a -b )22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b 的正方形得到的,所以它的面积等于a 2-b 2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12(b+a )(a -b ),所以梯形的面积和是(a +b )(a -b ),根据阴影部分的面积不变,得(a +b )(a-b )=a 2-b 2.因此验证的一个乘法公式是(a +b )(a -b )=a 2-b 2.答案:(a +b )(a -b )=a 2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204. 4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15.解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65.5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b+a)(-b+a)=a2-b2.②符号变化:(-a+b)(-a-b)=(-a)2-b2=a2-b2.③系数变化:(0.5a+3b)(0.5a-3b)=(0.5a)2-(3b)2.④指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用 在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm ,它的面积就增加39 cm 2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm ,根据题意和正方形的面积公式可列出方程(x +3)2=x 2+39,求解即可.解:设原正方形的边长为x cm ,则(x +3)2=x 2+39,即x 2+6x +9=x 2+39,解得x =5(cm). 故这个正方形的边长是5 cm. 7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式: ①a 2+b 2=(a +b )2-2ab ; ②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +ba -b的值即可.答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a +b =2,所以(a +b )2=22,即a 2+2ab +b 2=4.把ab =1代入,得a 2+2×1+b 2=4,于是可得a 2+b 2=4-2=2.。
七年级数学下册 专题4 乘法公式一完全平方公式重点、考点知识总结及练习
![七年级数学下册 专题4 乘法公式一完全平方公式重点、考点知识总结及练习](https://img.taocdn.com/s3/m/a70f72b0964bcf84b9d57bee.png)
专题4 乘法公式一完全平方公式----⎧⎪⎪⎨⎪⎪⎩完全平方公式利用公式进行数的运算乘法公式完全平方公式利用公式进行整式的运算完全平方公式几何背景知识点1 完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+,即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】1.x 2﹣4x+m 2是一个完全平方式,则m 的值是( ) A. 2 B . ﹣2 C. 2和﹣2 D. 4【答案】C.【解析】解:∵x 2﹣4x+m 2=x 2﹣2×2×x +m 2, ∴m 2=22,解得m=2或﹣2. 故选:C【方法总结】满足222a ab b ++的式子是完全平方式,这个三项式中,有两个是数(或式子)的平方,另外一个是这两个数(或式子)的2倍(或2倍的相反数).【随堂练习】1.(2018春•灌云县期末)已知(a+b )2=17,(a ﹣b )2=13,求a 2+b 2与ab 的值. 【解答】解:由(a+b )2=17可得:a 2+2ab+b 2=17①, 由(a ﹣b )2=13可得:a 2﹣2ab+b 2=13②, ①+②得:a 2+b 2=15,①﹣②得:ab=1.2.(2018春•高新区校级期中)已知a+b=5,ab=﹣14,求:①(a﹣b)2②a2+b2;【解答】解:①∵a+b=5,ab=﹣14,∴(a﹣b)2=(a+b)2﹣4ab=52﹣4×(﹣14)=25+56=81;②∵a+b=5,ab=﹣14,∴a2+b2=(a+b)2﹣2ab=52﹣2×(﹣14)=25+28=53.知识点2 利用完全平方公式进行数的运算利用完全平方公式进行数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b-=-+的掌握情况.()2()2a b a ab b+=++;222【典例】1.利用完全平方公式计算1012+992得()A. 2002B. 2×1002C. 2×1002十1D. 2×1002+2【答案】D.【解析】解:1012+992=(100+1)2+(100﹣1)2=1002+200+1+1002﹣200+1=2×1002+2.故选:D【方法总结】此题主要考察完全平方公式的实际应用.222a b a ab b()2-=-+,()2+=++;222a b a ab b即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.本题主要是利用完全平方公式进行一些复杂数的运算,它需要把复杂的数变成整百(或整十)和某个数(尽可能小一些)的和或差的形式,再利用公式进行运算.备注:变形的目的是使计算量尽可能小,基本在口算范畴内的才算基本符合.【随堂练习】1.(2017•福州模拟)已知(x﹣2015)2+(x﹣2017)2=100,则(x﹣2016)2= _____.【解答】解:设x﹣2016=a,则(a+1)2+(a﹣1)2=100,则2a2+2=100,解得:a2=49,故(x﹣2016)2=49.故答案为:49.2.(2017春•宝丰县月考)利用乘法公式计算:1012+992=_____.【解答】解:原式=(101+99)2﹣2×101×99=2002﹣2×(100+1)×(100﹣1)=40000﹣2×9999=40000﹣19998=20002, 故答案为:200023.(2015秋•丛台区期末)计算:1022﹣2×102×104+1042的结果为____. 【解答】解:原式=(102﹣104)2=(﹣2)2=4, 故答案为:4知识点3 利用完全平方公式进行整式的运算利用完全平方公式进行整式的运算是完全平方公式的一种实际应用,主要考察对公式222()2a b a ab b +=++;222()2a b a ab b -=-+的掌握情况.【典例】1.已知a ﹣=2,则a 2+的值为( )A. 3B. 4C. 5D. 6【答案】D.【解析】解:把a ﹣=2,两边平方得:(a ﹣)2=a 2+﹣2=4,则a 2+=6.故选:D【方法总结】此题主要考察完全平方公式的运用. 当题干中出现“a+”(或者a -),问题中出现“a 2+”时,一般将a+完全平方,这样就可以得到(a ﹣)2= a 2+ - 2、(a+)2= a 2+ + 2,从而得到a 2+的值. 另外,如果题干中出现诸如“a2+a+1=0”的话,对式子“a2+a+1=0”左右两边同除a(由式子易得a≠0),可得到a+1+=0,即a+=-1,从而进行下面的计算.2.(3x+4y﹣6)2展开式的常数项是多少?【解析】解:题干是对一个三项式进行平方,可以先对3x+4y﹣6做一个简单的分组,分为3x+4y和-6,这样式子就变成(3x+4y﹣6)2=[(3x+4y)﹣6]2,然后再按照完全平方公式进行计算,计算如下:(3x+4y﹣6)2=[(3x+4y)﹣6]2=(3x+4y)2﹣2(3x+4y)×6+62=9x2+24xy+16y2﹣36x﹣48y+36,常数项为36.【方法总结】完全平方公式一般是对两个数(或式子)的和(或差)进行平方,但是有时也可以对三项式(或者多项式)进行平方运算,例如(a+b+c) 2,可以根据实际情况对a,b,c进行简单的分组,例如a和b一组,c一组,则式子可变形为[(a+b)+c] 2,然后再利用完全平方公式,可得[(a+b)+c] 2=(a+b)2+c2+2(a+b)c,最后根据具体题意进行其他的计算.【随堂练习】1.(2017秋•河口区期末)若4x2+kxy+9y2是一个完全平方式,则k的值为___.【解答】解:∵4x2+kxy+9y2是一个完全平方式,∴k=±12,故答案为:±122.(2018春•玄武区期末)如果4x2﹣mxy+9y2是一个完全平方式,则m=___.【解答】解:∵4x2﹣mxy+9y2是一个完全平方式,∴﹣mxy=±2×2x×3y,∴m=±12.3.(2018春•成都期中)若多项式a2+2ka+1是一个完全平方式,则k的值是___.【解答】解:∵a2+2ka+1是一个完全平方式,∴2ka=±2a•1,解得:k=±1,故答案是:±1.知识点4 完全平方公式的应用【典例】1.设一个正方形的边长为acm,若边长增加3cm,则新正方形的面积增加了()A. 9cm2B. 6acm2C. (6a+9)cm2D. 无法确定【答案】C.【解析】解:根据题意得:(a+3)2﹣a2=a2+32+6a﹣a2=6a+9,即新正方形的面积增加了(6a+9)cm2,故选:C【方法总结】此题主要考察完全平方公式的实际用,利用完全平方公式来解决一些实际问题.增加的面积就是用变化后的正方形面积减去变化前正方形的面积,变化后面积是(a+3)2,变化前的面积是a2,两者相减,利用完全平方公式即可计算出结果.对于面积类问题,我们首先得按照题意列出式子,然后再利用完全平方公式进行相应的计算即可.2.若2a2+4ab+2b2 =18,则(a+b)2﹣4的值为()A. 15B. 5C. 12D. 10【答案】B.【解析】解:∵2a2+4ab+2b2 =18∴a2+2ab+b2=9∵(a+b)2= a2+2ab+b2∴原式=a2+2ab+b2﹣4,=9﹣4,=5.故选:B【方法总结】问题当中出现了完全平方,可以先利用完全平方公式展开,然后再根据题干中的条件,进行相应的变形.3.如图的图形面积由以下哪个公式表示()A. a2﹣b2=a(a﹣b)+b(a﹣b)B. (a﹣b)2=a2﹣2ab+b2C. (a+b)2=a2+2ab+b2D. a2﹣b2=(a+b)(a﹣b)【答案】C.【解析】解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积等于4个小图形的面积和等于a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C【方法总结】这类题需要注意一点:不管用什么方法思路计算图形的面积,图形面积始终不变.2.如图①,把一个长为2m,宽为2n(m>n)的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图②那样拼成一个正方形,则中间空的部分的面积是()A. 2mB. (m+n)2C. (m﹣n)2D. m2﹣n2【答案】C.【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C【方法总结】此类题属于利用完全平方公式求图形的面积,这类题,先按照题意列出相应的关系式,然后再利用完全平方公式进行相应的计算即可.【随堂练习】1.(2018春•叶县期中)如图,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长为_____(2)请用两种不同的方法表示图(2)阴影部分的面积;方法一:____方法二:______(3)观察图(2),写出三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【解答】解:(1)图中阴影部分的面积为(m﹣n)2或(m+n)2﹣4mn,故答案为:(m﹣n)2或(m+n)2﹣4mn;(2)方法一:∵图2中阴影部分为正方形边长为:m﹣n∴图2中阴影部分的面积是:(m﹣n)2方法二:图2中阴影部分的面积=边长为(m+n)的正方形的面积﹣4个小长方形的面积和即:(m﹣n)2﹣4mn(3)关系为:(m﹣n)2=(m+n)2﹣4mn;(4)∵(m﹣n)2=(m+n)2﹣4mn;∴有(a﹣b)2=(a+b)2﹣4ab又∵a+b=7,ab=5∴(a﹣b)2=(a+b)2﹣4ab=72﹣4×5=49﹣20=29.2.(2017春•杭州期中)如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中间的小正方形(即阴影部分)面积可表示为_____.(2)观察图2,请你写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系式:________.(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y=_____.(4)有许多代数恒等式可以用图形的面积来表示.如图3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示为(m+n)(m+2n)=m2+3mn+2n2.【解答】解:(1)图②中阴影部分的边长都等于小长方形的长减去小长方形的宽,即m﹣n,由图可知,阴影部分的四个角都是直角,故阴影部分是正方形,其边长为m﹣n,则其面积为(m﹣n)2,故答案为:(m﹣n)2;(2)大正方形的面积边长的平方,即(m+n)2,或小正方形面积加4个小长方形的面积,即4mn+(m﹣n)2,故可得:(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)由(2)知(x﹣y)2=(x+y)2﹣4xy=36﹣4×2.75=25,∴x﹣y=±5,故答案为:±5;(4)如图所示:综合运用1.若x2+2(m﹣3)x+16是完全平方式,则m的值等于______【答案】7或﹣1【解析】解:∵x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±4,解得:m=7或﹣1,2.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.【答案】0【解析】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a﹣2007+a)2=(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.3.如图,边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是________【答案】2a+2【解析】解:依题意得剩余部分面积为:(a+2)2﹣a2=a2+4a+4﹣a2=4a+4,∵拼成的矩形一边长为2,∴另一边长是(4a+4)÷2=2a+2.4.利用完全平方公式计算:(1)982(2)10032.【解析】解:(1)982=(100﹣2)2,=10000﹣400+4,=9604;(2)10032=(1000+3)2,=1000000+6000+9,=1006009.5.运用完全平方公式计算(1)(a+b+c)2;(2)(a+2b﹣1)2;【解析】解:(1)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2;(2)(a+2b﹣1)2=(a+2b)2﹣2(a+2b)+1=a2+4ab+4b2﹣2a﹣4b+1;6.已知,,求x2+的值.【解析】解:将x+=9两边平方得:(x+)2=81,整理得:x2++2=81,则x2+=79.。
北师大版七年级数学下《完全平方公式》
![北师大版七年级数学下《完全平方公式》](https://img.taocdn.com/s3/m/06aadf1c0b1c59eef9c7b403.png)
例题讲解
⑵ (a+b+3)(a-b-3)
解:原式=[a+(b+3)][a-(b+3)] = a2-(b+3)2 =a2-(b2+6b+9) =a2-b2-6b-9
跟踪练习一
计算下列各题. ⑴ (x-2)(x+2) - (x+3)2
⑵ (a+b+3)(a+b-3)
例题讲解
例2、已知x2+mx+9是完全平方式,求m 的值.
1.6 完全平方公式(2)
复习回顾
1、完全平方公式是什么?
复习回顾
两数和的平方ห้องสมุดไป่ตู้
(a+b)2= a2 +2ab+b2
两数和的平方,等于这两数的平 方和,加上这两数积的2倍.
复习回顾
两数差的平方
(a - b)2= a2 - 2ab + b2
两数差的平方,等于这两数的平 方和,减去这两数积的2倍.
完全平方公式的数学表达式:
(a ± b)2= a2 ± 2ab + b2 口诀
首平方,尾平方,两倍乘积放中央,加减看前方 完全平方公式的文字叙述:
两个数的和(或差)的平方,等于它们 的平方和,加上(或减去)它们的积的2倍.
复习回顾
2.填空.
⑴( x + 3)2=( x)2+2·x·3+(3 )2 ⑵ (3x - 2y)2=(3x)2-2(3x)(2y)+(2y)2
2、已知 a ,求
a的2 值a12.
随堂测试
解答下列各题 (1)1022 ; (2) (x − 2y)2
(3) (2x+5y)2 ⑷ (n +1)2 − (n-2)2 ⑸已知x2+2kx+16是完全平方式,则k= .
完全平方公式讲解
![完全平方公式讲解](https://img.taocdn.com/s3/m/3c7fd9264b7302768e9951e79b89680203d86be2.png)
完全平方公式讲解完全平方公式是数学中重要的基本定理,它可以将复杂的高等数学问题简化成简单的形式。
它通过分解复数式,使得许多数学问题变得简单明了,也可以用于求解非线性方程,是一个必不可少的数学理论的重要组成部分。
完全平方公式的定义:如果a和b是整数,那么a的完全平方公式表示为:a2 + b2 = c2,其中c也是一个整数。
这里的a和b是两个不同的整数,而c是由a和b构成的两个不同数字的和。
完全平方公式的算法:1.于两个不同的整数a和b,将它们求和,即a+b,然后将该和平方,即(a+b)2。
2.该平方值减去a2和b2,求出它们的差值,即(a+b)2 - a2 - b2。
3.后,根据此差值,结合a和b的值,求出c的值,即a2 + b2 = c2,即 c =(a2 + b2)。
完全平方公式的应用:1.以用完全平方公式来求解非线性方程,即求解x2+2x+1=0,在这个例子中,它可以转化为x2+2x= -1,那么用到完全平方公式,即x2+2x+1=0可以求得x=-1±√2。
2.全平方公式还可以帮助我们解决类似于a2+b2+c2+d2的多项式的求根问题。
例如:a2+b2+c2+d2=3,那么用到完全平方公式,可以求得a2+b2=3-c2-d2,即a2+b2=1,这样就可以把这个问题转变成一个完全平方的求根问题。
3.全平方公式还可以用来解决类似于a2+2ab+b2=c2+2cd+d2的多项式方程。
例如,a2+2ab+b2=4,c2+2cd+d2=9,那么可以分别求出a2,b2和c2,d2,即a2=2,b2=2,c2=7,d2=7,从而求出a,b,c,d的值。
完全平方公式是数学中重要的基本定理,它可以将复杂的高等数学问题简化成简单的形式,给予解决数学问题带来极大的便利,是研究数学理论的最佳工具之一。
它的应用非常广泛,几乎可以用于各种数学问题的解决,也可以用来解决复杂的非线性方程,对于提高数学水平有重要的意义。
北师大版七年级数学下册《完全平方公式》教案及教学反思
![北师大版七年级数学下册《完全平方公式》教案及教学反思](https://img.taocdn.com/s3/m/6fc4435c571252d380eb6294dd88d0d233d43c35.png)
北师大版七年级数学下册《完全平方公式》教案及教学反思一、教学背景本节课是北师大版七年级数学下册的第九单元《平方根与完全平方公式》中的第三节课《完全平方公式》。
前置知识:1.完全平方公式的定义和公式形式。
2.知道什么是平方数和非平方数。
3.能用完全平方公式计算一些简单的算式,如(a+b)2,(a−b)2等。
二、教学目标通过本节课的学习,学生应该掌握以下几点:1.理解完全平方公式的概念和计算方法。
2.掌握如何应用完全平方公式计算带有一元二次项的二次式。
3.能够应用完全平方公式解决实际问题。
4.发展学生的逻辑思维和数学思维能力。
三、教学重难点1.掌握完全平方公式的定义和公式形式。
2.理解完全平方公式的应用范围和意义。
3.认识到带有一元二次项的二次式可以利用完全平方公式进行变形。
四、教学过程1.复习本单元前两节课讲解了数轴上的正反比例关系和平方根的概念,提醒学生平方根的求法和性质。
2.引入老师设计一个实例或故事引入,让学生逐步发掘证明完全平方公式实用的必要性,有一定引导性。
例如:小明家的院落的地面面积是4x2+4xl+1,现有一个长方形花坛,里面种了一颗圆形的树,这棵树占了花坛的$\\frac{1}{2}$的面积,如何计算出花坛四周的围栏长度呢?3.观察针对上面引入内容,让学生做一个简单的观察,让学生设计各自的研究方法和想法。
例如:如果把完全平方公式先代入式子中看看会怎么样呢?(2x+l)2=4x2+4xl+l2+(2xl)有什么发现?老师可以引导学生寻找规律,总结思想,梳理记忆。
4.练习针对上面发现的规律,老师可以在板书上举例子进行练习,让学生跟着做,多次重复一些幂的表格,知晓组合的方法。
例如:(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2此处可给出一些实例,以便学生在操作中理清完全平方公式及其应用方法。
5.拓展本节课主要谈完全平方公式的应用,那么除此之外,学生需要知道这些内容和这个公式有什么联系,建立一下联系。
洋葱数学初中完全平方公式
![洋葱数学初中完全平方公式](https://img.taocdn.com/s3/m/7bf6c57d2a160b4e767f5acfa1c7aa00b52a9d8b.png)
洋葱数学初中完全平方公式在初中数学中,完全平方公式是一个非常重要的知识点。
掌握完全平方公式可以帮助我们快速求解一些问题,提高解题的效率。
在洋葱数学中,我们将为大家介绍初中完全平方公式的相关知识。
1. 完全平方公式的定义完全平方公式是指一个二次多项式的平方可以被分解为两个一次多项式的平方之和的形式。
具体地说,对于一个二次多项式 ax^2 + bx + c,其完全平方公式可表示为:(ax + b/2)^2 - (b^2/4a) + c其中,a、b、c分别为二次多项式的系数。
2. 完全平方公式的应用完全平方公式的应用非常广泛,特别是在求解二次方程的根时,非常实用。
我们可以利用完全平方公式将一个二次多项式表示为一个平方项与一个常数项的和的形式,然后再利用求解一元二次方程的方法,求出该二次方程的根。
此外,完全平方公式还可以用于求解一些几何问题,如平面图形的面积、周长等。
3. 完全平方公式的例题例1:求解二次方程 2x^2 + 4x + 1 = 0 的根。
解:首先,我们可以将该二次方程表示为一个二次多项式的形式: 2x^2 + 4x + 1 = (x + 1)^2 - 1然后,我们再将其化简为完全平方公式的形式:2x^2 + 4x + 1 = (x + 1)^2 - 1/2由此可得,该二次方程的根为:x1 = (-4 + √6)/4,x2 = (-4 - √6)/4例2:一个正方形的对角线长为12cm,求该正方形的面积。
解:设该正方形的边长为x,则该正方形的对角线长为√2x。
由于√2x = 12,可得:x = 72/√2因此,该正方形的面积为:x^2 = (72/√2)^2 = 2592cm^2以上就是洋葱数学初中完全平方公式的相关知识点。
希望大家掌握完全平方公式的基本原理和应用方法,提高解题效率,取得更好的成绩。
七年级数学完全平方公式
![七年级数学完全平方公式](https://img.taocdn.com/s3/m/d84c207ba8956bec0975e3ea.png)
(2)
例3.计算: (1) (x+3)2-x2 (2) (a+b+3)(a+b-3) (3) (x+5)2-(x-2)(x-3)
解 : (1) (x+3)2-x2 =x2+6x+9-x2 =6x+9 (2) (a+b+3)(a+b-3) =[(a+b)+3][(a+b)-3] =(a+b)2-32 =a2+2ab+b2-9
计算:
1 2 ( x 2 y ) 1. 2
2.Biblioteka 1 2 ( 2 xy x ) 5
3.
(n 1) 2 n2
完全平方公式(2)
(2)
一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都 要拿出糖果招待他们,来一个孩子,老人就给这个孩子一块糖, 来两个孩子,老人就给每个孩子两块糖,…… (1) 第一天有a个男孩去了老人家,老人一共给了这些孩子多 少块糖? (2) 第二天有b个女孩去了老人家,老人一共给了这些孩子多 少块糖? (3) 第三天这(a+b)个孩子一起去看老人,老人一共给了这些 孩子多少块糖? (4) 这些孩子第三天得到的糖果数与前两天他们得到的糖果总 数哪个多?多多少?为什么?
计算:(-2x-3)2
(-2x-3)2 =[(-2x)+(-3)]2
(-2x-3)2 =[(-2x)-3)]2
(-2x-3)2 =[-(2x+3)]2= (2x+3)2
例2:利用完全平方公式计算: (1) 1022 (2) 1972 解 : (1) 1022=(100+2)2 =1002+2×100×2+22 =10000+400+4 =10404
初一人教版七年级下册数学完全平方公式
![初一人教版七年级下册数学完全平方公式](https://img.taocdn.com/s3/m/2fc28055640e52ea551810a6f524ccbff121ca9c.png)
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
初一数学完全平方公式(最全面的考点设计)
![初一数学完全平方公式(最全面的考点设计)](https://img.taocdn.com/s3/m/96971d2dfd4ffe4733687e21af45b307e971f97e.png)
初一数学完全平方公式(最全面的考点设计)全新题型归类总结圆学霸之梦第三讲:完全平方公式一、常用公式1、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
a+b)²=a²+b²+2aba-b)²=a²+b²-2abx±a)²=x²±2ax+a²注意:上述中的a,b不仅可以是单独的一个数或一个字母,也可以是多项式或分式。
2、变形公式1)a+b=(a+b)-2ab=(a-b)+2ab2)a²+b²=1/2[(a+b)²+(a-b)²]3)(a+b)²-(a-b)²=4ab4)a²+2ab+b²=(a+b)²5)a²+b²+c²±2ab±2bc±2ca=(a±b)²+(b±c)²+(c±a)²3、补充公式:1)立方和公式:a³+b³=(a+b)(a²-ab+b²)2)立方差公式:a³-b³=(a-b)(a²+ab+b²)3)和立方:(a+b)³=a³+3a²b+3ab²+b³4)差立方:(a-b)³=a³-3a²b+3ab²-b³5)三项的完全平方:(a+b+c)²=a²+b²+c²+2ab+2bc+2ac a-b-c)²=a²+b²+c²-2ab-2bc-2ac二、经典题型汇总题型一、完全平方公式的判断例1、下列哪个不是完全平方式?()A、2x²B、x²-6x+9C、25x²-10x+1D、x²+22x+121 练:1、下列哪个不是完全平方式?()A、x²+4B、x²+4x+4C、4x²+4x+1D、x²+x+2题型二、计算题专练例1、计算1)(-a-12)²(2)、(b+c)(-b-c) (3)(a+b-3)(a-b-3)4)(2m-3n)(2m+3n) (5)(x+5)-(x-2)(x-3) (6)(m+n-p)²练:剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
北师大版七年级下册数学完全平方公式
![北师大版七年级下册数学完全平方公式](https://img.taocdn.com/s3/m/f710483111661ed9ad51f01dc281e53a58025114.png)
完全平方公式知识点一:完全平方公式1.完全平方和公式:文字叙述为:两数的 等于这两个数的 加上这两个数2.完全平方差公式:文字叙述为:两数的 等于这两个数的 这两个数乘积的2倍 注意:①公式中的字母a b 可以表示具体的数,也可以表示 或 。
②可以用口诀来记忆:头平方、尾平方,头乘尾两倍在中央,中间符号照原样。
3. 公式的扩展: =++2)(c b a1、利用完全平方公式计算(1)2)32(-x (2)2)54(y x + (3)2)(a mn +- (4)2)2(n m --(5)2)5(-+y x (6)22)3(x x -+ (7)(a+b+3)(-a-b-3)2.计算(1)1022 (2) 1972 (3)9982提高练习完全平方式:1.若(x +m)2=x 2-8x +n ,则m= ,n=2.若x 2+10x +25=(x-m)2 则m=3.若x 2+kx +9是一个完全平方式,则k=4. 若x 2-kx +9是一个完全平方式,则k=5.若4x 2+kx +25是完全平方式,则k =6. 若x 2+10x +m 是一个完全平方式,则m=7. 若x 2+10x +m 2是一个完全平方式,则m=8. 若4x 2-12x +m 是一个完全平方式,则m=知二推二 知道 或 , 或 , , 中的任意两项都能推出其他两项1.(1)已知x +y =6,x -y =4,求xy 和x 2+y 2的值.(2)已知a-b=1,ab=2,求a+b 与a 2+b 2的值练习:已知(x +y )2=18,(x -y )2=6,求x 2+3xy +y 2的值.中间项为常数1.已知13a a +=,求221a a +和441a a +的值.练习1:已知12a a -=,求221a a +和441a a +的值.配方求最值1.已知a 2+b 2+2a-4b+5=0,求2a 2+4b-3的值2.已知x+y=1,求12x 2+xy +12y 2的值练习:1.已知a 2+b 2+6a-4b+13=0,求a b 的值2.已知x+y=2,求13x 2+23xy +13y 2的。