牛顿第二定律热点题型(3):弹簧绳子瞬间分析

合集下载

牛顿第二定律经典例题

牛顿第二定律经典例题

牛顿第二定律应用的问题1.力和运动的关系力是改变物体运动状态的原由,而不是保持运动的原由。

由知,加快度与力有直接关系,剖析清楚了力,就知道了加快度,而速度与力没有直接关系。

速度怎样变化需剖析加快度方向与速度方向之间的关系,加快度与速度同向时,速度增添;反之减小。

在加快度为零时,速度有极值。

例1. 如图1 所示,轻弹簧下端固定在水平面上。

一个小球从弹簧正上方某一高度处由静止开始自由着落,接触弹簧后把弹簧压缩到必定程度后停止着落。

在小球着落的这一全过程中,以下说法中正确的选项是()图 1A.小球刚接触弹簧瞬时速度最大B.从小球接触弹簧起加快度变成竖直向上C.从小球接触弹簧到抵达最低点,小球的速度先增大后减小D.从小球接触弹簧到抵达最低点,小球的加快度先减小后增大例 2.一航天探测器达成对月球的探测任务后,在走开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞翔,先加快运动,再匀速运动,探测器经过喷气而获取推进力,以下对于喷气方向的描绘中正确的选项是()A.探测器加快运动时,沿直线向后喷气B.探测器加快运动时,竖直向下喷气C.探测器匀速运动时,竖直向下喷气D.探测器匀速运动时,不需要喷气分析:小球的加快度大小决定于小球遇到的合外力。

从接触弹簧到抵达最低点,弹力从零开始渐渐增大,所以协力先减小后增大,所以加快度先减小后增大。

当协力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。

应选 CD。

分析:受力剖析如图 2 所示,探测器沿直线加快运动时,所受协力方向与运动方向同样,而重力方向竖直向下,由平行四边形定章知推力方向一定斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受协力为零,所以推力方向一定竖直向上,喷气方向竖直向下。

故正确答案选C。

图 22.力和加快度的刹时对应关系(1)物体运动的加快度 a 与其所受的合外力 F 有刹时对应关系。

每一刹时的加快度只取决于这一刹时的合外力,而与这一刹时之间或刹时以后的力没关。

牛顿第二定律的瞬时问题

牛顿第二定律的瞬时问题
1.轻绳:只能产生拉力,且方向一定沿着 绳子背离受力物体,不能承受压力。认为 绳子所受力多大,长度不变(只要不被拉 断);绳子的弹力可以发生突变——瞬时 产生,瞬时改变,瞬时消失。 2.轻杆:既能承受拉力,又可承受压力, 施力或受力方向不一定沿着杆的轴向;认 为杆既不可伸长,也不可缩短,杆的弹力 也可以发生突变。
例一:
(2010· 广东外国语学校模拟)在动摩擦因数μ=0.2的
水平面上有一个质量为m=1 kg的小球,小球与水平轻弹簧及 与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图3-
2-2所示.此时小球处于静止平衡状态,且水平面对小球的弹
力恰好为零,当剪断轻绳的瞬间,取g=10 m/s2.求: (1)此时轻弹簧的弹力大小; (2)小球的加速度大小和方向;
3、轻弹簧:既能承受拉力,又可承受压力,力 的方向沿弹簧的轴线;受力后发生较大形变,弹 簧的长度既可变长,又可变短,弹性限度内遵守 胡克定律;因形变较大ቤተ መጻሕፍቲ ባይዱ产生形变或使形变消失 都有一个过程,故弹簧的弹力不能发生突变,在 较短的时间内可认为弹力不变;当弹簧被剪断时, 弹力立即消失。
4、橡皮绳:只能承受拉力,不能承受压力,其 长度只能变长,不能变短,弹性限度内遵守胡克 定律;因形变较大,产生形变或使形变消失都有 一个过程,故橡皮条的弹力不能发生突变,在较 短的时间内可认为弹力不变;当橡皮条被剪断时, 弹力立即消失。
3.如图(1)所示,一质量为m的物体系于长度
分别为L1 、L2的两根细线上,L1的一端悬挂 在天花板上,与竖直方向夹角为θ ,L2水平 拉直,物体处于平衡状态。现将L2线剪断, 求剪断瞬时物体的加速度。
例三:如图3-2-8所示是两根轻弹簧与两个质量都为m 的小球连接成的系统,上面一根弹簧的上端固定在 天花板上,两小球之间还连接了一根不可伸长的细 线.该系统静止,细线受到的拉力大小等于4mg.在 剪断了两球之间的细线的瞬间,球A的加速度aA和球 B的加速度aB分别是 ( ) A.2g,竖直向下;2g,竖直向下 B.4g,竖直向上;4g,竖直向下 C.2g,竖直向上;2g,竖直向下 D.2g,竖直向下;4g,竖直向下

专题3牛顿第二定律的应用——弹簧类问题

专题3牛顿第二定律的应用——弹簧类问题

专题3 牛顿第二定律的应用——弹簧类问题例1、物体都处于静止状态,判断下列弹簧处于什么状态压缩、原长)?例2、如右上图2所示,A 物体重2N ,B 物体重4N ,中间用弹簧连接,弹力大小为2N ,此时吊A 物体的绳的拉力为T ,B 对地的压力为F ,则T 、F 的数值可能是 【 】A .7N ,0B .4N ,2NC .1N ,6ND .0,6N平衡类弹簧问题小结:例3、如图3所示,质量相同的A 、B 两球用细线悬挂于天花板上且静止不动.两球间是一个轻质弹簧,如果突然剪断悬线,则在剪断悬线瞬间B 球加速度为__ __;A 球加速度为____ ____.例4、两个质量均为m 的物体A 、B 叠放在一个直立的轻弹簧上,弹簧的劲度系数为K 。

今用一个竖直向下的力压物块A ,使弹簧又缩短了△L (仍在弹性限度内),当突然撤去压力时,求A 对B 的压力是多大?非平衡类弹簧问题小结:图3 图4图2 甲课后巩固:1.如图所示,小球质量为m ,被3根质量不计的相同弹簧a 、b 、c 固定在O 点,c 竖直放置,a 、b 、c 之间的夹角均为1200.小球平衡时,弹簧a 、b 、c 的弹力大小之比为3:3:1.设重力加速度为g ,当单独剪断c 瞬间,小球的加速度大小及方向可能为 【 】A .g/2,竖直向下B .g/2,竖直向上C .g/4,竖直向下D .g/4,竖直向上2.如上图所示,物体A 、B 间用轻质弹簧相连,已知m A =2 m ,m B =m ,且物体与地面间的滑动摩擦力大小均为其重力的k 倍,在水平外力作用下,A 和B 一起沿水平面向右匀速运动。

当撤去外力的瞬间,物体A 、B 的加速度分别为a A = ,a B = 。

(以向右方向为正方向)3.如右图所示,一物块在光滑的水平面上受一恒力F 的作用而运动,其正前方固定一个足够长的轻质弹簧,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法中正确的是 【 】A .物块接触弹簧后即做减速运动B .物块接触弹簧后先加速后减速C .当弹簧处于最大压缩量时,物块的加速度不为零D .当弹簧的弹力等于恒力F 时,物块静止E .当物块的速度为零时,它受到的合力不为零4.如右图所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点,如果物体受到的摩擦力大小恒定,则 【 】A .物体从A 到O 先加速后减速B .物体从A 到O 加速,从O 到B 减速C .物体在A 、O 间某点时所受合力为零D .物体运动到O 点时所受合力为零5.如图所示,底板光滑的小车上用两个量程为20N ,完全相同的弹簧秤甲和乙系住一个质量为1kg 的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10N ,当小车做匀加速直线运动时,弹簧秤甲的示数变为8N 。

1牛顿第二定律瞬时性问题

1牛顿第二定律瞬时性问题

瞬时性问题【模型解析】(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是()A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】 (5.7.10.12为多选,其余为单选).1.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。

牛顿第二定律各种典型题型

牛顿第二定律各种典型题型

牛顿第二定律牛顿第二定律11.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。

2.表达式F=ma。

3.“五个”性质1.一般思路:分析物体该时的受力情况—由牛顿第二定律列方程一瞬时加速度2.两种模型(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。

(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。

[例](多选)(2014 •南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为B的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()A.两个小球的瞬时加速度均沿斜面向下,大小均为85吊eB.B球的受力情况未变,瞬时加速度为零C. A球的瞬时加速度沿斜面向下,大小为2gsin eD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零[例](2013吉林模拟)在动摩擦因数U =0.2的水平面上有一个质量为m=2 kg 的小球, 小球与水平轻弹簧及与竖直方向成0=45°角的不可伸长的轻绳一端相连,如图所示,此时 小球处于静止平衡状态,且水平面对小球的弹力恰好为零。

当剪断轻绳的瞬间,取g=10 m/s 2,以下说法正确的是()若剪断弹簧,则剪断的瞬间小球的加速度大小为10巾〃2,方向向右针对练习:(2014 •苏州第三中学质检)如图所示,质量分别为m 、2m 的小球A 、B,由 轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中 的拉力为F,此时突然剪断细线。

在线断的瞬间,弹簧的弹力的大小和小琳的加速度的大小分别为( 4. (2014•宁夏银川一中一模)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端解决两类动力学问题两个关键点 ⑴把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。

加速度由物体所受 决定,。

加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。

2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。

(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。

二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。

【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。

2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。

重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。

牛顿第二定律之 瞬时加速度专题(含答案解析)

牛顿第二定律之 瞬时加速度专题(含答案解析)

牛顿第二定律之 瞬时加速度专题 物体的加速度与合力存在瞬时对应关系,所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,解决此类问题时,要注意两类模型的特点:(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,恢复形变几乎不需要时间,故认为弹力立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,恢复形变需要较长时间,在瞬时问题中,其弹力往往可以看成是不变的.加速度和力具有瞬时对应关系,即同时产生、同时变化、同时消失,分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度. 分析瞬时变化问题的一般思路:(1)分析瞬时变化前物体的受力情况(主要是分析瞬时变化前物体受到弹簧(或橡皮绳)的弹力),求出每个力的大小.(2)分析瞬时变化后每个力的变化情况.(3)由每个力的变化确定变化后瞬间的合力,由牛顿第二定律求瞬时加速度.例1 如图所示,质量分别为m 和2m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬时加速度a A 、a B 的大小分别是( )A .a A =0,aB =0 B .a A =g ,a B =gC .a A =3g ,a B =gD .a A =3g ,a B =0(变式练习1).如图所示,质量相等的A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A.都等于2gB.0和2gC.g 和0D.0和g(变式练习2)(瞬时加速度问题)如图所示,a 、b 两小球悬挂在天花板上,两球用细线连接,上面是一轻质弹簧,a 、b 两球的质量分别为m 和2m ,在细线烧断瞬间,a 、b 两球的加速度为(取向下为正方向)( )A .0,gB .-g ,gC .-2g ,gD .2g,0例2 如图所示,质量为m 的小球被水平绳AO 和与竖直方向成θ角的轻弹簧系着处于静止状态,现将绳AO 烧断,在绳AO 烧断的瞬间,下列说法正确的是( )A .弹簧的拉力F =mg cos θB .弹簧的拉力F =mg sin θC .小球的加速度为零D .小球的加速度a =gtan θ(变式练习3)如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为(重力加速度为g )( )A .0B .233gC .gD .33g例3 如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a 1=0,a 2=gB.a 1=g ,a 2=gC.a 1=0,a 2=gD.a 1=g ,a 2=g(变式练习4)如图所示,A 、B 两木块间连一轻杆,A 、B 质量相等,一起静止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A 、B 两木块的加速度分别是( )A.a A =0,a B =2gB.a A =g ,a B =gC.a A =0,a B =0D.a A =g ,a B =2g例4(瞬时加速度问题)如图所示,在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动(取水平向右为正方向),某时刻突然撤去拉力F ,此瞬间A 和B 的加速度为a 1和a 2,则( )A .a 1=a 2=0B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=-m 1m 2a课堂作业1.在倾角为θ的光滑斜面上放一球,球被竖直板挡住,如图所示,在拿开挡板后,小球的加速度为( )A. g sin θ,沿斜面向下B.g cos θ,沿斜面向下B. C.g tan θ,水平向左 D.,水平向左 2.三个质量相同的物块A ,B ,C ,用两个轻弹簧和一根轻线相连,如图所示,挂在天花板上,处于静止状态,在将A,B间细线剪断的瞬间,A,B,C的加速度分别为多大?(取向下为正,重力加速度为g)3.(多选)质量均为m的A,B两球之间系着一个不计质量的轻弹簧并放在光滑水平台面上,A球紧靠墙壁,如图所示,今用水平力F推B球使其向左压弹簧,平衡后,突然将力F撤去的瞬间( BD )A.A的加速度大小为B.A的加速度大小为零C.B的加速度大小为D.B的加速度大小为4.(多选)如图所示,竖直放置在水平面上的轻弹簧上,放着质量为2 kg的物体A,处于静止状态.若将一个质量为3 kg的物体B轻放在A上,在轻放瞬间(g取10 m/s2)( CD )A.B的加速度为0B.B对A的压力大小为30 NC.B的加速度为6 m/s2D.B对A的压力大小为12 N5.如图所示,弹簧的一端固定在天花板上,另一端连一质量m=2 kg的秤盘,盘内放一个质量M=1 kg的物体,秤盘在竖直向下的拉力F作用下保持静止,F=30 N,在突然撤去外力F的瞬间,物体对秤盘的压力为(g=10 m/s2)( C )A.10 NB.15 NC.20 ND.40 N6.(多选)(难)如图所示,在动摩擦因数μ=0.2的水平面上,质量m=2 kg的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F作用下处于静止状态,此时水平面对物块的弹力恰好为零.g取10 m/s2,以下说法正确的是( AB )A.此时轻弹簧的弹力大小为20 NB.当撤去拉力F的瞬间,物块的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间物块的加速度为0【教学反思】例1 D解析 分析B 球原来受力如图甲所示,F ′=2mg剪断细线后弹簧形变不会瞬间改变,故B 球受力不变,a B =0.分析A 球原来受力如图乙所示,F T =F +mg ,F ′=F ,故F T =3mg .剪断细线,F T 变为0,F 大小不变,A 球受力如图丙所示由牛顿第二定律得:F +mg =ma A ,解得a A =3g .(变式练习1)D(变式练习2)C例2 AD(变式练习3)B例3 D(变式练习4)B 【解析】由题意知,当刚抽去木板时,A 、B 和杆将作为一个整体,只受重力,根据牛顿第二定律得a A =a B =g ,故选项B 正确.例4 D 解析 两木块在光滑的水平面上一起以加速度a 向右匀加速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ,对B :取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以D 正确【答案】D。

牛顿第二定律的瞬时性问题

牛顿第二定律的瞬时性问题

牛顿第二定律的瞬时性问题一、瞬时性问题的解题步骤二、两种模型三、典型例题解析例1、如图所示,细绳1 挂着匣子C, 匣内又用绳2挂着A球,在A的下方又用轻弹簧挂着B 球。

已知 A、B、C 三个物体的质量均为m ,原来都处于静止状态,重力加速度为g。

在细绳1被烧断后的瞬间,以下说法正确的是( )。

A.A、B、C的加速度都为gB.C的加速度为3gC.A的加速度为2gD.细绳2上张力大小为0.5mg【答案】D【解析】绳1被烧断后的瞬间,弹簧上弹力大小仍为mg,故此时B的加速度为0。

此时A、C 的加速度相同,即a A= a C,设此时绳2上张力大小为 F。

由牛顿第二定律,对A、C整体有3mg =2ma A,对C有 mg +F = ma C,解得a A = a C =1.5g,F = 0.5 mg,D项正确。

例2、(多选)光滑斜面上,当系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,A、B质量相等。

在突然撤去挡板的瞬间,下列说法正确的是( )A.两图中两球的加速度均为gsinθB.两图中A球的加速度均为零C.图1中B球的加速度为2gsinθD.图2中B球的加速度为gsinθ【答案】CD【解析】撤去挡板前,对整体分析,挡板对B球的弹力大小都为2mgsin θ。

因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间:图1中A球所受合力为零,加速度为零,B球所受合力为2mgsin θ,加速度为2gsin θ;图2中杆的弹力突变为零,A、B两球所受合力均为mgsin θ,加速度均为gsin θ,故C、D两项正确,A、B两项错误。

例3、(多选)在动摩擦因数μ=0.2的水平面上有一个质量m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零。

在剪断轻绳的瞬间,取g=10 m/s2,下列说法正确的是( )。

A.此时轻弹簧的弹力大小为20 NB.小球的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间小球的加速度为零【答案】ABD【解析】未剪断轻绳时,水平面对小球的弹力为零,小球受到重力mg、轻绳的拉力F T和弹簧的弹力F作用而处于平衡状态。

牛顿第二定律的应用复习讲义

牛顿第二定律的应用复习讲义

第2讲牛顿第二定律的基本应用一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是(重力加速度为g)()A.1.5g,1.5g,0 B.g,2g,0C.g,g,g D.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.判断正误(1)超重就是物体所受的重力增大了,失重就是物体所受的重力减小了.()(2)物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用.()(3)物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态.()三、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况(F合)F合=ma加速度a运动学公式运动情况(v、x、t)自测2(2019·山东菏泽市第一次模拟)一小物块从倾角为α=30°的足够长的斜面底端以初速度v0=10 m/s沿固定斜面向上运动(如图2所示),已知物块与斜面间的动摩擦因数μ=33,g取10 m/s2,则物块在运动时间t=1.5 s时离斜面底端的距离为()A.3.75 m B.5 m C.6.25 m D.15 m1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)图3甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则剪断绳子瞬间图甲中的轻质弹簧的弹力来不及变化;图乙中的下段绳子的拉力将变为0(2)由(1)的分析可以得出:绳的弹力可以突变而弹簧的弹力不能突变.例1(多选)(2019·广西桂林、梧州、贵港、玉林、崇左、北海市第一次联合调研)如图4所示,质量均为m 的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间()A.弹簧的形变量不改变B.弹簧的弹力大小为mgC.木块A的加速度大小为2g D.木块B对水平面的压力大小迅速变为2mg变式1如图5所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零.在剪断轻绳的瞬间(g取10 m/s2),最大静摩擦力等于滑动摩擦力,下列说法正确的是()A.小球受力个数不变B.水平面对小球的弹力仍然为零C.小球将向左运动,且a=8 m/s2D.小球将向左运动,且a=10 m/s2变式2如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,重力加速度为g,则在突然撤去挡板的瞬间有()A.图甲中A球的加速度大小为g sin θB.图甲中B球的加速度大小为2g sin θC.图乙中A、B两球的加速度大小均为g sin θD.图乙中轻杆的作用力一定不为零1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例2 (2020·湖南衡阳市第一次联考)压敏电阻的阻值随所受压力的增大而减小、某实验小组在升降机水平地面上利用压敏电阻设计了判断升降机运动状态的装置.其工作原理图如图7甲所示,将压敏电阻、定值电阻R 、电流显示器、电源连成电路、在压敏电阻上放置一个绝缘重物,0~t 1时间内升降机停在某一楼层处,t 1时刻升降机开始运动,从电流显示器中得到电路中电流i 随时间t 变化情况如图乙所示,则下列判断不正..确.的是( ) A .t 1~t 2时间内绝缘重物处于超重状态B .t 3~t 4时间内绝缘重物处于失重状态C .升降机开始时可能停在1楼,从t 1时刻开始,经向上加速、匀速、减速,最后停在高楼D .升降机开始时可能停在高楼,从t 1时刻开始,经向下加速、匀速、减速,最后停在1楼变式3 (2019·广东广州市4月综合测试)如图8,跳高运动员起跳后向上运动,越过横杆后开始向下运动,则运动员越过横杆前、后在空中所处的状态分别为( )A .失重、失重B .超重、超重C .失重、超重D .超重、失重变式4 某人在地面上最多可举起50 kg 的物体,若他在竖直向上运动的电梯中最多举起了60 kg 的物体,电梯加速度的大小和方向为(g =10 m/s 2)( )A .2 m/s 2 竖直向上 B.53 m/s 2 竖直向上 C .2 m/s 2 竖直向下 D.53m/s 2 竖直向下1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法在物体受力个数较少(2个或3个)时一般采用合成法.(2)正交分解法若物体的受力个数较多(3个或3个以上),则采用正交分解法.类型1 已知物体受力情况,分析物体运动情况例3 (2019·安徽宣城市期末调研测试)如图9,质量为m =1 kg 、大小不计的物块,在水平桌面上向右运动,经过O 点时速度大小为v =4 m/s ,对此物块施加大小为F =6 N 、方向向左的恒力,一段时间后撤去该力,物块刚好能回到O 点,已知物块与桌面间动摩擦因数为μ=0.2,重力加速度g =10 m/s 2,求:(1)此过程中物块到O 点的最远距离;(2)撤去F 时物块到O 点的距离.变式5(2020·山东等级考模拟卷·15)如图10甲所示,在高速公路的连续下坡路段通常会设置避险车道,供发生紧急情况的车辆避险使用,本题中避险车道是主车道旁的一段上坡路面.一辆货车在行驶过程中刹车失灵,以v0=90 km/h的速度驶入避险车道,如图乙所示.设货车进入避险车道后牵引力为零,货车与路面间的动摩擦因数μ=0.30,取重力加速度大小g=10 m/s2.(1)为了防止货车在避险车道上停下后发生溜滑现象,该避险车道上坡路面的倾角θ应该满足什么条件?设最大静摩擦力等于滑动摩擦力,结果用θ的正切值表示.(2)若避险车道路面倾角为15°,求货车在避险车道上行驶的最大距离.(已知sin 15°=0.26,cos 15°=0.97,结果保留两位有效数字.类型2已知物体运动情况,分析物体受力情况例4(2019·安徽安庆市第二次模拟)如图11甲所示,一足够长的粗糙斜面固定在水平地面上,斜面的倾角θ=37°,现有质量m=2.2 kg的物体在水平向左的外力F的作用下由静止开始沿斜面向下运动,经过2 s撤去外力F,物体在0~4 s内运动的速度与时间的关系图线如图乙所示.已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,求:(1)物体与斜面间的动摩擦因数和水平外力F的大小;(2)物体在0~4 s内的位移大小.变式6(2019·福建宁德市5月质检)某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53 s,最后再匀减速1 s恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1 m/s,高度为56 m.货物质量为2 kg,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10 m/s2.求:(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力大小.1.(2019·江西赣州市上学期期末)电梯顶上悬挂一根劲度系数是200 N /m 的弹簧,弹簧的原长为20 cm ,在弹簧下端挂一个质量为0.4 kg 的砝码.当电梯运动时,测出弹簧长度变为23 cm ,g 取10 m/s 2,则电梯的运动状态及加速度大小为( )A .匀加速上升,a =2.5 m/s 2B .匀减速上升,a =2.5 m/s 2C .匀加速上升,a =5 m/s 2D .匀减速上升,a =5 m/s 22.(多选)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图1所示,以竖直向上为a 的正方向,则人对地板的压力( )A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小3.(2020·广东东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图2所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·河北衡水中学第一次调研)如图3所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A 小球,同时水平细线一端连着A 球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A 、B 两小球分别连在另一根竖直弹簧两端.开始时A 、B 两球都静止不动,A 、B 两小球的质量相等,重力加速度为g ,若不计弹簧质量,在水平细线被剪断瞬间,A 、B 两球的加速度分别为( )A .a A =aB =gB .a A =2g ,a B =0C .a A =3g ,a B =0D .a A =23g ,a B =05.(2020·吉林“五地六校”合作体联考)如图4所示,质量分别为m 1、m 2的A 、B 两小球分别连在弹簧两端,B 小球用细绳固定在倾角为30°的光滑斜面上,若不计弹簧质量且细绳和弹簧与斜面平行,在细绳被剪断的瞬间,A 、B 两小球的加速度大小分别为( )A .都等于g 2B .0和(m 1+m 2)g 2m 2C.(m 1+m 2)g 2m 2和0 D .0和g 26.(2019·东北三省四市教研联合体模拟)如图5所示,物体A、B由跨过定滑轮且不可伸长的轻绳连接,由静止开始释放,在物体A加速下降的过程中,下列判断正确的是()A.物体A和物体B均处于超重状态B.物体A和物体B均处于失重状态C.物体A处于超重状态,物体B处于失重状态D.物体A处于失重状态,物体B处于超重状态7.(2019·安徽马鞍山市检测)两物块A、B并排放在水平地面上,且两物块接触面为竖直面,现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图6甲所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平面间的动摩擦因数为μ=0.3,B 与地面没有摩擦,物块B运动的v-t图象如图乙所示.g取10 m/s2,求:(1)推力F的大小;(2)物块A刚停止运动时,物块A、B之间的距离.8.(2019·河北承德市期末)如图7所示,有一质量为2 kg的物体放在长为1 m的固定斜面顶端,斜面倾角θ=37°,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)若由静止释放物体,1 s后物体到达斜面底端,则物体到达斜面底端时的速度大小为多少?(2)物体与斜面之间的动摩擦因数为多少?(3)若给物体施加一个竖直方向的恒力,使其由静止释放后沿斜面向下做加速度大小为1.5 m/s2的匀加速直线运动,则该恒力大小为多少?9.(2019·安徽黄山市一模检测)如图8所示,一质量为m的小物块,以v0=15 m/s的速度向右沿水平面运动12.5 m后,冲上倾斜角为37°的斜面,若小物块与水平面及斜面间的动摩擦因数均为0.5,斜面足够长,小物块经过水平面与斜面的连接处时无能量损失.求:(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)小物块在斜面上能达到的最大高度;(2)小物块在斜面上运动的时间.。

高中物理牛顿第二定律瞬时性问题

高中物理牛顿第二定律瞬时性问题

牛顿第二定律瞬时性问题一、牛顿第二定律瞬时性问题的两种模型二、分析瞬时问题的“两个关键”与“四个步骤”三、典型例题典例1、如图所示,物体A、B质量均为m,中间有一轻质弹簧相连,A用绳悬于O点,当突然剪断OA绳时,关于A物体的加速度,下列说法正确的是( )A.0B.gC.2gD.无法确定典例2、如图所示,一质量为m的小球处于平衡状态。

现将线L2剪断,则剪断L2的瞬间小球的加速度( )A.甲图小球加速度为a=gsin θ,垂直L1斜向下方B.乙图小球加速度为a=gsin θ,垂直L1斜向下方C.甲图小球加速度为a=gtan θ,水平向右D.乙图小球加速度为a=gtan θ,水平向左思考:如图所示,一个质量为m的小球通过水平弹簧和细线悬挂保持静止,弹簧的劲度系数为k,此时弹簧伸长了x,细线与竖直方向成θ角,当细线剪断瞬间,下列说法正确的是( ) A.小球的加速度大小为g,方向竖直向下B.小球的加速度大小为,方向水平向左C.小球的加速度大小为,方向沿原细线方向指向左下方D.不能确定小球的加速度典例3、如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。

现将木板沿水平方向突然抽出,设抽出后瞬间,木块1、2的加速度大小分别为a1、a2。

重力加速度大小为g。

则有: ( )A、 a1=g, a2=gB、 a1=0, a2=gC、 a1=0, a2=( m +M)g/ MD、a1=g, a2= ( m +M)g/ M典例4、如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F。

此时突然剪断细线,在线断的瞬间,弹簧弹力的大小和小球A加速度的大小分别为( )A.+gB.+gC.+gD.+g典例5、如图所示,A、B两小球分别连在轻绳两端,B球另一端用弹簧固定在倾角为30°的光滑斜面上。

牛顿第二定律题型归类

牛顿第二定律题型归类

牛顿定律类型题归类一、瞬时性问题1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。

例题分析:例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用 细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少? 例2.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于 地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅 速抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。

例3.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0B .大小为233g ,方向竖直向下C .大小为233g ,方向垂直于木板向下D .大小为33g ,方向水平向右 【练习】:1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【 】 A.g B.mmM - g C.0 D.mmM +g2.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为:【 】 A.都等于2g B. 2g和0 C.2g M M M B B A ⋅+和0 D.0和2g M M M B B A ⋅+图3 ABC图2-81题图 图2-92题图 图1B A3.一根轻弹簧上端固定同上端挂一质量为m o 的平盘,盘中有一质量为m 的物体(如图3-3-13)当盘静止时,弹簧的长度比其自然长度伸长为l ,今向下拉盘使弹簧再伸长∆l 后停止,然后松手放开,则刚松手时盘对物体的弹力等于(设弹簧处在弹性限度以内):【 】A .mg l l )1(Λ+B .g m m l l))(1(+∆+ C .mg l l ∆ D .g m m ll )(+∆4.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中 :【 】 A .A 、B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a BC .A 、B 加速度相同时,速度υA <υBD .A 、B 加速度相同时,速度υA >υB5.如图所示,小球质量为m,被三根质量不计的弹簧A 、B 、C 拉住,弹簧间的夹角均为1200,小球平衡时, A 、B 、C 的弹力大小之比为3:3:1,当剪断C 瞬间,小球的加速度大小及方向可能为:【 】A .g/2,竖直向下;B .g/2,竖直向上;C .g/4,竖直向下;D .g/4,竖直向上;6.如图4-20所示,A 、B 、C 、D 、E 、F 六个小球分别用弹簧、细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a 、b 、c 处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下列说法中正确的是( )A .所有小球都以g 的加速度下落B .A 球的加速度为2g ,B 球的加速度为gC . C 、D 、E 、F 球的加速度均为g D .E 球的加速度大于F 球的加速度7:如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态,现将l 2线剪断 (1)求剪断瞬时物体的加速度.(2)若将上图中的细线l 1改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,现将l 2剪断,求剪断瞬时物体的加速度.二、动态分析问题1、速度变化叛断:若速度与加速度方向相同则速度增大,反之减小。

牛顿第二定律弹簧瞬间极值问题超重失重

牛顿第二定律弹簧瞬间极值问题超重失重

什么是超重失重?
超重:视重大于重力
站在电梯里,感觉自己重了
情况:向上加速时、向下减速时
实质:具有向上的加速度
失重:视重小于重力
电梯里感觉自己轻飘飘的
如果是站 在体重秤 上,则 “视重” 的变化
情况:向上减速时、向下加速时
实质:具有向下的加速度
比重力大 比重力小
超重失重不是重力的变化
超重失重不是物体所受重力的变化, 而是物体在某个体系内具有向上或向 下的加速度导致“视重”的变化。
视重即物体对支持物的压力
“视重”的变化:比如人对底板的压 力增大或减小(就是感觉自己变重变 轻)、人感觉手里东西变重变轻等。
超重失重典型题
质量为m的物体在升降机中的台秤上, 视数为0.8mg,问升降机的运动状态?
某人在地面上最多举起60kg的重物,而 在一电梯内可举起80kg的重物,则电梯 加速度为____?若电梯以2.5m/s2加速上 升,则最多又能举起____kg的物体?
实质:竖直方向的合力与竖直方向的加速度相关联
最大静摩擦力有关的状态判断
如图10kg的物体A所受最大静摩擦力为4N, 静止时弹簧对其拉力为3N,
(1)车若以0.1m/s2向右加速,A受摩擦力? (2)若以0.6m/s2向右加速,A是否滑动? (3)加速度至少多大,才会滑动?
静摩擦力是会变向的, 达到fm才滑动
挂绳方向不变时力的变化
如图车厢内两绳挂一球,质量为m,因加速 度向左而使两绳拉直,绳最大承受2mg, AB=BC=L,AB⊥AC,问最大加速度?
牛顿第二定律的应用
弹簧瞬间与极值问题
弹簧瞬间——剪断绳/弹簧
如图所示,三个质量相同的物块悬挂 稳定后,突然剪断AB绳,各加速度多 大?若是剪断BC弹簧呢?

专题3.3 牛顿第二定律中的瞬时性问题(解析版)

专题3.3 牛顿第二定律中的瞬时性问题(解析版)

2.(2018 贵州联考)如图所示,质量分别为 MA 和 MB 的 A、B 两小球分别连在弹簧两端,B 端用细线固定在倾 角为 30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B 两球的加速度分别为( )
A.都等于
B. 和 0
C.
和0
D.0 和
【参考答案】D 【名师解析】在线被剪断前,A 处于平衡状态,弹簧的拉力等于 A 的重力沿斜面的分力,即 F=MAgsin30°。 在线被剪断瞬间,绳子拉力立即减为零,而弹簧的伸长量没有来得及变化,弹力不变,故 A 的加速度为零。 对 B,在沿斜面方向,B 受到沿斜面向下的弹力和重力沿斜面的分力,由 F+MBgsin30°=MBaB,解得:
专题 3.1 牛顿运动定律的瞬时性问题
【考纲解读与考频分析】 在牛顿运动定律应用中经常出现瞬时性问题,瞬时性问题成为高考命题热点。 【高频考点定位】: 瞬时性问题
考点一:瞬时性问题 【3 年真题链接】
1. (2019 年 4 月浙江选考)如图所示,A、B、C 为三个实心小球,A 为铁球,B、C 为木球。A、B 两球分别 连在两根弹簧上,C 球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂 的静止吊篮内。若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁)( )
平伸手掌托起物体,由静止开始向上运动,直至将物体抛出。对此现象分析正确的是( )
A.受托物体向上运动的过程中,物体始终处于超重状态;
B.受托物体向上运动的过程中,物体始终处于失重状态;
C.在物体离开手的瞬间,物体的加速度大于重力加速度;
D.在物体离开手的瞬间,手的加速度大于重力加速度;
【参考答案】D
A. A 球将向上运动,B、C 球将向下运动

牛顿第二定律应用——轻绳与弹簧受力特点模型例题

牛顿第二定律应用——轻绳与弹簧受力特点模型例题
力是非突变力。
A B 断前: A
T
F’
B
F
2mg
mg
F’
断后:
A
F
B
2mg
mg
例2. 质量均为m的A、B两球之间系着一根不计质量的轻弹簧, 放在光滑水平台面上,A求紧靠着墙壁,现用力F将B球向左推压 弹簧,平衡后,突然将力F撤去的瞬间,A、B球的加速度如何? 解:撤去F前, A、B球受力 分析如图所示.撤去F瞬间, F立即消失,而弹簧弹力不 kx 能突变.根据牛顿第二定律 有
A
A
B C
F+Mg M+m aB= = g. M M
【小结】
处理瞬时问题时要注意以下几点:
1、力和加速度的瞬时对应性是高考的重点。物体的受 力情况应符合物体的运动状态,当外界因素发生变化 ( 如撤力、变力、断绳等)时,需重新进行运动分析和受 力分析,切忌想当然。 2、细绳弹力可以发生突变而弹簧弹力不能发生突变, 将变化前后受力 进行对比,把握好两类弹力的变化 特点。
再 见!
A
A
B
N
F
kx kx
aA 0
F aB m
F
B B
分析问题在某一时刻的瞬时加速度,关键是分析瞬时前后的 受力情况及其变化.先看不变量,再看变化量;加速度与合 外力瞬时一一对应.
例3、如图所示,A、B球的质量相等,弹簧 的质量不计,倾角为θ的斜面光滑,系统静 止时,弹簧与细线均平行于斜面,在细线 被烧断的瞬间,A、B的加速度是多少.
牛顿运动定律的应用
----轻绳、轻弹簧的受力特点
轻绳、轻弹簧的受力特点
1、弹簧、橡皮绳:发生的是显著形变弹力--不能突变 形变大,恢复时间长,恢复时间不能忽略 2、轻绳:发生的是微小形变弹力----可以突变 形变小,恢复时间短,恢复时间可以忽略

牛顿第二定律瞬时性问题

牛顿第二定律瞬时性问题

a
1
A
2
B
• 变式3、质量为mA、mB的两物体在粗糙的水平面 上,在水平外力F的作用下匀速运动,求撤去外 力F时A、B两物体的加速度为多少?
B
A
F
变式4、光滑的水平面上有一小车,以向右 的加速度a匀加速运动,车内两物体A、B 质量均为m,A、B间弹簧相连,通过绳子 B与车相连,剪断绳子的瞬间,A、B的加 速度分别为多少?
a 乙=g a 乙=g
a 乙=0 a 乙=g
选B
轻弹簧上端与一质量为m的木块1相连,下端与 另一质量为M的木块2相连,整个系统置于水平 放置的光滑木板上,并处于静止状态.现将木 板沿水平方向突然抽出,设抽出后的瞬间,木 块1、2的加速度大小分别为a1、a2.重力加速度 大小为g.则有( )
A.a1=g,a2=g B.a1=0,a2=g C.a1=0,a2=m+Mg
牛顿第二定律的瞬时性问题
附 轻绳:绳的弹力可发生突变。当其他条件 : 发生变化的瞬间,绳的弹力可以瞬时产生、 瞬 瞬时改变或瞬时消失。(当绳被剪断时, 时 绳的弹力瞬间消失) 加


的ห้องสมุดไป่ตู้
分 析
轻弹簧:弹簧的弹力不能发生突变。当其 他条件发生变化的瞬间,可以认为弹簧的
弹力不变。(当弹簧被剪断时,弹簧的弹
M D.a1=g,a2=m+Mg
M
选C
如图所示,小球M处于静止状态,弹簧与竖直方向的夹 角为θ,烧断BO绳的瞬间,试求小球M的加速度的大小和方 向。
答案:gtanθ 方向水平向右
例 题 如图所示,天花板上用
3
细绳吊起两个用轻弹簧相连的质量相同
的小球。两小球均保持静止。当突然剪
断细绳时,上面的小球A与下面的小球B

牛顿第二定律专题(含经典例题)

牛顿第二定律专题(含经典例题)

牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。

高中物理专题牛顿第二定律的理解要点瞬时性

高中物理专题牛顿第二定律的理解要点瞬时性

例 2. 如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别 用销钉 M、N 固定于杆上,小球处于静止状态,设拔去销钉 M 瞬间,小球加速度的大小为 12m/s2。若 不拔去销钉 M 而拔去销钉 N 瞬间,小球的加速度可能是( )
A. 22m/s2,竖直向上
B. 22m/s2,竖直向下
牛顿第二定律的理解要点——瞬时性
考点分析
瞬时性:F=ma 是对运动过程中每一瞬间成立的,某一时刻的加速度的大小总跟那一时刻的合外力 大小成正比,即有力的作用就有加速度产生,外力停止作用,加速度随即消失,在恒定外力的作用 下物体具有恒定加速度。外力随着时间而改变,加速度也随着时间改变。
两个重要模型: 1.钢性绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹 力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此 模型处理。 2.弹簧(或橡皮绳):此种物体的特点是受拉力或压力要发生明显的形变,形变量大,形变恢复需要 较长时间,当弹簧两端均与物体相连时,因物体的位移不能发生突变,所以弹簧的形变不能发生突 变,即弹力不能发生突变;若弹簧某端与物体突然断开连接,则轻弹簧的弹力可以突变。

B.A 的加速度等于 g

C.B 的加速度为零
D.B 的加速度为 g
5:如图所示,两个质量分别为 m1=2 kg、m2=3 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接. 两个大小分别为 F1=30 N、F2=20 N 的水平拉力分别作用在 m1、m2 上,则( ) A.弹簧秤的示数是 10 N B.弹簧秤的示数是 26 N C.在突然撤去 F2 的瞬间,弹簧秤的示数不变 D.在突然撤去 F1 的瞬间,m1 的加速度不变

牛顿第二定律典型例题

牛顿第二定律典型例题

牛顿第二定律典型例题学习目标1.会用牛顿第二定律处理两类动力 2.知道牛顿第二定律表达式的确切含义 3.会用牛顿第二定律处理两类动力学问题重点:应用牛顿第二定律分析动力学两类基本问题的方法、难点:对牛顿第二定律的理解一、力的瞬时性1、无论绳所受拉力多大,绳子的长度可认为不变,由此特点可知,绳子中的张力可以突变.2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失.【例1】如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a ,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b ,则在撤去弹簧后的瞬间,小球加速度的大小可能为( )A .7.5米/秒2,方向竖直向下B .7.5米/秒2,方向竖直向上C .12.5米/秒2,方向竖直向下D .12.5米/秒2,方向竖直向上变式1、如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直线的夹角都是600,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度.变式2、在如图所示的装置中,小球m 用两根绳子拉着, 绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加 速度大小?方向如何?变式3、如图所示,物体甲、乙质量均为m ,弹簧和悬线的质量可以忽略不计. 当悬线被烧断的瞬间,甲、乙的加速度数值应是下列哪一种情况: A.甲是0,乙是g ; B.甲是g ,乙是g ; C.甲是0,乙是0; D.甲是g/2,乙是g .变式4、如图所示,自由下落的小球开始接触竖直放置的弹簧到弹簧被压缩到 最短的过程中,小球的速度和所受合力的变化情况是 A .合力变小,速度变小 B .合力变小,速度变大C .合力先变小后变大,速度先变大后变小D .合力先变小后变大,速度先变小后变大 二、临界问题的分析与计算(1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?【例2】如图,两个质量分别为M和m的小球,通过两条轻绳a、b相间连接,悬挂于天花板下,试分析两条绳子的张力大小;现用剪刀分别剪断a
断前后张力变化情况
断前后张力变化情况。

,弹簧质量不计,其劲度系数为k=800N/m,P施加一个竖直向上的
40使静止在撤去计算瞬间受支持力变化(
力F=40N,使P静止。

现在撤去F,计算一瞬间P受支持力变化。


g=10m/s2)
球的加速度
弹断瞬,Q
轻质弹簧托住⑴当悬绳被剪断的瞬间,P、的加速度大小分别是多
少?⑵从悬绳被剪断到弹簧恢复原长的过程中,P,Q的运动情况如

何?
.两物块所受摩擦力的大小总是相等
.两物块不可能同时相对绸带静止
两物块不可能同时相对绸带静止
【例7】如图,滑轮不计质量,不计摩擦,A,B绳子质量都为m
1)剪断A上部的绳子,则B加速度多大?
2)剪断A下部的绳子,则B加速度多大?。

相关文档
最新文档