第4节 求轨迹方程的专题训练
轨迹与轨迹方程的求法专项练习
【学习目标】1.了解方程的曲线与曲线的方程的对应关系.2.理解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能熟练地运用直接法、定义法、代数法、参数法等方法求曲线的轨迹方程.【高考模拟】一、单选题1.当点在圆上变动时,它与定点相连,线段的中点的轨迹方程是().A.B.C.D.【答案】C【解析】【分析】设的中点为的坐标为,设,,利用相关点法求解的轨迹方程.【详解】【点睛】本题考查点的轨迹的求法,注意相关点法的合理运用.2.设动点P到A(-5,0)的距离与它到B(5,0)的距离的差等于6,则P点的轨迹方程是()A.B.C.D.【答案】D【解析】【分析】根据课本中所给定义可得到轨迹是双曲线的一支,根据定义得到:c=5,a=3,∴b=4,进而得到方程. 【详解】【点睛】求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.3.在三棱锥中,,点为所在平面内的动点,若与所成角为定值,,则动点的轨迹是A.圆B.椭圆C.双曲线D.抛物线【答案】B【解析】【分析】建立空间直角坐标系,根据题意,求出轨迹方程,可得其轨迹.【详解】由题,三棱锥为正三棱锥,顶点在底面的射影是底面三角形的中心,则以为坐标原点,以为轴,以为轴,建立如图所示的空间直角坐标系,根据题意可得,设为平面内任一点,则,由题与所成角为定值,,则则,化简得,故动点的轨迹是椭圆.选B【点睛】本题考查利用空间向量研究两条直线所成的角,轨迹方程等,属中档题.4.动圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心的轨迹方程是().A.2x-y-1=0 B.2x-y-1=0(x≠1)C.x-2y-1=0(x≠1) D.x-2y-1=0【答案】C【解析】【分析】利用配方法得到圆心坐标,消去参数得到圆心的轨迹方程,关键注意自变量的取值范围要求。
高中解析几何求轨迹方程的常用方法(精华-例题和练习)
sin B sin A
5 sin C , 求点 C 的轨迹。 4
【变式】 :已知圆
的圆心为 M1,圆
的圆心为 M2,一动圆与
这两个圆外切,求动圆圆心 P 的轨迹方程。
二:用直译法求轨迹方程 此类问题重在寻找数量关系。 例 2: 一条线段两个端点 A 和 B 分别在 x 轴和 y 轴上滑动, 且 BM=a, AM=b, 求 AB 中点 M 的轨迹方程?
5 sin C , 求点 C 的轨迹。 4 5 5 【解析】由 sin B sin A sin C , 可知 b a c 10 ,即 | AC | | BC | 10 ,满足椭 4 4 sin B sin A
圆的定义。令椭圆方程为
x2 a
'2
y2 b
'2
1 ,则 a ' 5, c ' 4 b ' 3 ,则轨迹方程为
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
y
B
Q R A
o
P
x
五、用交轨法求轨迹方程 例 5.已知椭圆
x2 y 2 1(a>b>o)的两个顶点为 A1 ( a, 0) , A2 (a, 0) ,与 y 轴平行的直 a 2 b2
x 2 y 2 a, x 2 y 2 a 2
M 点的轨迹是以 O 为圆心,a 为半径的圆周. 【点评】此题中找到了 OM=
1 AB 这一等量关系是此题成功的关键所在。一般直译法有下 2
列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用 直接将数量关系代数化的方法求其轨迹。 2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设 条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应 的恒等变换即得其轨迹方程。 4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何 中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其 数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法. 【变式 2】 : 动点 P (x,y) 到两定点 A (-3, 0) 和B (3, 0) 的距离的比等于 2 (即 求动点 P 的轨迹方程? 【解答】∵|PA|= ( x 3) y , | PB |
求轨迹方程的常用方法及练习
求轨迹方程的常用方法及练习求轨迹方程的常用方法一、求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示)。
出现增解则要舍去,出现丢解,则需补充。
检验方法:研究运动中的特殊情形或极端情形。
一般画出所求轨迹,这样更易于检查是否有不合题意的部分或漏掉的部分。
二、常用方法及例题1.用定义法求曲线轨迹(也叫待定系数法)如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
(1)圆:到定点的距离等于定长(2)椭圆:到两定点的距离之和为常数(大于两定点的距离)(3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4)抛物线:到定点与定直线距离相等例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+b y a x ,则34,5'''=?==b c a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
【变式1】: 1:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
高二轨迹方程练习题
高二轨迹方程练习题首先,我们先回顾一下高中数学中的轨迹方程概念。
轨迹方程是一种用来描述运动物体路径的数学表达式。
在数学中,轨迹方程通常由一组函数或方程组成,用来表示物体在平面内的移动轨迹。
在高二数学中,我们经常遇到求解轨迹方程的问题。
下面就让我带你一起解析几道高二轨迹方程练习题。
题目一:求解抛物线的轨迹方程已知一个抛物线的焦点为F(2,0),并且经过点A(-2,3)。
求解这个抛物线的轨迹方程。
解析:首先,我们知道焦点为F(2,0),则抛物线的焦点坐标可以表示为(2a,0)。
然后,我们已知抛物线上的一点A(-2,3),将坐标带入抛物线的一般方程y=ax²+bx+c中可以得出方程为3=-a*2²-b*2+c。
由于焦点在抛物线的轴上,根据抛物线的性质,可得 a = 1/(4a)。
再通过解方程组,我们可以得到b = 0,c = 2a。
因此,抛物线的轨迹方程为 y = ax² + 2a。
题目二:求解椭圆的轨迹方程已知一个椭圆的焦点分别为F1(-2,0)和F2(2,0),离心率为3/4。
求解这个椭圆的轨迹方程。
解析:我们知道椭圆的离心率(e)定义为焦点到准线的距离与焦点到椭圆上一点的距离的比值。
根据已知条件,我们可以得到 e = 3/4。
在椭圆的轨迹方程中,准线与x轴平行且位于原点两侧。
由于焦点位于x轴上,可以得知椭圆式的一般方程为 x²/a² + y²/b² = 1。
由椭圆的离心率可以得到 a² = b² * (1 - e²)。
将已知条件代入方程,我们可以得到 a² = b² * (1 - (3/4)²)。
进一步化简得到 7a² = 16b²。
因此,椭圆的轨迹方程为 x²/(7a²) + y²/(16b²) = 1。
题目三:求解双曲线的轨迹方程已知一个双曲线的焦点分别为F1(-3,0)和F2(3,0),离心率为2。
高考动点轨迹方程的常用求法含练习题及答案
轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,那么有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 二、直接法:直接根据等量关系式建立方程.例1:点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,那么点P 的轨迹是〔 〕 A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---,,(3)PB x y =--,,由2PA PB x =·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.应选D .三、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题.例3:△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、待定系数法:当曲线的形状时,一般可用待定系数法解决.例5:A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.〔1〕求E 点轨迹方程;〔2〕过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:〔1〕设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,那么22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; 〔2〕设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量〔参数〕,把x ,y 联系起来 例4:线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OPOP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 那么由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.配套训练一、选择题1.椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,那么直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 二、填空题3.△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,那么动点A 的轨迹方程为_________.4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7.双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y 〕,A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y 〕,依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0〕(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),那么Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),那么A 1P 的方程为:y =)(11m x mx y ++① A 2Q 的方程为:y =-)(11m x mx y --② ①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0〕,Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,那么(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
轨迹方程的求法及典型例题含答案
轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。
第4节 求轨迹方程的专题训练
2 kt
t
(t为参数),直线l2的参数方程为
x y
2 m k
m
(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
写出C的普通方程.
【解析】 直线l1的普通方程为y k(x 2), 直线l2的普通方程为x 2 ky, 消去k得, x2 y2 4 即C的普通方程为x2 y2 4.
【例11】 (新课标卷)已知两点P(-2,2),Q(0,2)以及一条直线l:y=x, 设长为 2 的线段AB在直线l上移动,求直线PA和QB交点M的轨 迹方程.
【解析】 PA和QB的交点M (x, y)随A、B的移动而变化, 故可设A(t,t), B(t 1,t 1),则直线PA的方程 : y 2 t 2 (x 2)(t 2),
(4)多参问题中,根据方程的观点,引入n个参数,需建立n+1个 方程,才能消参(特殊情况下,能整体处理时,方程个数可减少).
【例9】 过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A 点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
【解析】设M (x, y),连接MP,则A(2x, 0), B(0, 2 y), l1 l2 ,△PAB为直角三角形.
(2)用参数法求解时,选用什么变量为参数,要看动点随什么量 的变化而变化,一般参数可选用具有某种物理或几何意义的量, 如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横、 纵坐标等.也可以没有具体的意义.常见的参数有:斜率、截距、 定比、角、点的坐标等.
(3)选定参变量还要特别注意它的取值范围对动点坐标取值 范围的影响,要特别注意消参前后保持范围的等价性.
高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~
专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。
高考专题训练专题复习——求轨迹方程 人教版
专题复习——求轨迹方程例1. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,,A by a x B )02(12222=+ 轨迹方程。
例2. 求椭圆的左顶离心率为轴为准线并且以动椭圆过定点,,y ,,M 21)21( 点A 的轨迹方程。
例3. 过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。
例4. 已知定点A (2,0),点Q 是圆x 2+y 2=1的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程。
例5. 如图,给出定点A (a ,0),(a>0)与定直线l :x =-1,点B 是l 上动点,∠BOA 的角平分线交AB 于点C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值关系。
【模拟试题】1. 长为3a (a>0)的线段AB 的两端点A 、B 分别在y 轴、x 轴上运动,P 点分线段AB 或正比2:1,求点P 的轨迹方程。
2. △ABC 的顶点B 、C 双曲线191622=-y x 的焦点,点C 在抛物线y =4x 2上运动,求△ABC 的重心G 的轨迹方程。
3. 自双曲线122=-y x 上的动点A 引直线x +y =2的垂线,垂足为B ,求线段AB 中点M 的轨迹方程。
4. 已知定点A (-1,0),B (2,0),P 为动点,且∠PBA =2∠PAB ,求动点P 的轨迹方程。
5. 以双曲线222=-y x 的右准线l 为左准线,以双曲线的右焦点F 为左焦点的椭圆C 的短轴顶点为B ,求BF 中点M 的轨迹方程。
答案:例一; 分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。
解:设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0)则由M 为线段AB 中点,可得 ⎩⎨⎧=-=⇒⎪⎪⎩⎪⎪⎨⎧=+=+y y a x x y y x a x 22220220000 即点B 坐标可表为(2x -2a ,2y ) 上在椭圆点又1)(222200=+by a x ,y x B ,by a a x b y a x 1)2()22(12222220220=+-=+∴从而有 14)(42222=+-by a a x M ,的轨迹方程为得动点整理 。
高三数学轨迹方程50题及答案
高(Gao)三数学轨迹方程50题及答案求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数(Shu)法、交轨法,待定(Ding)系数法。
(1)直(Zhi)接法(Fa)直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程.(6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=B 、x 2+y 2=C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41)11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A、(x-2)2+(y+4)2=16B、(x-2)2+4(y+2)2=16 (0)yC、(x-2)2-(y+4)2=16D、(x-2)2+4(y+4)2=1612、椭(Tuo)圆(Yuan)C与椭(Tuo)圆关于(Yu)直线x+y=0对(Dui)称,椭圆C的方程是()A、 B、C、 D、13、设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为 ( )A. B.C. D.14、中心在原点,焦点在坐标为(0,±5)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为,则椭圆方程为 ( )15、已知⊙O:x2+y2=a2, A(-a, 0), B(a, 0), P1, P2为⊙O上关于x轴对称的两点,则直线AP1与直线BP2的交点P的轨迹方程为()A、x2+y2=2a2B、x2+y2=4a2C、x2-y2=4a2D、x2-y2=a2二、填空题:16、动圆与x轴相切,且被直线y=x所截得的弦长为2,则动圆圆心的轨迹方程为。
轨迹方程综合练习题
轨迹方程综合练习题轨迹方程综合练习题在数学中,轨迹方程是描述一个物体运动轨迹的数学表达式。
它可以帮助我们理解和预测物体在空间中的运动规律。
本文将通过一些综合练习题来加深对轨迹方程的理解和应用。
练习题一:抛物线轨迹方程假设有一个抛物线轨迹,顶点坐标为(0,0),焦点坐标为(2,0)。
求该抛物线的轨迹方程。
解答:设抛物线的方程为y = ax^2 + bx + c,由于顶点坐标为(0,0),所以c = 0。
又因为焦点坐标为(2,0),根据抛物线的性质可知焦距等于顶点到直线的距离的两倍,即2a = 2。
解得a = 1。
所以,该抛物线的轨迹方程为y = x^2 + bx。
练习题二:椭圆轨迹方程现有一个椭圆轨迹,长轴长度为6,短轴长度为4。
求该椭圆的轨迹方程。
解答:设椭圆的方程为x^2/a^2 + y^2/b^2 = 1,其中a为长轴长度的一半,b为短轴长度的一半。
根据题意,a = 6/2 = 3,b = 4/2 = 2。
所以,该椭圆的轨迹方程为x^2/9 + y^2/4 = 1。
练习题三:双曲线轨迹方程给定一个双曲线轨迹,焦点坐标为(0,2),离心率为2。
求该双曲线的轨迹方程。
解答:设双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a为双曲线的焦点到中心的距离,b为离心率。
根据题意,a = 2/2 = 1,离心率为2。
所以,该双曲线的轨迹方程为x^2 - y^2/4 = 1。
练习题四:直线轨迹方程给定一个直线轨迹,过点(2,3),斜率为2。
求该直线的轨迹方程。
解答:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据题意,斜率k = 2,过点(2,3),代入方程可得3 = 2*2 + b,解得b = -1。
所以,该直线的轨迹方程为y = 2x - 1。
通过以上练习题,我们可以看到轨迹方程的应用广泛且多样化。
无论是抛物线、椭圆、双曲线还是直线,轨迹方程都可以帮助我们更好地理解和描述物体的运动规律。
轨迹方程的求法及典型例题含答案
轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
轨迹方程经典例题
轨迹方程经典例题一、轨迹为圆的例题:1、长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:2、已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程; 3、线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。
4、已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是() A.圆 B.椭圆C.双曲线的一支 D.抛物线5、高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 二、 椭圆类型:1、点M(x ,y )与定点F(2,0)的距离和它到定直线=x 离之比为21,求点M 的轨迹方程. 2、一个动圆与圆05622=+++x y x 外切,同时与圆091622=--+x y x 内切,求动圆的圆心轨迹方程。
3、点M(00,y x )圆1F 9)1(22=++y x 上的一个动点,点2F (1,0)为定点。
线段2MF 的垂直平分线与1MF 相点Q(x ,y ),求点Q 的轨迹方程;4、设点A,B 的坐标分别是(-5,0),(5,0),直线AM,BM于点M ,且他们的斜率的乘积为94-,求点M 的轨迹5、已知动点),(y x M 到直线4:=x l 的距离是它到点)0,1(N 的距离的2倍。
(1)求动点M 的轨迹C 的方程 三、双曲线类型:1、在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。
(1)求圆心的P 的轨迹方程;2、设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为()A.14922=+y xB.14922=+x y C.14922=-y xD.14922=-x y3、△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4、点M(x ,y )与定点F(5,0)的距离和它到定直线516=x 的距离之比为45,求点M 的轨迹方程四、抛物线类型1、已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.求动圆圆心的轨迹C 的方程; 一、 抛物线类型:1、点M(x ,y )与定点F(2,0)的距离和它到定直线2-=x 的距离相等,求点M 的轨迹方程。
轨迹方程的求法及典型例题(含答案)之欧阳文创编
轨迹方程的求法时间:2021.03.12 创作:欧阳文一、知识复习轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。
例2、如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=22-)4x+(y所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R 是PQ 的中点,所以x1=2,241+=+y y x , 代入方程x2+y2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x2+y2=56,这就是所求的轨迹方程. 例3、如图, 直线L1和L2相交于点M,L1L2, 点NL1. 以A, B 为端点的曲线段C 上的任一点到L2的距离与到点N 的距离相等. 若AMN 为锐角三角形, |AM|= 17 ,|AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。
依题意知:曲线段C 是以点N 为焦点,以l2为准线的抛物线的一段,其中A ,B 分别为C 的端点。
设曲线段C的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中xA,xB 分别为A ,B 的横坐标,P=|MN|。
求轨迹方程测试题wo
求轨迹方程测试题wo求曲线轨迹方程的方法有直接法、定义法、相关点法、参数法、交轨法和待定系数法。
直接法是将动点所满足的几何条件或等量关系,直接化为坐标形式,简化等式即可得到动点的轨迹方程。
定义法是当动点轨迹的条件符合某一基本轨迹的定义时(如椭圆、双曲线、抛物线、圆等),可以直接使用定义来求解。
相关点法是根据相关点所满足的方程,通过变换来求解动点的轨迹方程。
参数法是当动点的坐标(x,y)中的x和y分别随着另一个变量的变化而变化时,我们可以将这个变量作为参数,建立轨迹的参数方程。
交轨法是当动点是受某一参量影响的两个动曲线的交点时,我们可以通过消去这个参量来得到动点的轨迹方程。
待定系数法是通过设定轨迹方程的形式,然后通过代数运算来确定方程中的系数,从而得到动点的轨迹方程。
需要注意的是,在求解轨迹方程时,要注意轨迹的纯粹性和完备性,并且要区分“轨迹”和“轨迹方程”这两个不同的概念。
选择题:1.方程y=-x^2-2x+1表示的曲线是:D、抛物线。
2.方程[(x-1)^2+(y+2)^2](x^2-y^2)=0表示的图形是:B、两条直线与点(1,-2)。
3.动点p与定点A(-1,0)、B(1,0)的连线的斜率之积为-1,则p点的轨迹方程是:C、x^2+y^2=1(x≠1)。
4.一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是:B、x^2+y^2=2|x+y|。
5.动点P到直线x=1的距离与它到点A(4,0)的距离之比为2,则P点的轨迹是:B、中心在(5,0)的椭圆。
6.已知圆x^2+y^2=4,过A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程是:D、(x-1)^2+y^2=4(0≤x<1)。
二、填空题:16、动圆与x轴相切,且被直线y=x所截得的弦长为2,则动圆圆心的轨迹方程为 y=x+1.17、过原点的动椭圆的一个焦点为F(1,0),长轴长为4,则动椭圆中心的轨迹方程为 x^2/4+(y^2-1)/3=1.18、曲线x^2+4y^2=4关于点M(3,5)对称的曲线方程为 (x-3)^2/4+(y-5)^2=1.19、经过抛物线y^2=4x的焦点的弦中点轨迹方程是x^2+y^2=8x+4y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例3】 已知点F( ,0),直线l:x=- ,点B是l上的动点.若过B垂直于y轴的直线l与
线段BF的垂直平分线交于点M,则点M的轨迹是 ( )
A.双曲线
B.椭圆
C.圆
D.抛物线
【答案】 D 【解析】 由已知得,|MF|=|MB|.由抛物线定义知,点M的轨迹是以F为 焦点,l为准线的抛物线.
【例4】 (2016年全国Ⅰ高考,理20)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0) 且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
8.一动圆与圆O:x2+y2=1外切,而与圆C:x2+y2-6x+8=0内切,那么动圆的圆心M的轨迹是
()
A.抛物线
B.圆
C.椭圆
D.双曲线一支
【答案】 D 【解析】 令动圆半径为R,则有 曲线定义.故选D.
则|MO|-|MC|=2,满足双
9.已知圆的方程为(x-1)2+y2=1,过原点O作圆的弦OA,则弦的中点M的轨迹方程 是.
(1)求动点M的轨迹C的方程. 【变形】 当距离关系常数不是大于1,而是小于1,或等于1是的情形呢?(对应双曲线, 抛物线). (2)(略)
【解析】 (1)点M(x,y)到直线x=4的距离,是到点N(1,0)的距离的2倍,
则
两边平方可得(x-4)2=4[(x-1)2+y2],化简得3x2+4y2=12,所以,动点M
【解题规律】 求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从 而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.
【例7】 已知点A(-3,2)、B(1,-4),过A、B作两条互相垂直的直线l1和l2,求l1和l2的 交点M的轨迹方程.
【解析】 由平面几何知识可知,当△ABM为直角三角形时,点M的轨迹是以AB为直径的
【解析】 如图,以直线AB为x轴,线段AB的中点为原点建立直角坐标系. 由题意,a,c,b构成等差数列,∴2c=a+b,即|CA|+|CB|=2|AB|=4,又|CB|>|CA|,∴C的轨 迹为椭圆的左半部分.在此椭圆中,a'=2,c'=1,b'= ,故C的轨迹方程为
7.(2013高考全国新课标Ⅰ卷文理科)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与 圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(1)求M的轨迹方程; (2)(略).
5.参数法:求轨迹方程有时很难直接找到动点的x、y之间的关系,则可借助中间变量 (参数),使x、y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程这种 求轨迹方程的方法叫做参数法.
【解题规律】 (1)用参数法求轨迹是高考中常考的重要题型,由于选参灵活,技巧性强,也是学生较 难掌握的一类问题. (2)用参数法求解时,选用什么变量为参数,要看动点随什么量的变化而变化,一般参 数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线 的斜率,点的横、纵坐标等.也可以没有具体的意义.常见的参数有:斜率、截距、定比、 角、点的坐标等. (3)选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响,要特别注意 消参前后保持范围的等价性. (4)多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情 况下,能整体处理时,方程个数可减少).
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程; (2)(略).
【解析】 (1)证明:圆A的标准方程为(x+1)2+y2=16,从而A(-1,0),|AD|=4,如图, ∵BE∥AC,则∠C=∠EBD,由AC=AD=r,得∠D=∠C,∴∠D=∠EBD,则EB=ED,则 |EA|+|EB|=|EA|+|ED|=|AD|=4(定值). 由题设得A(-1,0),B(1,0),|AB|=2,|EA|+|EB|=4(定值). 由椭圆定义可得点E的轨迹是:以A、B为焦点的椭圆,且2a=4,2c=2,得a=2,c=1,所以点 E的轨迹方程为
4.已知动圆G经过点F(1,0)并且直线l:x=1相切,求动圆圆心G的轨迹方程.
【解析】 由抛物线的定义知动圆圆心G的轨迹为抛物线,F为焦点,直线l为准线, 且 =1得p=2,∴动圆圆心G的轨迹方程为y2=4x.
5.已知△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a,c,b依次构成等差数列,且 a>c>b,|AB|=2,求顶点C的轨迹方程.
第十一章 圆锥曲线
第4节 求轨迹方程的专题训练
1.轨迹:一个点在空间移动,它所通过的全部路径叫做这个点的轨迹. 即:符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集 合,叫做满足该条件的点的轨迹. 2.求轨迹方程的方法:(1)直接法;(2)定义法;(3)相关点法;(4)参数法和交轨法等. 3.求轨迹方程注意事项:求轨迹方程时,要注意曲线上的点与方程的解是一一对应关 系,正确进行化简与计算是必须具备的基本能力;求出轨迹方程后,容易忽略x的范围,导致 轨迹图形出错. 检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的 实际意义.
Байду номын сангаас
的轨迹方程为
2.定义法:如果能够确定动点的轨迹满足某种特殊曲线(如直线或圆锥曲线)的定义或 特征,则可根据定义先设方程,再求出该曲线的相关参量,从而得到动点的轨迹方程.
【解题规律】 熟悉一些常见的基本曲线的定义是用定义法求曲线方程的关键. (1)圆:在同一平面内,到定点的距离等于定长的点的集合. (2)椭圆:到两定点的距离之和为常数(大于两定点的距离)的点的轨迹. (3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)的点的轨迹. (4)抛物线:到定点与定直线距离相等的点的轨迹.
3.(《必修2》课本P124B组2)长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的 中点M的轨迹方程.
【解析】 解题思路:求轨迹方程要充分挖掘几何条件,此题中找到了OM= AB这一等 量关系是此题成功的关键所在.
设点M的坐标为(x,y)由平面几何的中线定理:在直角三角形AOB中,
∴M点的轨迹是以原点为圆心,以a为半径的圆,其轨迹方程是x2+y2=a2.
圆.
此圆的圆心即为AB的中点(-1,-1),半径
可得方程为
(x+1)2+(y+1)2=13.
故M的轨迹方程为(x+1)2+(y+1)2=13.
【例8】 (2014高考全国新课标Ⅰ卷文20)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动 直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
①式两边平方,得:(x-a)2+(y-b)2=r2,② 若点M(x,y)在圆上,由上述推理可知,点M的坐标适合方程②; 反之,点M(x,y)的坐标适合方程②,这就说明点M与圆心A的距离为r,即点M在圆心为A 的圆上.
【例2】 (2013高考陕西卷文20)已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0) 的距离的2倍.
【解析】 解题思路:如图,点A运动引起点M运动,而点A在已知圆上运动,点A的坐标满 足方程(x,y).建立点M与点A坐标之间的关系,就可以建立点M的坐标满足的条件,求出点M 的轨迹方程.
4.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点 满足的条件,然后得出动点的轨迹方程,这种求轨迹方程的方法叫做几何法.
10.点M 到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M 的轨迹方程是
.
【答案】 y2=16x 【解析】 解题思路:点M到点F(4,0)的距离比它到直线x+5=0的距 离小1,意味着点M到点F(4,0)的距离与它到直线x+4=0的距离相等.由抛物线标准方程可写 出点M的轨迹方程.
依题意,点M到点F(4,0)的距离与它到直线x=-4的距离相等.则点M的轨迹是以F(4,0) 为焦点、x=-4为准线的抛物线.故所求轨迹方程为y2=16x.
【例10】 在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满 足AO⊥BO(如图所示).求△AOB的重心G(即三角形三条中线的交点)的轨迹方程.
6.交轨法:求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这 些动曲线的联系,然后消去参数来得到轨迹方程,这种方法称之交轨法.
【解题规律】 “相关点法”的基本步骤: (1)设点:设所求的点(被动点)坐标为(x,y),相关点(主动点)坐标为(x0,y0). (2)求关系式:求出两个动点坐标之间的关系式 (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.
【例5】 (必修2课本P122例5)线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上 运动,求AB的中点M的轨迹.
13.已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|=4.动圆M与圆O1内切,又与 圆O2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.
【解题规律】 用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去 参数,得到交点的两个坐标间的关系即可.交轨法实际上是参数法中的一种特殊情况.
2.(2009新课标文)已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个 顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程; (2)若P为椭圆C的动点,M为过P且垂直于x轴的直线上的点, =e(e为椭圆C的离心率 ),求点M的轨迹方程,并说明轨迹是什么曲线.
(1)求C的方程; (2)(略).
【解析】 由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3. 设圆心P为(x,y),半径为R.