化工热力学(冯新 宣爱国)第四章 习题解答

合集下载

《化工热力学》详细课后习题标准答案(陈新志)

《化工热力学》详细课后习题标准答案(陈新志)

- 1 - / 1052习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

马沛生 主编 化工热力学 第四章习题解答

马沛生 主编 化工热力学 第四章习题解答

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则 i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs自由能的值不变。

解:否4-4 对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液。

解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9理想溶液中所有组分的活度系数为零。

解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。

解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统。

解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求 (1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5)1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。

山东理工大学化工热力学第4章 习题与解答

山东理工大学化工热力学第4章 习题与解答
1 * 1 1 1 2 * 2 2
17.对于二元混合体系,当在某浓度范围内组分2符合Henry规则, 则在相同浓度范围内组分1符合Lewis-Randall规则。
20.符合Lewis-Randall规则或Henry规则的溶液一定是理想溶液。 如非理想稀溶液。 21.等温、等压下的N元混合物的Gibbs-Duhem方程的形式之一是
T ( x1 1) H E dT P 常数 2 x1 1 1 T ( x1 0 ) RT ln dx1 P ( x 1) 1 2 VE x1 0 RT dP T 常数 P ( x1 0 )

25.下列方程式是成立的:
G1 G1 G1l G1l ˆ (a). ln f1 ln f1 ; (b). RT RT ˆ f 1 (d). f1 lim ; (e). H1, Solvent lim x1 1 x x1 0 1 G1l G1v ˆ l ln f ˆ v; ln x1 ln 1 ; (c). ln f 1 1 RT ˆ f 1 x1
3/ 2 2 Vt 1001 .3816.625nB 1.773nB 0.119nB (cm3 )
求nB=0.5 mol时,水和NaCl的偏摩尔体积 VA和VB 解:
Vt VB n B dVt 3 0.5 16 . 625 1 . 773 n B 0.119 2n B dn 2 B T , P, n A

12.因为GE (或活度系数)模型是温度和组成的函数,故理论上 理论上是T,P,组成的函数。只有对低压下的液体,才近似 为T和组成的函数
i 与压力无关。
13.在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混

《化工热力学》详细课后习题答案解析(陈新志)

《化工热力学》详细课后习题答案解析(陈新志)

2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

化工热力学答案冯新宣爱国课后总习题答案详解

化工热力学答案冯新宣爱国课后总习题答案详解
5.从成型工艺出发,欲获得理想的粘度,主要取决于对温度、剪切速率和压力这三个条件的合理选择和控制。
6.料流方向取决于料流进入型腔的位置,故在型腔一定时影响分子取向方向的因素是浇口位置。
7.牛顿型流体包括粘性流体、粘弹性流体和时间依赖性流体。
8.受温度的影响,低分子化合物存在三种物理状态:固态、液态、气态。
稳定剂:提高树脂在热、光和霉菌等外界因素作用时的稳定性。
润滑剂:改进高聚物的流动性、减少摩擦、降低界面粘附。
着色剂:使塑料制件具有各种颜色。
3.增塑剂的作用是什么?
答:在树脂中加入增塑剂后,加大了分子间的距离,削弱了大分子间的作用力。这样便使树脂分子容易滑移,从而使塑料能在较低温度下具有良好的可塑性和柔软性。增塑剂的加入虽然可以改善塑料的工艺性能和使用性能,但也使树脂的某些性能降低了,如硬度、抗拉强度等。
15.收缩率的影响因素有压力、温度和时间。
16.塑料在一定温度与压力下充满型腔的能力称为流动性。
17.根据塑料的特性和使用要求,塑件需进行后处理,常进行退火和调湿处理。
判断
1.根据塑料的成份不同可以分为简单组分和多组分塑料。单组分塑料基本上是树脂为主,加入少量填加剂而成。(√)
2.填充剂是塑料中必不可少的成分。(×)
(4)提高原材料的纯度
第 2 章
填空
1.塑料的主要成份有树脂、填充剂、增塑剂、着色剂、润滑剂、稳定剂。
2.根据塑料成型需要,工业上用成型的塑料有粉料、粒料、溶液和分散体等物料。
3.热固性塑料的工艺性能有:收缩性、流动性、压缩率、水分与挥化物含量、固化特性。
4.热塑性塑料的工艺性能有:收缩性、塑料状态与加工性、粘度性与流动性、吸水性、结晶性、热敏性、应力开裂、熔体破裂。

完整版化工热力学答案-冯新-宣爱国-课后总习题答案详解1

完整版化工热力学答案-冯新-宣爱国-课后总习题答案详解1
气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T关系往往采用专门计算液体体积的公式计算,如修正Rackett方程,它与立方型状态方程相比,既简单精度又高。
2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?
【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr,pr,ω,并将其代入纯物质的状态方程中,就可以计算混合物的性质了。而计算混合物虚拟特征参数的方法就是混合规则;它是计算混合物性质中最关键的一步。
2-12.维里方程可以表达成以下两种形式。
请证明:
2-13.某反应器容积为 ,内装有温度为 的乙醇 。现请你试用以下三种方法求取该反应器的压力,并与实验值( )比较误差。(1)用理想气体方程;;(2)用RK方程;(3)用普遍化状态方程。
解:(1)用理想气体方程
误差:
(2)用R-K方程
乙醇: ,
误差:
1)T=290K,P=2.48Mpa
∵Tr=T/Tc=0.95 Pr=P/Pc=0.51
∴使用普遍化第二维里系数法。
(验证: ∴使用普遍化第二维里系数法是正确的。)
2)T=478K, Tr=478/305.4=1.5652
解法1:普遍化第二维里系数法。

解法2:R-K方程
=54.597×105-7.1341×105
假设液化气以丙烷为代表物,液化气罐的体积为35 L,装有12kg丙烷。已知60℃时丙烷的饱和气体摩尔体积Vg= 0.008842 ,饱和液体摩尔体积Vl= 0.0001283 。问在此条件下,液化气罐是否安全?若不安全,应采取什么具体的措施?若要求操作压力不超过液化气罐设计压力的一半,请问液化气罐的设计压力为多少?(用SRK方程计算)

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。

第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)2. 当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、断定、绘图)之羊若含玉创作第1章 绪言一、是否题1.封闭体系的体积为一常数.(错) 2.封闭体系中有两个相βα,.在尚未达到平衡时,βα,两个相都是均相封闭体系;达到平衡时,则βα,两个相都等价于均相封闭体系.(对)3.幻想气体的焓和热容仅是温度的函数.(对)4.幻想气体的熵和吉氏函数仅是温度的函数.(错.还与压力或摩尔体积有关.)5.封闭体系的1mol 气体进行了某一进程,其体积总是变更着的,但是初态和终态的体积相等,初态和终态的温度分离为T1和T2,则该进程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的进程有⎰=21T T P dT C H ∆.(对.状态函数的变更仅决议于初、终态与途径无关.) 二、填空题1.状态函数的特点是:状态函数的变更与途径无关,仅决议于初、终态 .2.封闭体系中,温度是T 的1mol 幻想气体从(Pi ,Vi)等温可逆地膨胀到(Pf ,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f revP P RT W ln = (以P 暗示).3.封闭体系中的1mol 幻想气体(已知ig P C ),按下列途径由T1、P1和V1可逆地变更至P2,则A 等容进程的 W= 0 ,Q=()1121T P P R C igP ⎪⎪⎭⎫⎝⎛--,∆U=()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆H=1121T PP C ig P ⎪⎪⎭⎫⎝⎛-. B 等温进程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H=0 .第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽变成液体,必须经由冷凝的相变更进程.(错.可以通过超临界流体区.)2.当压力大于临界压力时,纯物质就以液态存在.(错.若温度也大于临界温度时,则是超临界流体.)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的幻想气体的摩尔体积,所以,幻想气体的压缩因子Z=1,实际气体的压缩因子Z<1.(错.如温度大于Boyle 温度时,Z >1.)4.纯物质的三相点随着所处的压力或温度的不合而转变.(错.纯物质的三相平衡时,体系自由度是零,体系的状态已经确定.)5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等.(对.这是纯物质的汽液平衡准则.)6.纯物质的平衡汽化进程,摩尔体积、焓、热力学能、吉氏函数的变更值均大于零.(错.只有吉氏函数的变更是零.)7.气体混杂物的virial 系数,如B ,C…,是温度和组成的函数.(对.)C 绝热进程的 W=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q= 0 ,∆U=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,∆H=1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg.5.普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1 K-1=8.314J mol-1 K-1=1.980cal mol-1 K-1.三、填空题1.表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvap s V T H dT dP ∆∆=(Claperyon 方程)、()⎰-=svslV V slsv s V V P dV V T P ),((Maxwell 等面积规矩).它们能(能/不克不及)推广到其它类型的相平衡.2.Lydersen 、Pitzer 、Lee-Kesler 和Teja 的三参数对应态原理的三个参数分离为c r r Z P T ,,、ω,,r r P T 、ω,,r r P T 和ω,,r r P T .3.对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不合);一定温度下的泡点与露点,在P -T 图上是重叠的(重叠/离开),而在P-V 图上是离开的(重叠/离开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包抄的区域称为汽液共存区.纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点.4.对于三混杂物,展开PR 方程常数a 的表达式,∑∑==-=3131)1(i j ij jj ii jik a a yy a =其中,下标相同的相互作用参数有332211,k k k 和,其值应为1;下标不合的相互作用参数有),,(,,123132232112123132232112处理已作和和和k k k k k k k k k k k k ===,通常它们值是如何得到?从实验数据拟合得到,在没有实验数据时,近似作零处理. .5.正丁烷的偏幸因子ω2435.0101==--ωc s P P MPa.五、图示题1.试定性画出纯物质的P-V 相图,并在图上指出 (a)超临界流体,(b)气相,(c )蒸汽,(d )固相,(e )汽液共存,(f )固液共存,(g )汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc 、T<Tc 、T=Tc 的等温线.2.试定性讨论纯液体在等压平衡汽化进程中,M (= V 、S 、G )随T 的变更(可定性作出M-T 图上的等压线来说明).六、证明题1.由式2-29知,流体的Boyle 曲线是关于0=⎪⎭⎫ ⎝⎛∂∂TP Z 的点的轨迹.证明vdW 流体的Boyle 曲线是()0222=+--ab abV V bRT a证明:001=⎪⎭⎫ ⎝⎛∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛∂∂T T T V P V P V P P V RT P Z 得由由vdW 方程得整理得Boyle 曲线第3章 均相封闭体系热力学原理及其应用一、是否题1.热力学根本关系式dH=TdS+VdP 只适用于可逆进程.(错.不需要可逆条件,适用于只有体积功存在的封闭体系)2.当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质).(错.当M =V 时,不恒等于零,只有在T =TB 时,才等于零)3.纯物质逸度的完整界说是,在等温条件下,f RTd dG ln =.(错.应该是=-igG G 0()0ln P f RT 等)4.当0→P 时,∞→P f.(错.当0→P 时,1→P f )5. 因为⎰⎪⎭⎫ ⎝⎛-=PdP P RT V RT 01ln ϕ,当0→P 时,1=ϕ,所以,0=-PRT V .(错.从积分式看,当0→P 时,PRT V -为任何值,都有1=ϕ;实际上,0lim 0=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=→BTT P P RT V6.吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-.(错,(),(T G P T G ig -fRT P ln )1==)7.由于偏离函数是两个等温状态的性质之差,故不成能用偏离函数来盘算性质随着温度的变更.(错.因为:()()()()[]()()[]()()[]0102011102221122,,,,,,,,P T M P T M P T M P T M P T MP T M P T M P T M igigigig-+---=-)三、填空题1.状态方程P Vb R T()-=的偏离焓和偏离熵分离是bP dP P R T b P RTdP T V T V HH PP P ig=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=-⎰⎰00和0ln 0000=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=+-⎰⎰dP P R P R dP T V P R P P R S S PP P ig;若要盘算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?ig P C ;其盘算式分离是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dTC bP bP T H T H T H P T H T H P T H T T igP T T igP ig ig ig ig ⎰⎰+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dTTC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S TT igP T T ig P ig ig ig ig ⎰⎰+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,.2.对于混杂物体系,偏离函数中参考态是与研究态同温.同组成的幻想气体混杂物.五、图示题1.将下列纯物质阅历的进程暗示在P-V ,lnP-H ,T-S 图上 (a)过热蒸汽等温冷凝为过冷液体; (b)过冷液体等压加热成过热蒸汽; (c)饱和蒸汽可逆绝热膨胀;(d)饱和液体恒容加热;(e)在临界点进行的恒温膨胀.解:第4章 非均相封闭体系热力学一、是否题1.偏摩尔体积的界说可暗示为{}{}ii x P T i n P T i i x V n nV V ≠≠⎪⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂=,,,,∂.(错.因对于一个均相封闭系统,n 是一个变数,即(){}0,,≠∂∂≠i n P T i n n )2.对于幻想溶液,所有的混杂进程性质变更均为零.(错.V ,H ,U ,CP ,CV 的混杂进程性质变更等于零,对S ,G ,A 则不等于零)3.对于幻想溶液所有的逾额性质均为零.(对.因is E M M M -=)4.体系混杂进程的性质变更与该体系相应的逾额性质是相同的.(错.同于4)5.幻想气体有f=P ,而幻想溶液有i i ϕϕ=ˆ.(对.因i i i i i i is iis i Pf Px x f Px f ϕϕ====ˆˆ) 6.温度和压力相同的两种幻想气体混杂后,则温度和压力不变,总体积为原来两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和.(错.总熵不等于原来两气体的熵之和)7.因为GE(或活度系数)模子是温度和组成的函数,故理论上i γ与压力无关.(错.理论上是T ,P ,组成的函数.只有对低压下的液体,才近似为T 和组成的函数)8.纯流体的汽液平衡准则为f v=f l.(对)9.混杂物体系达到汽液平衡时,总是有l iv i l v l i v i f f f f f f ===,,ˆˆ.(错.两相中组分的逸度、总体逸度均不一定相等)10. 幻想溶液一定相符Lewis-Randall 规矩和Henry 规矩.(对.)、填空题1.填表2.有人提出了一定温度下二元液体混杂物的偏摩尔体积的模子是)1(),1(122211bx V V ax V V +=+=,其中V1,V2为纯组分的摩尔体积,a ,b 为常数,问所提出的模子是否有问题?由Gibbs-Duhem 方程得, b V x V x a 1122=, a,b 不成能是常数,故提出的模子有问题;若模子改为)1(),1(21222211bx V V ax V V +=+=,情况又如何?由Gibbs-Duhem 方程得, b V V a 12=,故提出的模子有一定的合理性_.3.常温、常压条件下二元液相体系的溶剂组分的活度系数为32221ln x x βαγ+=(βα,是常数),则溶质组分的活度系数表达式是=2ln γ3121232x x ββα-+. 解: 由0ln ln 2211=+γγd x d x ,得从()1021==γ此时x 至任意的1x 积分,得五、图示题1.下图中是二元体系的对称归一化的活度系数21,γγ与组成的关系部分曲线,请补全两图中的活度系数随液相组成变更的曲线;指出哪一条曲线是或12~x γ;曲线两头点的含意;体系属于何种误差.21,γγ化条件而得到的.第5章 非均相体系热力学性质盘算一、是否题1.在一定压力下,组成相同的混杂物的露点温度和泡点温度不成能相同.(错,在共沸点时相同)2.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <.(错,若系统存在共沸点,就可以出现相反的情况)3.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增大而增大.(错,来由同6)4.纯物质的汽液平衡常数K 等于1.(对,因为111==y x ) 5.下列汽液平衡关系是错误的i i Solvent i v i i x H Py *,ˆγϕ=.(错,若i 组分采取不合错误称归一化,该式为正确)6.对于幻想体系,汽液平衡常数Ki(=yi/xi),只与T 、P 有关,而与组成无关.(对,可以从幻想体系的汽液平衡关系证明)7.对于负误差体系,液相的活度系数总是小于1.(对) 8.能知足热力学一致性的汽液平衡数据就是高质量的数据.(错)9.逸度系数也有归一化问题.(错)10. EOS +γ法既可以盘算混杂物的汽液平衡,也能盘算纯物质的汽液平衡.(错)、填空题1.说出下列汽液平衡关系适用的条件(1) l iv i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)ii s i i x P Py γ= _________低压条件下的非幻想液相__________.2.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x1=y1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa则 van Laar 方程常数是 (已知van Laar 方程为221112212112x A x A x x A A RT G E+=) 1.组成为x1=0.2,x2=0.8,温度为300K 的二元液体的泡点组成y1的为(已知液相的3733,1866),/(75212121==+=s sE t P P n n n n G Pa)___0.334____________.2.若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要艰苦是MPa P s4.251=饱和蒸气压太高,不容易简化;( EOS+γ法对于高压体系需改正).3.EOS 轨则盘算混杂物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混杂物的实验数据拟合得到.4.由Wilson 方程盘算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数Ai,Bi,Ci; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何得到的?能从混杂物的有关数据(如相平衡)得到.五、图示题 1描写下列二元y x T --图中的变更进程D C B A →→→:这是一个等压定(总)组成的降温进程.A 处于汽相区,降温到B 点时,即为露点,开端有液滴冷凝,随着温度的持续下降,产生的液相量增加,而汽相量削减,当达到C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同.持续降温到达D 点.描写下列二元y x P --图中的变更进程D C B A →→→:这是一等温等压的变组成进程.从A 到B ,是液相中轻组分1的含量增加,B 点为泡点,即开端有汽泡出现.B 至C 的进程中,系统中的轻组分增加,汽相相对于液相的量也在不竭的增加,C点为露点,C点到D点是汽相中轻组分的含量不竭增加.T=常数1.将下列T-x-y图的变更进程A→B→C→D→E和P-x-y图上的变更进程F→G→H→I→J暗示在P-T图(组成=0.4)上.。

完整版化工热力学答案-冯新-宣爱国-课后总习题答案详解1

完整版化工热力学答案-冯新-宣爱国-课后总习题答案详解1
你作为企业的工程师将采用何种方案,请比较两种方案各自的优缺点,必要时采用定量的方法。
解:⑴查附录2知:Tc=369.8K,Pc=4.246MPa,ω=0.152
=4.746Mpa
答:由于钢瓶的实际压力大于其安全工作压力,因此会发生爆炸。
2-17.作为汽车发动机的燃料,如果15℃、0.1013MPa的甲烷气体40 m3与3.7854升汽油相当,那么要多大容积的容器来承载20MPa、15℃的甲烷才能与37.854升的汽油相当?
解:查表得:甲烷Tc=190.6K , Pc=4.60MPa
解:(1) 12kg丙烷的摩尔总数:
按照安全要求,液化气充装量最多为液化气罐的97%,则
液化气罐允许的总丙烷摩尔数为:
显然装载的12kg丙烷已超出液化气罐允许量,此时液化气罐是不安全的。(2)只有将丙烷量减至 以下,才能安全。
(3)用SRK方程(免费软件:/~pjb10/thermo/pure.html)计算得:此时液化气罐的操作压力为3.026bar,因此,液化气罐的设计压力为6.052 bar。
【参考答案】:不同。真实气体偏离理想气体程度不仅与T、p有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子 , 和 。
2-5偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?
【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。
一、问答题:
2-1为什么要研究流体的pVT关系?
【参考答案】:流体p-V-T关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT关系可以直接用于设计。(2)利用可测的热力学性质(T,P,V等)计算不可测的热力学性质(H,S,G,等)。只要有了p-V-T关系加上理想气体的 ,可以解决化工热力学的大多数问题。

作业解答化工热力学第四章化工过程的能量分析2019

作业解答化工热力学第四章化工过程的能量分析2019
2
• 根据稳定流动过程的能量平衡方程
H
=
Q
-
WS
-
gZ
-
1 2
u2
• ∵ ∆H=mCp(T2-T1)
225 (0.750) 0.1962 = -224 k J • kg-1
• ∴送入第二贮水罐的水温
T2
H mC p
T1
224 1 4.187
95
41.5℃
• 4-3 将35kg、温度为700K的铸钢件放入135kg而温度为294K的油中冷 却,已知铸钢和油的比热容分别为(Cp)钢=0.5kJ/(kg•K)和(Cp)油 =2.5kJ/(kg•K),若不计热损失,试求:(1)铸钢件的熵变;(2)铸 钢件和油的总熵变。
• 4-8 6.0MPa,400℃的过热蒸汽(H1=3174 kJ·kg-1,S1=6.535 kJ·kg-1·K-1)在稳流过程 中经透平绝热膨胀到0.004MPa、干度x=0.9。 (已知0.004 MPa下Hg=2554 kJ·kg-1, Sg=8.4808 kJ·kg-1·K-1,HL=120 kJ·kg-1, SL=0.4177 kJ·kg-1·K-1)。T0=298K。求该过 程的Wid、Wac、WL及热力学效率η 。
S2=S1=7.488kJ/(kg•K) 当p2=6.868×104Pa,S2=7.488kJ/(kg•K)时,查得
H2 2659 kJ / kg 由此绝热可逆功
WS H2 H1 2659 3428 769 kJ / kg
• 透平机实际输出的轴功为
WS 80%WS 80% 769 615 .2kJ / kg
u2
u1
p1T2 p2T1
101.03 403 1.02 303

化工热力学习题解答第二~四章PPT课件

化工热力学习题解答第二~四章PPT课件
V Z R T 0 .7 2 5 8 .3 1 4 3 9 3 0 .1 5 2 8 1 0 3 m 3 /m o l p 1 5 .5 1 0 6
n 2 8 2 0 0 1 2 5 8 .9 3 k m o l/h 1 .2 5 9 1 0 6 m o l/h
2 2 .4
习题
pc
3.394106
1.5576Pam6K0.5/mol2
b0.08664RTc 0.086648.314126.2
的体积为:
V 2 3 4 . 7 6 9 . 4 c m 3 / m o l 6 . 9 4 1 0 5 m 3 / m o l
查表得氮的临界参数为:
Tc126.2K pc3.394M Pa
Vc89.5cm 3/m ol 0.04
习题 解答
上一内容
下一内容
回主目录
23
a0.42748R2Tc2.5 0.427488.3142126.22.5
52299741861016741036例题例题上一内容下一内容回主目录上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当习习答答30010pa77315k理想气体110pa29815k理想气体pa77315k真实气体2997418610167410299741861016741037例题例题上一内容下一内容回主目录上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当习习ln112997ln418610167410ln773152997ln4186107731529815298153001674108314ln773152981577315500115463059455046154650460021kpmpa38例题例题上一内容下一内容回主目录上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当习习2626067506750010275001dbdt16160422042200830083005088500142420172017201390139013885001525207220722000016735001dbdt39例题例题上一内容下一内容回主目录上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当习习59450050885001001027002101388500100001673001437dbdbpbtbtrtdtdt5945001027002100001673006108dbdbdtdt40例题例题上一内容下一内容回主目录上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当习习hhhhhjmol0101767050781818sssssjmolkln5945005088002101388006395500141例题例题上一内容下一内容回主目录上司的判断和决策在很大程度上是根据秘书的汇报作出来的汇报的内容是否真实汇报的数据是否准确汇报的用语是否恰当习习答答3一容器内的液体水和蒸汽在1mpa压力下处于平衡状态质量为1kg

化工热力学第四章答案

化工热力学第四章答案

Tr1

320 273.15 647.3

0.9163 ,
pr1

1.62 22.05

0.07347
由式(2-31a)、式(3-46)、式(2-31b)和式(3-47)可得
B10

0.083
0.422 T 1.6
r1

0.083
0.422 (0.9163)1.6

0.4023
dB10 dTr1
Q1

450 18.016

34.5

(115.8

230.4)
=
-98842.5 kJ·h-1
因最后的蒸汽的干度为 0.96,故需移去因相变而产生的冷凝热,从附表 3 查得 0.138MPa 时
的 hfg =2235.91 kJ·kg-1,则
Q2 450 0.04 hf g 450 0.04 2235.91= -40246.4 kJ·h-1
输送 1kg 蒸汽所需时间,
t

1 m

3600 104

0.36skg 1
透平机输出的功率为,
P

Ws t

924.08 0.36

2566.89kW
(2)若忽略进、出口蒸汽的动能和位能变化,则
mgz

0,
1 2
mu 2

0
,所以,
Ws' h (2300 3230) 930kJ kg 1
h2=x·hg+(1-x) hs' = 0.96 2701.7+0.04 485.4=2613.0 kJ·kg-1

化工热力学第三版(完全版)课后习题答案

化工热力学第三版(完全版)课后习题答案
解:用Antoine方程A=6.8635,B=1892.47,C=-24.33
(a)由软件计算可知
(b)
3.试由饱和液体水的性质估算(a)100℃,2.5MPa和(b)100℃,20MPa下水的焓和熵,已知100℃下水的有关性质如下
MPa, Jg-1, J g-1K-1, cm3g-1,
cm3g-1K-1
化工热力学课后答案
第1章 绪言
一、是否题
1.封闭体系的体积为一常数。(错)
2.封闭体系中有两个相 。在尚未达到平衡时, 两个相都是均相敞开体系;达到平衡时,则 两个相都等价于均相封闭体系。(对)
3.理想气体的焓和热容仅是温度的函数。(对)
4.理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。)
2.对于混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物。
四、计算题
1.试计算液态水从2.5MPa和20℃变化到30MPa和300℃的焓变化和熵变化,既可查水的性质表,也可以用状态方程计算。
解:用PR方程计算。查附录A-1得水的临界参数Tc=647.30K;Pc=22.064MPa;ω=0.344
A.
B.0
C.
D.
3. 等于(D。因为 )
A.
B.
C.
D.
4.吉氏函数变化与P-V-T关系为 ,则 的状态应该为(C。因为 )
A.T和P下纯理想气体
B.T和零压的纯理想气体
C.T和单位压力的纯理想气体
三、填空题
1.状态方程 的偏离焓和偏离熵分别是 和 ;若要计算 和 还需要什么性质? ;其计算式分别是 和 。
四、计算题
1.某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?

(完整word版)化工热力学习题集及答案

(完整word版)化工热力学习题集及答案

模拟题一一.单项选择题(每题1分,共20分)T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( )饱和蒸汽超临界流体过热蒸汽T 温度下的过冷纯液体的压力P ( )〉()T P s<()T P s=()T P sT 温度下的过热纯蒸汽的压力P ( )>()T P s〈()T P s=()T P s纯物质的第二virial 系数B ( )A 仅是T 的函数B 是T 和P 的函数C 是T 和V 的函数D 是任何两强度性质的函数能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( )第三virial 系数第二virial 系数无穷项只需要理想气体方程 液化石油气的主要成分是( )丙烷、丁烷和少量的戊烷 甲烷、乙烷 正己烷 立方型状态方程计算V 时如果出现三个根,则最大的根表示( )饱和液摩尔体积 饱和汽摩尔体积无物理意义偏心因子的定义式( )0.7lg()1s r Tr P ω==--0.8lg()1s r Tr P ω==-- 1.0lg()s r Tr P ω==-设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( )A 。

1x y zZ Z x x y y ⎛⎫⎛⎫∂∂∂⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭B. 1y xZ Z x y x y Z ⎛⎫∂∂∂⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭C 。

1y xZ Z x y x y Z ⎛⎫∂∂∂⎛⎫⎛⎫= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ D 。

1y Z xZ y y x x Z ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭关于偏离函数MR,理想性质M*,下列公式正确的是( )A. *R M M M =+B. *2RMM M =-C. *RMM M =-D 。

*RM M M =+下面的说法中不正确的是 ( )(A )纯物质无偏摩尔量 . (B )任何偏摩尔性质都是T ,P 的函数. (C)偏摩尔性质是强度性质。

化工热力学习题及答案 第四章 化工过程的能量分析

化工热力学习题及答案 第四章 化工过程的能量分析

第四章 化工过程的能量分析4-1 设有一台锅炉,水流入锅炉是之焓为62.7kJ ·kg -1,蒸汽流出时的焓为2717 kJ ·kg -1,锅炉的效率为70%,每千克煤可发生29260kJ 的热量,锅炉蒸发量为4.5t ·h -1,试计算每小Q W Z g u H s +=∆+∆+∆221体系与环境间没有功的交换:0=s W ,并忽 动能和位能的变化, 所以: Q H =∆设需要煤mkg ,则有:%7029260)7.622717(105.43⨯=-⨯m 解得:kg m 2.583=4-5 一台透平机每小时消耗水蒸气4540kg ,水蒸气在4.482MPa 、728K 下以61m ·s -1的速度进入机内,出口管道比进口管到底3m ,排气速度366 m ·s -1。

透平机产生的轴功为703.2kW ,热损失为1.055×105kJ ·h -1。

乏气中的一小部分经节流阀降压至大气压力,节流阀前后的流速变化可忽略不计。

式计算经节流后水蒸气的温度及其过热度。

解:稳态流动体系能量衡算方程:Q W Z g u H s +=∆+∆+∆221 以每小时单位水蒸气作为计算标准1524.23454010055.1-⋅-=⨯-=kg kJ Q16.557454036002.703-⋅-=⨯-=kg kJ W s132221222117.6510)61366(21)(2121--⋅=⨯-⨯=-=∆kg kJ u u u 133104.2910)3(8.9---⋅⨯-=⨯-⨯=∆=kg kJ Z g Z p将上述结果代入能量衡算方程得到:193.645-⋅-=∆kg kJ H 查表得到4.482MPa ,728K 过热水蒸汽焓值:113340-⋅=kg kJ H 进出口焓变为出口气体焓值减去进口气体焓值:12H H H -=∆ 对于节流膨胀过程,节流膨胀过程为等焓过程,0'=∆H节流后水蒸气焓值:11226946463340-⋅=-=∆+=kg kJ H H H内插法查0.1MPa 下过热水蒸汽表,得到:C T ︒=5.106,过热度6.5℃4-16 1mol 理想气体,400K 下在气缸内进行恒温不可逆压缩,由0.1013MPa 压缩到1.013MPa 。

[理学]化工热力学冯新宣爱国第四章习题解答

[理学]化工热力学冯新宣爱国第四章习题解答

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则 i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs自由能的值不变。

解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液。

解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9 理想溶液中所有组分的活度系数为零。

解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。

解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统。

解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求 (1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d H x 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。

马沛生 主编 化工热力学 第四章习题解答

马沛生 主编 化工热力学 第四章习题解答

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则 i i解:否4—2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs自由能的值不变。

解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis—Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液.解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9 理想溶液中所有组分的活度系数为零. 解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis —Randall 定则。

解:否4—12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统. 解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求 (1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4—15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值. 解:(1) 121212905069H x x x x x x =++⋅+()()()()111111231119050116915049123x x x x x x x x x=+-+-+-⎡⎤⎣⎦=+-+()2311111d d5049123d d H x x x x x =+-+ 21149249x x =-+()()()11123211111123111d 1d 50491231492499924216HH H x x x x x x x x x x x =+-=+-++--+=-+- ()2112321111112311d d 50491234924950126HH H x x x x x x x x x x =-=+-+--+=+- (2)()112311111111lim lim 504912390cal mol 376.56J mol x x H H x x x --→→==+-+=⋅=⋅()21231121111lim lim 504912350cal mol 20.92J mol x x H H x x x --→→==+-+=⋅=⋅(3)()2311111110112992421699cal mol 41422J mol lim lim .x x H H x x x ∞--→→==-+-=⋅=⋅()2311221101215012656cal mol 23430J mol x x H H x x ∞--→→==+-=⋅=⋅lim lim .(4) ()1122H H x H x H ∆=-+()()()()()()()1122112211221122232323111111111231112111992421650126501269050509123334x H x H x H x H x H H H x H H H x x x x x x x x x x x x x x x =+-+=-+---=-+---+++----=-+=-+(5) 当10.5x =时,2311119924216H x x x =+--2311111992421622291.5cal mol 384.84J mol --⎛⎫⎛⎫=-⨯+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=⋅=⋅23211231150126115012622=52.25cal mol 218.61J mol H x x --=+-⎛⎫⎛⎫=+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⋅=⋅ 231111905123221875cal mol 7845J mol H --⎛⎫⎛⎫∆=⨯-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=⋅=⋅... 4-16 溶液的体积t V 是浓度2m 的函数,若222t V a bm cm =++,试列出1V ,2V 的表达式,并说明a 、b 的物理意义(2m 为溶质的摩尔数/1000克溶剂);若已知222324223V a a m a m =++式中2a 、3a 、4a 均为常数,试把V (溶液的体积)表示2m 的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则 i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs自由能的值不变。

解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液。

解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9 理想溶液中所有组分的活度系数为零。

解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。

解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统。

解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求 (1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。

解:(1) 121212905069H x x x x x x =++⋅+()()()()111111231119050116915049123x x x x x x x x x=+-+-+-⎡⎤⎣⎦=+-+()2311111d d5049123d d H x x x x x =+-+ 21149249x x =-+()()()11123211111123111d 1d 50491231492499924216HH H x x x x x x x x x x x =+-=+-++--+=-+- ()2112321111112311d d 50491234924950126HH H x x x x x x x x x x =-=+-+--+=+- (2) ()112311111111lim lim 504912390cal mol 376.56J mol x x H H x x x --→→==+-+=⋅=⋅()21231121111lim lim 504912350cal mol 20.92J mol x x H H x x x --→→==+-+=⋅=⋅(3)()2311111110112992421699cal mol 41422J mol lim lim .x x H H x x x ∞--→→==-+-=⋅=⋅()2311221101215012656cal mol 23430J mol x x H H x x ∞--→→==+-=⋅=⋅lim lim .(4) ()1122H H x H x H ∆=-+()()()()()()()1122112211221122232323111111111231112111992421650126501269050509123334x H x H x H x H x H H H x H H H x x x x x x x x x x x x x x x =+-+=-+---=-+---+++----=-+=-+(5) 当10.5x =时,2311119924216H x x x =+--2311111992421622291.5cal mol 384.84J mol --⎛⎫⎛⎫=-⨯+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=⋅=⋅23211231150126115012622=52.25cal mol 218.61J mol H x x --=+-⎛⎫⎛⎫=+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⋅=⋅ 231111905123221875cal mol 7845J mol H --⎛⎫⎛⎫∆=⨯-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=⋅=⋅...4-16 溶液的体积t V 是浓度2m 的函数,若222t V a bm cm =++,试列出1V ,2V 的表达式,并说明a 、b 的物理意义(2m 为溶质的摩尔数/1000克溶剂);若已知222324223V a a m a m =++式中2a 、3a 、4a 均为常数,试把V (溶液的体积)表示2m 的函数。

4-17 酒窑中装有10m 3 的96%(wt )的酒精溶液,欲将其配成65%的浓度,问需加水多少? 能得到多少体积的65%的酒精? 设大气的温度保持恒定,并已知下列数据酒精浓度(wt ) %水V 3-1cm mol ⋅乙醇V 3-1cm mol ⋅96 14.61 58.01 6517.1156.58解:设加入水为W 克,溶液最终的总体积V cm 3;原来有n W 和n E 摩尔的水和乙醇,则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⨯+⨯=⨯⨯+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+=+=+=65354618964461858.5611.17181801.5861.1410''E W EW E W EE W W E W E E W W n W n n n n W n V n V W n V n n V n V n 解方程组得结果:kg W m V 3830,46.133==4-18 如果在T 、p 恒定时,某二元系统中组分(1)的偏摩尔自由焓符合111ln G G RT x =+,则组分(2)应符合方程式222ln G G RT x =+。

其中,G 1、G 2是T 、p 下纯组分摩尔Gibbs 自由能,x 1、x 2是摩尔分率。

解:在T 、P 一定的条件下,由Gibbs-Duhem 方程知1122d d 0x G x G +=由111ln x RT G G +=,考虑到T 、p 一定条件下的1G 是一个常数, 11dln dG RT x = 所以1212d d x G G x ⎛⎫=- ⎪⎝⎭112d ln x RT x x ⎛⎫=- ⎪⎝⎭11211221d 1d d ln x RT x x x RT x x RT x ⎛⎫=- ⎪⎝⎭=-= 从21x =、22G G =至任意的22x G 、积分上式得222ln x RT G G +=4-19 对于二元气体混合物的virial 方程和virial 系数分别是1=+BpZ RT和iji j ji By y B ∑∑===2121,(1) 试导出1ˆln ϕ、2ˆln ϕ的表达式;(2) 计算20 kPa 和50℃下,甲烷(1)-正己烷(2)气体混合物在5.01=y 时的1ˆV ϕ、2ˆVϕ、m ϕ、m f 。

已知virial 系数 B 11= -33,B 22= -1538,B 12= -234 cm 3 mol -1。

解: 将下列公式()(),,,,1j j i i i i i T p n T p n nZ p nB Z n RT n ≠≠⎛⎫⎛⎫∂∂==+ ⎪ ⎪∂∂⎝⎭⎝⎭ 代入逸度系数表达式得()()()00,,1ˆln 1j i pp pi i i i T p n nB dp p dp Z B dp p RT n p RT ϕ≠∂⎡⎤=-==⎢⎥∂⎣⎦⎰⎰⎰ 对于二元体系,有()1221121211222222111121221212221111122212121122211122212122i j ij i j B B B B B B y y B y B y y B y y B y B y B y B y y B B B y B y B y y δδ====--==+++====++--=========++∑∑所以1221222111δnn n B n B n nB ++= (){}()1222111221111222111,,11δδδy B y y B n n n n B n nB B in P T i i +=-+=⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡∂∂=≠ 得()2111212ˆln p B y RTϕδ=+同样()2222112ˆln pB y RTϕδ=+ 混合物总体的逸度系数为ln Bp RTϕ=代入有关数据,得到计算结果为()32231112122010ˆln (330.51103) 1.81108.314323.15p B y RT ϕδ--⨯=+=-+⨯=⨯⨯ ()32232221122010ˆln (15380.51103)9.4108.314323.15p B y RT ϕδ--⨯=+=-+⨯=-⨯⨯ 3332211m 10795.3)104.9(5.01081.15.0ln ln ln ---⨯-=⨯-⨯+⨯⨯=+=ϕϕϕy y另法75.50911035.05.015385.0335.01221222111-=⨯⨯+⨯-⨯-=++=δy y B y B y B33509.752010ln 3.79108.314323.15m Bp RT ϕ---⨯⨯===-⨯⨯0.9962m ϕ=0.99622019.926m m f p KPa ϕ==⨯=4-20 在一固定T 、p 下,测得某二元系统的活度系数值可用下列方程表示:2212212ln (3)x x x x γαβ=+-(a)2221112ln (3)x x x x γαβ=+-(b)试求出EG RT的表达式;并问(a)、(b) 方程式是否满足Gibbs-Duhem 方程?若用(c)、 (d)方程式122ln ()x a bx γ=+ (c) 211ln ()x a bx γ=+ (d)表示该二元系统的活度系数值时,则是否也满足Gibbs-Duhem 方程?解:(1)EG RT=1122ln ln x x γγ+ =22221221221112(3)(3)x x x x x x x x x x αβαβ⎡⎤⎡⎤+-++-⎣⎦⎣⎦ 2223232212121212121233x x x x x x x x x x x x αββαββ=+-++- ()()23231212121222121212121212x x x x x x x x x x x x x x x x x x x x αβαβαβαβ=-++=+-=+-(2)根据Gibbs-Duhem 方程,在恒温恒压条件下,有1122d ln d ln 0x x γγ+=。

相关文档
最新文档