电阻、电容和电感

合集下载

电感电阻电容单位

电感电阻电容单位

电感,电阻,电容的标准单位电感:电感是衡量线圈产生电磁感应能力的物理量。

给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。

通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。

实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。

如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。

1H=1000mH,1H=1000000uH。

电阻:电路中对电流通过有阻碍作用并且造成能量消耗的部分叫做电阻。

电阻常用R表示。

电阻的单位是欧(Ω),也常用千欧(kΩ)或者兆欧(MΩ)做单位。

1kΩ=1000Ω,1MΩ=1000000Ω。

导体的电阻由导体的材料、横截面积和长度决定。

电阻可以用万用表欧姆档测量。

测量的时候,要选择电表指针接近偏转一半的欧姆档。

如果电阻在电路中,要把电阻的一头烫开后再测量。

电容:电容是衡量导体储存电荷能力的物理量。

在两个相互绝缘的导体上,加上一定的电压,它们就会储存一定的电量。

其中一个导体储存着正电荷,另一个导体储存着大小相等的负电荷。

加上的电压越大,储存的电量就越多。

储存的电量和加上的电压是成正比的,它们的比值叫做电容。

如果电压用U表示,电量用Q表示,电容用C表示,那么电感,电阻,电容的标准单位2009-07-17 03:20电感:电感是衡量线圈产生电磁感应能力的物理量。

给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。

通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。

实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。

如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,电容的单位是法(F),也常用微法(uF)或者微微法(pF)做单位。

1F=10 6 uF,1F=10 12 pF。

电阻、电感、电容对电流的影响

电阻、电感、电容对电流的影响

小结: 1 、交变电流的电流与电压的关系不仅与电阻有 关,还与电感和电容有关 2、电感“通直流,阻交流;通低频,阻高频”。 电容“隔直流,通交流;阻低频,通高频”。 阻、通都是有条件的: 电感阻高频——频率越大阻碍越大 XL=2π ƒ 电容通高频——频率越大阻碍越小 X C
L
1 2 f C
1、关于电感对交变电流的影响,下列说法正确 的是( ) A、电感不能通直流电流,只能通交流电流 B、电感对各种不同频率的交变电流阻碍作用相 同 C、同一只电感线圈对频率低的交变电流的阻碍 作用较小 D、同一只电感线圈对频率高的交变电流的阻碍 作用较小
练6、有一理想变压器在其原线圈上串一熔断电 流为I0=1A的保险丝后接到220V交流电源上,副线 圈接一可变电阻R作为负载,如图所示,已知原、 副线圈的匝数比n1:n2=5:1,问了不使保险丝熔断, 可变电阻的取值范围如何?
大于8.8Ω
例、(08天津)一理想变压器的原线圈上接有正 弦交变电压,其最大值保持不变,副线圈接有可 调电阻R,设原线圈的电流为I1,输入功率为P1, 副线圈的电流为I2,输出功率为P2。当R增大时 A.I1减小,P1增大 B.I1减小,P1减小 C.I2增大,P2减小 D.I2增大,P2增大
C
3、
例、(09海南)钳型表的工作原理如图所示。当 通有交流电的导线从环形铁芯的中间穿过时,与 绕在铁芯上的线圈相连的电表指针会发生偏转。 由于通过环形铁芯的磁通量与导线中的电流成正 比,所以通过偏转角度的大小可以测量导线中的 电流。日常所用交流电的频率在中国和英国分别 为50Hz和60Hz。现用一钳型电流表在中国测量某 一电流,电表读数为10A;若用同一电表在英国测 量同样大小的电流,则读数将是 A。若此表 在中国的测量值是准确的, 且量程为30A;为使其在 英国的测量值变为准确, 应重新将其量程标定为 A. 12 25 I=kφ

电阻、电容、电感的分类

电阻、电容、电感的分类

电阻、电容、电感的分类
电阻的a.按阻值特性:固定电阻、可调电阻、特种电阻(敏感电阻) . 不能调节的,我们称之为固定电阻,而可以调节的,我们称之为可调电阻.常见的例如收音机音量调节的,主要应用于电压分配的,我们称之为电位器. b.按制造材料:碳膜电阻、金属膜电阻、线绕电阻,捷比信电阻,薄膜电阻等. C.按安装方式: 插件电阻、贴片电阻d.按功能分:负载电阻,采样电阻,分流电阻,保护电阻等
电容的1.电解电容 2.固态电容 3.陶瓷电容 4.钽电解电容 5.云母电容 6.玻璃釉电容7.聚苯乙烯电容8.玻璃膜电容9.合金电解电容10.绦纶电容11.聚丙烯电容12.泥电解13.有极性有机薄膜电容14.铝电解电容电容器应用在高压场合时,必须注意电晕的影响。

电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。

在交流或脉动条件下,电晕特别容易发生。

对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值。

【.电感器的分类:】 a.按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈. b.按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转. c.按绕线结构分类:单层线圈、多层线圈、蜂房式线圈. d.按电感形式分类:固定电感线圈、可变电感线圈。

电感有用途:一是储能,二是通直流阻交流。

利用电感的储能特性,可以与电容组成谐振电路;利用电感通直流阻交流特性,可以作为限流电感器﹑整流电路滤波器﹑带通滤波器等。

电阻电容电感元件的电压电流关系

电阻电容电感元件的电压电流关系

电阻电容电感元件的电压电流关系
电阻、电容和电感元件的电压和电流关系如下:
1. 电阻:在电阻电路中,电压和电流的关系可以用欧姆定律来表示,即 U=IR。

其中 U 是电压,I 是电流,R 是电阻。

这意味着电阻越大,电流越小,反之亦然。

2. 电容:对于电容,电压和电流的关系由以下公式表示:
Q=UC。

其中 Q 是电容器的电荷量,U 是电压,C 是电容。

此外,对于电容,电流 i 等于 dQ/dt,即电荷量随时间的变化率。

这意味着电流和电压的变化率成正比,当电压变化越快,电流越大。

3. 电感:在电感电路中,电压和电流的关系可以表示为:
ΔU=L*di/dt。

其中ΔU 是电压变化量,L 是电感,di/dt 是电流变化率。

这意味着电感越大,电压变化越小,反之亦然。

总的来说,电阻、电容和电感元件的电压和电流关系取决于各自的特性。

电阻元件的电压和电流成正比,电容元件的电流和电压变化率成正比,而电感元件的电压变化量和电流变化率成反比。

这些关系在分析和设计电子电路时非常重要。

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数电阻主要特性参数1、标称阻值:电阻器上面所标示的阻值。

2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。

允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、1004、额定电压:由阻值和额定功率换算出的电压。

5、最高工作电压:允许的最大连续工作电压。

在低气压工作时,最高工作电压较低。

6、温度系数:温度每变化1℃所引起的电阻值的相对变化。

温度系数越小,电阻的稳定性越好。

阻值随温度升高而增大的为正温度系数,反之为负温度系数。

7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。

9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。

电感器的主要参数电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

(一)电感量电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。

电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁心及磁心的材料等等。

通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。

电阻-电容-电感

电阻-电容-电感

振荡器设计
RC振荡器
由电阻和电容组成的RC振荡器是一种 简单的振荡电路,通过改变电阻和电 容的值可以调节振荡频率。这种振荡 器常用于产生方波或三角波信号。
LC振荡器
由电感和电容组成的LC振荡器能够产 生较高频率的振荡信号,通常用于产 生正弦波信号。通过调节电感和电容 的值可以调节振荡频率和幅度。
05
详细描述
电感值是衡量线圈产生自感电动势能力的重 要参数,其大小与线圈的匝数、直径、材料 等有关。一般来说,线圈的匝数越多、直径 越大、导磁率越高,电感值就越大。在实际 应用中,需要根据电路的具体要求和电感的 特点进行选择和计算。
04
电阻-电容-电感在电路中 的应用
串联与并联
串联
在电路中,电阻、电容和电感可以串联连接,以实现分压、限流或延迟等效果。 串联电阻可以用来分压,而串联电容和电感可以用来延迟信号或限制电流。
06
电阻-电容-电感的未来发 展
新材料的应用
高性能材料
随着科技的发展,新型的高性能材料如碳纳 米管、石墨烯等将被应用于电阻、电容和电 感的生产,以提高其性能和稳定性。
复合材料
通过将不同材料进行复合,可以创造出具有 优异性能的复合型电阻、电容和电感材料,
以满足各种特殊应用需求。
新工艺的应用
3D打印技术
利用3D打印技术,可以制造出具有复杂结构和形状的 电阻、电容和电感元件,从而实现个性化定制和快速 原型制造。
纳米加工技术
通过纳米加工技术,可以制造出更小、更精确的电阻、 电容和电感元件,从而提高集成度和可靠性。
新应用领域的发展
物联网
随着物联网技术的快速发展,电阻、电容和电感元件将被广泛应用于各种智能设备和传感器中,以实现智能化和 远程控制。

电阻、电容、电感元件及其特性

电阻、电容、电感元件及其特性
特点:
高可靠性、功 率范围大、耐 潮湿、绝缘性 好、抗浪涌能 力强、阻燃性 好。
i
i

0

u
的 分
非线性时不变电阻

i t1
t2
0
u
非线性时变电阻
0
u
线性时不变电阻
i
t1
t2
0
u
线性时变电阻
1. 线性电阻
关联参考方向: u i R 或 i u Gu R
G — 电导,单位:西门子(S)
二、电容元件
薄膜电容器系列 主要有:CL20, CL21,CL23, CL25,CBB12, CBB21, CBB81 等
瓷介电容器系列 主要有:CC1, CC81, CT1,CT81,等
独石电容器 主要有: CC4, CT4. CC42, CT42 等
多层片状陶瓷电容器 ( SMD 贴 片 电 容 全 系 列) 片式钽电解电容 主要有: CC41,CT41.CA45 等
第三节 电阻、电容、电感元件及其特性
一、电阻元件
二端元件: 有两个端钮与外部相连的元件。
二端电阻元件的 u、i 关系可由 u – i 平面的一条
曲线(伏安特性曲线)确定。
f (u, i) 0
(电阻元件的电压与电流的约束关系, 简称VCR)
分 时不变电阻 或 线性电阻(过原点的直线)
类 时变电阻
非线性电阻
u、i、e(电动势)的参考方向为关联参考方向
e d L di
dt
dt
u e L di dt
1t
i L 0 u dt i(0)
i
+

uL e

电容、电阻、电感、电解、的认识

电容、电阻、电感、电解、的认识

第一章:基本元件第一节电阻器电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。

欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。

电阻的主要职能就是阻碍电流流过。

事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。

师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。

表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。

一、电阻器的种类电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。

在电子产品中,以固定电阻应用最多。

而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。

型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。

在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。

而红颜色的电阻,是RJ型的。

一般老式电子产品中,以绿色的电阻居多。

为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。

电阻器当然也有功率之分。

常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。

当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。

再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?)二、电阻器的标识这些直接标注的电阻,在新买来的时候,很容易识别规格。

可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。

所以在弯脚的时候,要特别注意。

在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。

电感、电阻和电容的关系和作用

电感、电阻和电容的关系和作用

电感、电阻和电容的关系和作用电感是衡量线圈产生电磁感应能力的物理量.给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过.通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大.实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。

电阻是描述导体导电性能的物理量,用R表示。

电阻由导体两端的电压U 与通过导体的电流I的比值来定义,即R=U/I。

所以,当导体两端的电压一定时,电阻愈大,通过的电流就愈小; 反之,电阻愈小,通过的电流就愈大。

电容,就是容纳和释放电荷的电子元器件。

电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。

另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。

电阻用途:阻碍电流通过,可以起到了在电路中起分压、降压、限流、负载、分流、区配等作用;电容作用在于可以在电路中起滤波、耦合、旁路、调谐和能量转换等作用;电感的作用主要在于在电路中有通直流、阻交流,通低频、阻高频的作用。

其实电感、电阻和电容元件电容,在电器之中通过复杂的组合在一起发挥着作用,利用这三个元件之间的特性,相互补充构成复杂电路。

其中电感的电阻与频率有关,所以常用在与频率有关的电路,有机组合它可以把特定频率的电流加强或减弱。

举一个现实生活中的例子,我们经常会看到的电源在拔下插头后,上面的二极管还会持续再亮一会儿,这是为什么呢?其实这是因为里面的电容事先存储了电能,然后释放。

当然这个电容原本是用作滤波的。

至于所谓的电容滤波,不知你有没有用整流电源听随身听的经历,劣质的电源由于厂家出于节约成本考虑使用了非常小的容量的滤波电容,耳机内就会有有嗡嗡声出现。

这时可以在电源两端带上一个较大容量的电解电容(1500μF,注意正极接正极),一般可以改善听觉的效果。

发烧友制作HiFi高级音响,少说都会用上了至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。

电阻、电容、电感的串联与并联

电阻、电容、电感的串联与并联

电阻、电容和电感的串联与并联两电阻R1和R2串联及并联时的关系:两电容C1和C2串联与并联时的关系:无互感的线圈的串联与并联:两线圈串联:L= L 1+ L 2两线圈并联:L= L 1L 2/(L 1+ L 2)有互感的线圈的串联与并联:有互感两线圈顺串(异名端相接):L (顺) = L 1+ L 2+2M 有互感两线圈反串(同名端相接):L (反)= L 1+ L 2 -2M L (顺)-L (反) =4M , M= [L (顺) -L (反)]/4有互感两线圈并联:L (并)=(L 1 L 2-M 2)/(L 1+ L 22M )(更多电容串联的等效电容: 1/C=1/C 1+1/C 2+1/C 3+···; N 个相同的电容C 0串联的等效电容C= C 0/N) C=C 1+C 2+C 3+···;N 个相同的电容C 0串联的等效电容C= NC 0)2、电流相等 电压相等3、电压关系 U=U 1+U 2电流关系 I=I 1+I 2 (对交流电而言) 4、分压公式 U 1 = U C 2/(C 1+ C 2)U 2= U C 1 /(C 1+ C 2)分流公式 I 1 = IC 1 /(C 1+ C 2)(对交流电而言)I 2= IC 2 /(C 1+ C 2)(对交流电而言)(2M项前的符号:同名端接在同一侧时取-,异名端接在同一侧时取+。

)(L1 L2-M2)≧0,M≤LL21M(最大)=LL21互感的耦合系数:K= M/LL21电桥直流电桥由4个电阻首尾相接构成菱形,共4端,A、C端接电源,B、D端之间为零位检测(检流计)。

上下两臂平衡时,B、D端电压差为零,检流计电流读数为0。

电桥平衡的条件:R1/R3= R2/R N(或R1R N= R2R3)R1、R2、和R3为阻值已知标准电阻,被测电阻R N = R2R3 / R1将4个电阻换为阻抗,即得到交流电桥。

电阻、电容、电感的区别

电阻、电容、电感的区别

电阻、电容、电感的区别电容、电感与电阻的区别,很多老师和同学都是不熟悉的,甚至在交流电路中,有很多人还将它们的作用混为一谈,都按电阻的作用来进行分析,从而造成了很多低级错误,笔者在此略作一个辨析,以供大家参考。

一、对电流影响的本质不同1、电阻导体电阻对电流的阻碍作用,实际上是自由电荷与导体中其余部分的碰撞(比如金属导体中自由电子和金属阳离子的碰撞),使自由电荷的定向移动能量损失,转化为其余部分热运动动能的过程,有序的定向移动向无序的热运动的转化,即电能向内能的转化,这种无序的热运动不能完全自发的转化为有序的自由电荷定向移动,也就是说,这种能量转化具有方向性。

2、电容在不稳定电路中,当与电容器并联的其余部分两端电压高于电容器两极板间电压时,就会在其余部分和电容器之间形成充电电流,电容器被充电,定向移动的电荷被转移到电容器极板上,在两板间形成电场,将电路中的电能转化为储存于两板间的电场能,能量还是有序的。

当与电容器并联的其余部分两端电压低于电容器两极板间电压时,就会在电容器和其余部分之间形成放电电流,电容器被充电,电荷从电容器极板上转移到电路中发生定向移动,将储存于两板间的电场能转化为电路中的电能。

从上述分析可以看出来,如果不考虑电磁辐射的话,电容器充放电,实际上是两种有序运动的相互转化。

3、电感在不稳定电路中,当与电感器(线圈)串联的电路中电流增加时,电流形成的磁场增强导致电感器中磁通量增大,进而引起自感电动势阻碍电流的增加,这一过程,电路中传来的电能转化为电感器中的磁场能;反过来,当与电感器(线圈)串联的电路中电流减小时,电流形成的磁场减弱导致电感器中磁通量减小,进而引起自感电动势阻碍电流的减弱,这一过程,电感器中的磁场能转化为电路中的电能。

从上述分析可以看出来,如果不考虑电磁辐射的话,电感器的自感现象,实际上也是两种有序运动的相互转化。

二、对电流影响的表现不同1、暂态电路中(1)电阻:阻碍电流R U I =(2)电容:①充电过程:阻碍电流R U U I C -=,可以将此式变形为R U R U I C -=,其中R U 可以看作是电路中的电压产生的正向电流,RU C 可以看作是电容器电压产生的反向电流,电路中的电流是这两个电流的和。

电容电阻电感

电容电阻电感

电容电阻电感
电阻、电容、电感三者之间没有等量关系。

它们是电路中三个基本的元件,各自具有自己的特性。

1. 电阻:在电路中起到阻碍电流的作用,其大小被称为电阻值。

电阻值通常用欧姆(Ω)作为单位表示。

当电压加在电阻上时,就会产生电流。

2. 电容:在电路中起到储存电荷的作用。

电容值通常用法拉(F)或微法拉(μF)作为单位表示。

当电容两端电压升高时,它会充电并储存电荷。

当电压降低时,电容会放电。

3. 电感:在电路中起到储存磁场能量的作用。

电感值通常用亨利(H)或毫亨利(mH)作为单位表示。

当电流通过电感时,它会建立一个磁场。

当电流方向改变时,磁场也会反向。

在电路中,这三个元件可以互相影响,共同决定了电路的特性。

电阻电容电感基础知识

电阻电容电感基础知识

电阻、电容、电感基础知识(一)电阻常用电阻有碳膜电阻、碳质电阻、金属膜电阻、线绕电阻和电位器等。

表1是几种常用电阻的结构和特点。

图1 电阻的外形电阻种类(电阻结构和特点):碳膜电阻气态碳氢化合物在高温和真空中分解,碳沉积在瓷棒或者瓷管上,形成一层结晶碳膜。

改变碳膜厚度和用刻槽的方法变更碳膜的长度,可以得到不同的阻值。

碳膜电阻成本较低,性能一般。

金属膜电阻在真空中加热合金,合金蒸发,使瓷棒表面形成一层导电金属膜。

刻槽和改变金属膜厚度可以控制阻值。

这种电阻和碳膜电阻相比,体积小、噪声低、稳定性好,但成本较高。

碳质电阻把碳黑、树脂、粘土等混合物压制后经过热处理制成。

在电阻上用色环表示它的阻值。

这种电阻成本低,阻值范围宽,但性能差,很小采用。

线绕电阻用康铜或者镍铬合金电阻丝,在陶瓷骨架上绕制成。

这种电阻分固定和可变两种。

它的特点是工作稳定,耐热性能好,误差范围小,适用于大功率的场合,额定功率一般在1瓦以上。

碳膜电位器它的电阻体是在马蹄形的纸胶板上涂上一层碳膜制成。

它的阻值变化和中间触头位置的关系有直线式、对数式和指数式三种。

碳膜电位器有大型、小型、微型几种,有的和开关一起组成带开关电位器。

还有一种直滑式碳膜电位器,它是靠滑动杆在碳膜上滑动来改变阻值的。

这种电位器调节方便。

线绕电位器用电阻丝在环状骨架上绕制成。

它的特点是阻值范围小,功率较大。

大多数电阻上,都标有电阻的数值,这就是电阻的标称阻值。

电阻的标称阻值,往往和它的实际阻值不完全相符。

有的阻值大一些,有的阻值小一些。

电阻的实际阻值和标称阻值的偏差,除以标称阻值所得的百分数,叫做电阻的误差。

表2是常用电阻允许误差的等级。

表2 常用电阻允许误差的等级国家规定出一系列的阻值作为产品的标准。

不同误差等级的电阻有不同数目的标称值。

误差越小的电阻,标称值越多。

表2是普通电阻的标称阻值系列。

表3中的标称值可以乘以10、100、1000、10k;100k;比如1.0这个标称值,就有1.0Ω、10.OΩ、100.OΩ、1.0kΩ、10.0kΩ、100.0kΩ、1.0MΩ;10.0MΩ;表3 普通固定电阻标称阻值系列不同的电路对电阻的误差有不同的要求。

电容、电阻、芯片、电感的电路符号及图片识别

电容、电阻、芯片、电感的电路符号及图片识别

一、电容的用途电容的用途非常多,主要有如下几种:1.隔直流:作用是阻止直流通过而让交流通过。

2.旁路(去耦):为交流电路中某些并联的组件提供低阻抗通路。

3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路4.滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。

5.温度补偿:针对其它组件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。

6.计时:电容器与电阻器配合使用,确定电路的时间常数。

7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。

8.整流:在预定的时间开或者关半闭导体开关组件。

9.储能:储存电能,用于必须要的时候释放。

例如相机闪光灯,加热设备等等。

(如今某些电容的储能水平已经接近锂电池的水准,一电容储存的电能可以供一个手机使用一天。

二、电容的分类1、按照结构分三大类:固定电容器、可变电容器和微调电容器。

半可变电容:也叫做微调电容。

它是由两片或者两组小型金属弹片,中间夹着介质制成。

调节的时候改变两片之间的距离或者面积。

它的介质有空气、陶瓷瓷、云母、薄膜等。

可变电容:它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。

把两组可变电容装在一起同轴转动,叫做双连。

可变电容的介质有空气和聚苯乙烯两种。

空气介质可变电容体积大,损耗小,多用在电子管收音机中。

聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。

2、按外形分:插件式,贴片式(SMD);3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。

4、按介质分为:陶瓷、云母、纸质、薄膜、电解电容陶瓷电容:以高介电常数、低损耗的陶瓷材料为介质,体积小,电感小。

云母电容:以云母片作介质的电容器。

性能优良,高稳定,高精密。

纸质电容:纸介电容器的电极用铝箔或锡箔做成,绝缘介质是浸蜡的纸,相叠后卷成圆柱体,外包防潮物质,有时外壳采用密封的铁的纸,相叠后卷成圆柱体,外包防潮物质,有时外壳采用密封的铁壳以提高防潮性。

电阻电容电感并联阻抗计算公式

电阻电容电感并联阻抗计算公式

电阻电容电感并联阻抗计算公式
在电路中,电阻、电容和电感的并联阻抗可以通过以下公式计算:
1. 电阻与电容并联的阻抗公式:
Z = R || (1/(jωC))
其中,Z表示电阻电容并联的阻抗,R表示电阻值,C表示电
容值,j表示虚数单位,ω表示角频率。

2. 电阻与电感并联的阻抗公式:
Z = R || (jωL)
其中,Z表示电阻电感并联的阻抗,R表示电阻值,L表示电
感值,j表示虚数单位,ω表示角频率。

需要注意的是,上述公式中的“||”表示并联运算。

具体计算时,可以先计算出电容和电感各自的阻抗,然后再将它们做并联运算。

电阻电容电感的作用

电阻电容电感的作用

电阻电容电感的作用电阻、电容和电感是电路中常见的三种被动元件,它们在电路中扮演着不同的角色和作用,对电路的工作原理和性能有着重要影响。

首先,电阻是电路中最简单也是最基本的元件之一、电阻的作用是阻碍电流通过,使电路中的电流有限制。

电阻的单位为欧姆(Ω),它的大小表征了电阻的阻碍程度,电阻越大,通过的电流就越小。

电阻常用于调节电路中的电流大小、降低电压和电流的峰值,以及保护其他电子元件免受过电流的损坏。

在电子电路中,电阻通常用于限流、消除电路中的功率损耗、分压、滤波、隔离等功能;在传感器和测量电路中,电阻用于测量电流、电压和温度,常与其他元件组合成电压分压器、电流传感器等。

其次,电容是一种能够存储电荷的元件,它能够在电压变化时存储或释放电能。

电容由两个电极和介质组成,在正极积聚正电荷,在负极积聚负电荷,两极之间的电荷积聚越多,电容的存储能量就越大。

电容的单位为法拉(F),电容量的大小取决于电容的结构、面积、介质和电场强度。

电容的作用主要表现在蓄电、储能、滤波和时标延迟等方面。

在电子电路中,电容通常用于滤波电路、耦合电路、定时电路、振荡电路等;在能量储存和传输方面,电容广泛用于电池、电容器、电动机启动、灯泡发光等。

最后,电感是电路中存储磁能的元件,它由线圈或线圈组成,在电流变化时产生电磁感应。

电感的单位为亨利(H),电感的大小取决于线圈的结构、匝数、材料和长度。

电感的作用主要表现在储能、滤波和感应等方面。

电感在电子电路中常用于滤波电路、放大器、振荡电路、定时电路、磁场感应和电能传输等。

除了上述基本作用外,电阻、电容和电感在电路中还有一些其他的特殊作用。

例如,电阻可以作为电路的负载,通过电压降和电流限制来实现功率传输和分配。

电容可以作为电路中的临时能量存储器,对电路的瞬态响应和稳态响应起到重要作用。

电感可以用于阻止电流瞬态和尖峰,使电路稳定工作,且在电磁感应和能量传输方面有独特的应用。

总的来说,电阻、电容和电感是电子电路中不可或缺的元件,它们各自具有不同的特性和作用。

电阻电容电感在电路中的作用

电阻电容电感在电路中的作用

电阻电容电感在电路中的作用1. 电路的基础电路就像是我们生活中的小道,通往各种电子产品的神奇世界。

在这条小道上,电阻、电容和电感就像是三个形形色色的小伙伴,各自扮演着不同的角色。

它们不光是在电路里忙活,实际上,它们在电路中可谓是“无间道”式的存在。

想象一下,如果没有它们,电路就会像失去了调味料的饭菜,没了灵魂,枯燥得很。

1.1 电阻的角色首先,让我们聊聊电阻。

电阻就像那个喜欢在聚会中控制气氛的人,总是让电流保持适度的状态。

它的作用就是限制电流的流动,确保电路不会“过火”。

比如,你可以想象电阻就像是马路上的交通灯,红灯时让车辆停下,确保大家安全通行。

如果电阻太小,电流就会疯狂地涌动,像小孩在超市里撒欢,最后可能导致电路“跳闸”,麻烦得很。

1.2 电容的魅力接下来是电容。

电容就像那种总是爱攒钱的人,储存着电能,随时准备在需要的时候释放出来。

当电路需要瞬间的电流时,电容就会迅速放电,就像忍耐了一整天的孩子终于得到玩具一样,欢快而迅速。

电容在滤波和耦合中也发挥着巨大的作用,可以把噪声隔离开,保证电流的质量。

没了电容,电路就会像一部没电的手机,啥都干不了。

2. 电感的奥秘再来看看电感。

电感就像是那种沉稳的大叔,尽管行动缓慢,但一旦发力,能量绝对不容小觑。

电感的主要作用是储存磁能,它对电流变化特别敏感。

当电流变化时,电感会产生反向电动势,抵抗电流的变化。

这就像是在给电路设一个“保护罩”,确保一切顺利进行。

在一些高频电路中,电感也是不可或缺的,像是把控节奏的音乐家,让整个电路运转得更加和谐。

2.1 三者的相互关系这三个小伙伴在电路中可不是各自为政,反而是默契的搭档。

电阻、电容和电感常常一起合作,共同调节电流的走向,塑造出各种不同的电路特性。

就像在一场比赛中,团队合作是制胜的关键。

如果电阻、电容和电感不协调,电路就可能变得“千疮百孔”,难以正常工作。

2.2 日常应用在我们的日常生活中,这三者的应用随处可见。

比如说,咱们的音响系统,里面的电容负责过滤噪音,电感则调节音频信号,电阻控制音量,确保我们听到的每一个音符都恰到好处。

电路的基本原件

电路的基本原件

电路的基本元件包括**电阻、电容、电感、独立源、受控源、二极管、理想变压器等等**,具体介绍如下:
1. 电阻。

电阻是反映能量损耗的电路参数,用以模拟电阻器和其他实际部件的电阻特性。

在电路理论中,电阻元件(简称电阻)用以模拟电阻器和其他实际部件的电阻特性,端电压u和端电流i之间关系满足f(u,i) = 0方程的就是电阻元件,跟电压电流关系为直线性、不随时间变化阻值的电阻被称为线性时不变电阻元件。

2. 电容。

电容是反映电场储能性质的电路参数,用以模拟电容器和其他实际部件的电容特性。

电容元件所储电荷量与电压关系成直线关系且电容值不随时间变化的电容元件被称为线性时不变电容元件,电容元件电压的跳变必然伴有无限大的电流。

3. 电感。

电感是反映磁场储能性质的电路参数,用以模拟电感器和其他实际部件的电感特性。

4. 独立源。

独立源分为独立电压源(提供恒定电压,U-I曲线为平行于I轴的直线)和独立电流源(提供恒定电流,U-I曲线为平行于U轴的直线)。

5. 受控源。

受控源根据控制量和受控量的不同分为压控电压源、压控电流源、流控电压源、流控电流源。

6. 二极管。

二极管只能通过正向电流而不能通过反向电流。

7. 理想变压器。

理想变压器一种耦合系数为1,L1、L2、M都无穷大的变压器。

以上就是电路的基本元件,希望能够对您有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻、电容和电感
王传芳/*************************
1、电流信号的四种表示方式:
2、纯电阻电路中电流与电压的关系:
3、纯电感电路中电流与电压的关系:
上图所示的电感,当电感线圈有电流i时,根据线圈的绕制方向(右手法则),会产生一个磁场B⃑ ,当电流变化时,线圈会产生一个感应磁场,感应磁场会抵制原磁场B⃑ 的变化,这个感应磁场就产生了电感两端的电压:
4、纯电容电路中电流与电压的关系:
通过电容的电流与电容两端电压的基本关系式:
u =L di dt
电流的变化是电感两端电压的原因。

di
dt >0时,感应电压与u 方向相同,di
dt <0时,感应电压与u 方向相反。

若 i =I sin ωt
则 u =L di
dt =LωI cos ωt =|X L |I sin(ωt +90°) =U sin(ωt +90°) U =I X
=I j |X L | 或者 I =U /j |X L | =U /X
• 频率相同
• 相位相差90度(电压超前电流90°)
i =I sin ωt
u =U sin(ωt +90°) 若 I =I∠0°
则 U =U∠90° =I |X L |∠90°∠0° =I j
|X L | • 复数形式的欧姆定律:
i =C du
dt
电容两端的电压是通过其电流的时间累积效应
若 u =U sin ωt 则 i =C
du dt =CωU cos ωt =U cos ωt 1/Cω
=
U cos ωt |X C |=U sin(ωt +90°)/|X C |=I sin(ωt +90°)
或者 u =1
C ∫idt
• 频率相同

相位相差90度(电压落后电流90°)
i =I sin ωt
u =U sin(ωt +90°)
4、阻抗:
在具有电阻、电感和电容的电路里,对交流点所起的阻碍作用叫做阻抗。

阻抗用Z 表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容对交流电所起的阻碍作用称为容抗,电感对交流电所起的阻碍作用称为感抗。

阻抗的单位是欧姆:
5、电感的等效模型选择(只考虑寄生电阻)
大电感:给定频率下的感抗相对较大(与小电感的电抗相比),此时并联电阻对整体阻抗的影响更大,所以并联电阻比串联电阻更重要,因此并联等效电路模式更为适用。

U =I X
=−jI |X C | 或者 I =U /−j |X C | =U /X
若 I =I∠90°
则 U =U∠0° =I |X C |∠90°∠−90° =−I j
|X C | •
复数形式的欧姆定律:
• 矢量
• 阻抗的单位:欧姆 Z =R +jX =|Z | ∠θ
|Z |=√R 2+X 22
θ =tan −1(X
R )
由此可见,电抗X 值是一个实数,对电感而言是正数,对电容而言是负数,单位为欧姆。

电感和电容的阻抗VS.频率
小电感:对于小的电感值,电抗变得相对较小(与大电感的电抗相比),此时串联电阻分量更重要。

因此,串联等效电路模式更适用。

6、典型电感的等效电路及电感特性
真实的电感远不止一个纯电感,典型电感器的等效电路如下图所示
大电感的实际等效电路
小电感的实际等效电路
电感器是由导线环绕一个磁芯所组成,其特性依据使用的磁芯材料而定。

有磁芯的电感器的电感量受磁性材料的磁导率μ的影响,磁芯的磁感应强度随流过电感线圈的电流所产生的磁场强度的变化而变化,其变化关系由磁化曲线描述。

电感量L反应的是线圈阻碍电流变化作用的物理量,也就是说其实质是线圈的自感系数。

其大小取决于线圈的粗细,长短,匝数以及有无磁性等因素。

当然电感值也反应了档位电流情况下的磁通量,即φB=LI。

而φB=ΨB,⇒L=ΨB/I=ΨμH/I。

而磁场强度H与电流是线性关系,因此电感感值与磁导率μ强相关。

因此电感在不同电流大小和温度条件下,其感值是不一样的。

电流很强或温度过高时,磁导率μ下降,因此感值也会降低。

电感器若叠加了一个直流,那么电感器的感值会随着叠加的直流大小而变化,这就是电感器的直流叠加特性。

高导磁易饱和磁芯电感器具有显著的直流叠加特性。

7、电容的等效模型选择(只考虑寄生电阻)
小电容:小电容可产生大容抗,这意味着相比之下并联电阻(Rp)的影响明显大于串联电阻(Rs)。

与容抗相比,表示的电阻值的影响可以忽略不计,所以应使用并联电路模式。

大电容:涉及大电容(容抗低),则Rs比Rp更重要。

所以应使用串联电路模式。

用LCR对电容和电感的测量,一般阻抗大于约10KΩ,使用并联电路模式;阻抗小于约10 Ω,使用串联电路模式。

8、阻抗器件的频率特性:
所有元件均与信号频率有相关性。

其变化的大小主要取决于元件寄生(杂散)参数的大小,以上仅考虑了串联和并联两种等效方式,真正的元件等效模式可能远比串联和并联等效复杂的多。

9、品质因数和损耗因子:
品质因数Q值是衡量电感器件的主要参数。

是指电感器在某一频率的交流电下工作时,所呈现的感抗(储能部分)与其等效损耗电阻(耗能部分)之比。

电感器的Q值越高,其损耗越小,效率越高。

损耗因子D值时衡量电容器件的主要参数。

是指电容器在某一频率的交流电下工作时,其等效损耗电阻与所呈现的容抗之比。

电容器的D值越小,效率越高。

Q=X/R=(储存能量/损耗能量)
D=1/Q
损耗越大的元器件在实际使用过程中发热就越大,效率就越低。

相关文档
最新文档