2011高考数学基础知识汇总_《试题调研》特辑
2011年高考数学高频考点3、数列
![2011年高考数学高频考点3、数列](https://img.taocdn.com/s3/m/c6f22519aef8941ea66e05d1.png)
2011年高考数学高频考点3、数列命题动向数列是高中数学的重要内容,也是学习高等数学的基础,它蕴含着高中数学的四大思想及累加(乘)法、错位相减法、倒序相加法、裂项相消法等基本数学方法;本部分内容在高考中的分值约占全卷的10%~15%,其中对等差与等比数列的考查是重中之重.近年来高考对数列知识的考查大致可分为以下三类:(1)关于两个特殊数列的考查,主要考查等差、等比数列的概念、性质、通项公式以及前n 项和公式等,多以选择题、填空题形式出现,难度不大,属于中低档题;(2)与其他知识综合考查,偶尔结合递推数列、数学归纳法、函数方程、不等式与导数等知识考查,以最值与参数问题、恒成立问题、不等式证明等题型出现,一般难度比较大,多为压轴题,并强调分类讨论与整合、转化与化归等数学思想的灵活运用;(3)数列类创新问题,命题形式灵活,新定义型、类比型和探索型等创新题均有出现,既可能以选择题、填空题形式出现,也可能以压轴题形式出现.押猜题5已知b a b a +,,为等差数列ab b a ,,,为等比数列,且,1)(log 0<<ab m 则m 的取值范围是( )A .1>mB .8>mC .81<<mD .810><<m m 或解析 依题意得⎪⎩⎪⎨⎧≠≠⋅=++=.0,0,,22b a ab a b b a a b 解得⎩⎨⎧==.4,2b a 所以,8log )(log m m ab =由18log 0<<m 得.8>m 故选B.点评 本题考查等差数列和等比数列的概念和性质,将简单对数不等式的解法融入其中考查体现了学科内知识的交汇性.押猜题6(理)已知数列}{n a 的前n 项和为n S ,且,41=a,2)1(2--+=n n na S n n *).,2(N n n ∈≥ (1)求数列}{n a 的通项公式;(2)设数列}{n b 满足:,41=b 且*),(,2)1(21N n b n b b n n n ∈---=+求证:*),2(N n n a b n n ∈≥>;(3)求证:.)11()11)(11)(11(31544332e b b b b b b b b n n <+++++ 解析 (1)当*,3N n n ∈≥时,,2)1(2--+=n n na S n n,2)2)(1(2)1(11---+-=--n n a n S n n 两式相减得:,221)1(1⨯----=-n a n na a n n n *).,3(11N n n a a n n ∈≥=-∴-.3,1222221=∴-+=+a a a a可得,⎩⎨⎧∈≥+==*).,2(1),1(4N n n n n a n (2)①当2=n 时,,31422212a b b =>=-=不等式成立.②假设当*),2(N k k k n ∈≥=时,不等式成立,即.1+>k b k 那么,当1+=k n 时, ,222)1(2222)1(2)1(21+≥=-+>->-+-=---=+k k k b k b b b k b b k k k k k k 所以当1+=k n 时,不等式也成立.根据①、②可知,当*,2N n n ∈≥时,.n n a b >(3)设).,0(,)1ln()(+∞∈-+=x x x x f 则,01111)(<+-=-+='xx x x f ∴函数)(x f 在),0(+∞上单调递减,.)1ln(),0()(x x f x f <+∴<∴当*,2N n n ∈≥时,,1111+=<n a b n n ,2111)2)(1(11)11ln(11+-+=++<<+∴++n n n n b b b b n n n n 21114131)11ln()11ln()11ln(14332+-+++-<++++++∴+n n b b b b b b n n ,312131<+-=n .)11()11)(11(314332e b b b b b b n n <+++∴+ 点评 本题是数列、数学归纳法、函数、不等式等的大型综合题,衔接自然,叙述流畅,毫无拼凑的痕迹,情景新颖,具有较好的区分度,入口较宽,要求学生具有一定的审题、读题能力,一定的等价变形能力,同时还要求学生具有较高的数学素养和数学灵气.该题已达到高考压轴题的水准.(文)已知函数)(x f 对任意实数q p ,都满足:),()()(q f p f q p f ⋅=+且.31)1(=f(1)当∈n N *时,求)(n f 的表达式;(2)设∈=n n nf a n )((N *),n S 是数列}{n a 的前n 项的和,求证:43<n S ; (3)设∈+=n n f n nf b n ()()1(N *),设数列}{n b 的前n 项的和为n T ,试比较nT T T T 1111321++++ 与6的大小. 解析 (1),31)1(),1()()1(=⋅=+f f n f n f ∈=+∴n n f n f )((31)1(N *), )(n f ∴是以31)1(=f 为首项,以31为公比的等比数列, ,)31(31)(1-⨯=∴n n f 即∈=n n f n ()31()(N *). (2),)31(n n n a = ,)31()31)(1()31(3)31(2311132n n n n n S +-++⨯+⨯+⨯=- ① ,)31()31)(1()31(3)31(2)31(1311432++-++⨯+⨯+⨯=n n n n n S ② ①-②得:132)31()31()31()31(3132+-++++=n n n n S 1)31(311])31(1[31+---=n n n ,)31(])31(1[211+--=n n n .)31(2)31(4343n n n n S --=∴ ∈n N *,.43<∴n S (3),31)()1(n n f n nf b n =+= ,6)1(2)1(31+=+⨯=∴n n n n T n).111(61+-=∴n n T n ).111(6)11141313121211(61111321+-=+-++-+-+-=++++∴n n n T T T T n ∈n N *,.61111321<++++∴nT T T T 点评 本题是函数与数列的交汇综合题,体现了在知识交汇点处设计试题的高考命题思想.其中第(1)问所用的“赋值法”,第(2)问所用的“错位相减法”,第(3)问所用的“裂项相消法”等是高考必考的重要方法和技巧.。
2011陕西高考数学
![2011陕西高考数学](https://img.taocdn.com/s3/m/f146a4f9f021dd36a32d7375a417866fb84ac0f9.png)
2011陕西高考数学一、题目简析2011年陕西高考数学试卷考查了数学的基本概念、函数与方程、立体几何、数列与数表等多个知识点。
本文将从这些知识点展开具体的分析,为读者解析试卷的题目和解题思路。
二、基本概念在2011年陕西高考数学试卷中,基本概念的考察主要涉及数的性质与运算、计量与单位等内容。
其中,数的性质与运算包括了整数的性质、有理数的性质、实数与非实数等。
计量与单位的考查则主要涉及物理量的度量、单位换算等。
这些内容都是数学中的基础,考生在学习过程中需要熟练掌握。
三、函数与方程函数与方程是高中数学的重要内容之一,也是陕西高考数学试卷的重点考察点之一。
2011年的数学试卷中,涵盖了函数的定义、函数的性质、函数的图像、函数的应用等多个方面。
方程则主要考察了一元二次方程和二元一次方程的解法。
考生在复习时需要通过大量的练习,掌握相关的解题技巧。
四、立体几何立体几何是数学中的一个重要分支,也是陕西高考数学试卷中常见的考察点。
2011年的数学试卷中,考查了几何体的性质和计算、平面与直线的位置关系、空间几何体的运算等内容。
立体几何包含了丰富的图形,需要考生既熟悉相关的概念又能够灵活应用。
五、数列与数表数列与数表是高中数学中一个常见的重要内容,也是2011年陕西高考数学试卷中的主要考察点之一。
数列与数表考察的主要内容包括等差数列、等比数列、递推关系与通项公式的应用等。
通过数列与数表的考查,考生能够加深对数学规律和推理能力的理解。
六、总结2011年陕西高考数学试卷涵盖了数学的基本概念、函数与方程、立体几何、数列与数表等多个知识点。
从试卷的角度来看,这些知识点覆盖面广,考查形式多样。
因此,考生在备考过程中需要全面、系统地复习这些知识,并进行大量的习题练习,提高解题能力。
只有做到基础扎实、方法灵活,才能在考场上取得好的成绩。
本文通过对2011年陕西高考数学试卷的分析,希望能够对考生在备考过程中有所帮助。
无论是对基础知识的巩固还是对解题技巧的培养,都需要坚定的信心和扎实的学习态度。
2011年高考数学试题分类汇编 专题三角函数 理
![2011年高考数学试题分类汇编 专题三角函数 理](https://img.taocdn.com/s3/m/554b08afd1f34693daef3eaf.png)
2011年高考试题数学(理科)三角函数一、选择题:1. (2011年高考山东卷理科3)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.3.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 【答案】C.【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题. 【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知(A) 答案: D解析:由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=cos()2βα+=(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】:()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++1333399=⨯+== 故选C 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( )A 54-B 53-C 32D 43 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2s i n ()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC上的点,且,2,2AB AD AB BC BD ==,则sin C 的值为( )ABCD【答案】D【解析】设BD a =,则由题意可得:2,BC a =AB AD ==,在ABD ∆中,由余弦定理得:222cos 2AB AD BD A AB AD +-==⋅2232a a ⨯-13,所以sin A=3,在△ABC 中,由正弦定理得,sin sin AB BC C A =,所以2sin C =,解得sin CD.10.(2011年高考湖北卷理科3)已知函数()cos ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 答案:Bcos 1x x -≥,即1sin()62x π-≥,解得522,666πππππ+≤-≤+∈k x k k z ,即22,3k x k k z ππππ+≤≤+∈,所以选B.11.(2011年高考陕西卷理科6)函数()cos f x x =在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点 【答案】B 【解析】:令1y =2cos y x =,则它们的图像如图故选B12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8-(C)1 (D) 23解析:选A 。
2011高考数学调研题
![2011高考数学调研题](https://img.taocdn.com/s3/m/dcf19080284ac850ad024252.png)
2011高考数学调研题一、填空题1. 在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 ▲ .答案:45 462.已知113cos ,cos()714ααβ=-=,且0,2πβα<<< 则β= ▲ . 答案:3π3.若43)(2--=x x x f ,]6,3[-∈x ,则对任意]6,3[0-∈x ,使0)(0≤x f 的概率为▲ . 答案:954. 从{-1,1,2}中随机选取一个数记为k,从{-2,1,2}中随机选取一个数记为b,则直线y=kx+b 不 经过第三象限的概率为 ▲ . 答案:925. 已知函数⎪⎩⎪⎨⎧<++≥++=1,11,1)(22x x ax x ax x x f ,则“-2≤a ≤0”是“f (x )在R 上单调递增”的 ▲条件.(填充分不必要、必要不充分或充要) 答案:必要不充分6. 函数y =f (x )的图像在点M (1, f (1))处的切线方程是y =3x -2,则f (1)+ f ′(1)= ▲ . 答案:∵切点既在曲线上也在切线上,∴f (1)=3-2=1,f ′(1)=3,∴f (1)+ f ′(1)=4。
7. 若直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得的弦长为4,则11a b+的最小值是 ▲ . 答案:4甲 8 9 1 2 5 7 8 5 6 乙2 93 4 54 8 2 65 3 56 78.已知12,F F 分别是椭圆22221(0)x y b a a b+=<<的左、右焦点,若在椭圆的右准线上存在一点P ,使得线段1PF 的垂直平分线过点2F ,则离心率e 的取值范围是 ▲ . 答案:)1,33[9.设函数()2x f x x x =⋅+,0A 为坐标原点,n A 为函数()y f x =图像上横坐标为*()n n N ∈ 的点,向量11nn k k k AA -==∑a ,(1,0)=i ,设n θ为n a 与i 的夹角,则1tan nk k θ=∑= ▲ .答案:0(,2)n n n A A n n n ==⋅+a ,n θ即为向量0n A A 与x 轴的夹角,所以tan 21n n θ=+,所以211tan (22...2)22nn n kk n n θ+==++++=+-∑.10.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间t=0时,点A 与钟面上标12的点B 重合. 将A 、B 两点间的距离d(cm)表示成t(s)的函数,则d= ▲ , 其中t ∈[0,60]。
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)
![2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)](https://img.taocdn.com/s3/m/fd0f6fe97e21af45b307a8cc.png)
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)一、选择题:1. (2011北京文)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为( )(A)2 (B)3 (C)4 (D)51.【答案】C【解析】执行三次循环,12S A =≤=成立,112p =+=,1131122S P =+=+=,322S A =≤=成立,213p =+=,3131112236S P =+=+=,1126S A =≤=成立,314p =+=1111112566412S p =+=+=,25212S A =≤=不成立,输出4p =,故选C2.(2011北京理)执行如图所示的程序框图,输出的s 值为( )(A )-3 (B )-12(C )13 (D )22.【答案】D【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。
3. (2011福建文)某校选修乒乓球课程的学生中,高一年级有30名, 高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A. 6B. 8C. 10D.12解析:由30:406:,n =可得8n =,答案应选B 。
4. (2011福建文)阅读右图所示的程序框图,运行相应的程序,输出的结果是( )A.3B.11C.38D.1234.解析:110,12310,a a =<=+=<2321110,11a a =+=>=,答案应选B 。
5. (2011广东理) 设S 是整数集Z 的非空子集,如果S b a ∈∀,,有S ab ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,T ∪V=Z, 且T c b a ∈∀,,,有T c ab ∈,;V z y x ∈∀,,,有V xyz ∈,则下列结论恒成立的是( )A. T,V 中至少有一个关于乘法是封闭的B. T,V 中至多有一个关于乘法是封闭的C. T,V 中有且只有一个关于乘法是封闭的D. T,V 中每一个关于乘法是封闭的5. 解析:(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ,若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D 。
2011年高考数学试题分类汇编-专题函数与导数-理
![2011年高考数学试题分类汇编-专题函数与导数-理](https://img.taocdn.com/s3/m/1f8dd3b425c52cc58ad6becb.png)
2011年高考数学试题分类汇编-专题函数与导数-理2011年高考试题数学(理科)函数与导数一、选择题:1. (2011年高考山东卷理科5)对于函数(),y f x x R=∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要 【答案】B【解析】由奇函数定义,容易得选项B 正确.2. (2011年高考山东卷理科9)函数2sin 2xy x =-的图象大致是【答案】C【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.3. (2011年高考山东卷理科10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x=-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9【答案】B【解析】因为当02x ≤<时, 3()f x xx=-,又因为()f x 是R上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B.4.(2011年高考安徽卷理科3)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x xx2=2-,则()f 1=(A )-3 (B) -1 (C)1(D)3(A )-3 (B) -1 (C)1 (D)3【命题意图】本题考查了函数的奇偶性和求值,是容易题.【解析】∵设()f x 是定义在R 上的奇函数,当x ≤0()f x '=23(34)a xx -=234()4ax x --,在[0,34]是增函数,不适合.【解题指导】排除法解决存在问题和不确定问题很有效6.(2011年高考辽宁卷理科9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞) 答案: D解析:不等式等价于11,22xx -≤⎧⎨≤⎩或21,1log 2,x x >⎧⎨-≤⎩解不等式组,可得01x ≤≤或1x >,即0x ≥,故选D.8.(2011年高考浙江卷理科1)设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】 B 【解析】:当2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-,故选B9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y = B 1+=x y C 12+-=xyD xy -=2【答案】B解析:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定。
备战2011年高考数学专题:数学题型总结讲义-1高考数学选择题的解题策略
![备战2011年高考数学专题:数学题型总结讲义-1高考数学选择题的解题策略](https://img.taocdn.com/s3/m/b16624d73186bceb19e8bba0.png)
第1讲高考数学选择题的解题策略一、知识整合1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.二、方法技巧1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1.若sin2x>cos2x,则x的取值范围是()(A){x|2kπ-34π<x<2kπ+π4,k∈Z} (B){x|2kπ+π4<x<2kπ+54π,k∈Z}(C){x|kπ-π4<x<kπ+π4,k∈Z } (D){x|kπ+π4<x<kπ+34π,k∈Z}解:(直接法)由sin2x>cos2x得cos2x-sin2x<0,即cos2x<0,所以:π2+kπ<2x<32π+kπ,选D.另解:数形结合法:由已知得|sin x|>|cos x|,画出y=|sin x|和y=|cos x|的图象,从图象中可知选D.例2.设f(x)是(-∞,∞)是的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()(A)0.5 (B)-0.5 (C) 1.5 (D)-1.5 解:由f(x+2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函数,得f (-0.5)=-f (0.5)=-0.5,所以选B .也可由f (x +2)=-f (x ),得到周期T =4,所以f (7.5)=f (-0.5)=-f (0.5)=-0.5.例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( )(A ) 1440 (B ) 3600 (C ) 4320 (D ) 4800解一:(用排除法)七人并排站成一行,总的排法有77A 种,其中甲、乙两人相邻的排法有2×66A 种.因此,甲、乙两人必需不相邻的排法种数有:77A -2×66A =3600,对照后应选B ;解二:(用插空法)55A ×26A =3600.直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错.2、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例4.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(44,0),1x 2,tan x θ<<若则的取值范围是( )(A ))1,31( (B ))32,31( (C ))21,52( (D ))32,52( 解:考虑由P 0射到BC 的中点上,这样依次反射最终回到P 0,此时容易求出tan θ=21,由题设条件知,1<x 4<2,则tan θ≠21,排除A 、B 、D ,故选C . 另解:(直接法)注意入射角等于反射角,……,所以选C . 例5.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n =( )(A ) 2n (B ) 2n -1 (C ) 2n -2 (D ) (n -1)2n -1 解:(特值法)当n =2时,代入得C 20+C 22=2,排除答案A 、C ;当n =4时,代入得C 40+C 42+C 44=8,排除答案D .所以选B .另解:(直接法)由二项展开式系数的性质有C n 0+C n 2+…+C n n -2+C n n =2n -1,选B . 例6.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A )130 (B )170 (C )210 (D )260解:(特例法)取m =1,依题意1a =30,1a +2a =100,则2a =70,又{a n }是等差数列,进而a 3=110,故S 3=210,选(C ).例7.若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫ ⎝⎛+2lg b a ,则( ) (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q解:取a =100,b =10,此时P =2,Q =23=R =lg 55=可知选P <Q <R当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.例8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( )(A )(0,1) (B )(1,2) (C )(0,2) (D ) [2,+∞)解:∵ 2-ax 是在[0,1]上是减函数,所以a >1,排除答案A 、C ;若a =2,由2-ax >0得x <1,这与x ∈[0,1]不符合,排除答案D .所以选B .例9.过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是( )(A ) y 2=2x -1 (B ) y 2=2x -2(C ) y 2=-2x +1 (D ) y 2=-2x +2解:(筛选法)由已知可知轨迹曲线的顶点为(1,0),开口向右,由此排除答案A 、C 、D ,所以选B ; 另解:(直接法)设过焦点的直线y =k (x -1),则y kx y x =-=⎧⎨⎩142,消y 得: k 2x 2-2(k 2+2)x +k 2=0,中点坐标有x x x k k y k k k k =+=+=+-=⎧⎨⎪⎪⎩⎪⎪12222222212(),消k 得y 2=2x -2,选B . 筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%.4、代入法:将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例10.函数y =sin(π3-2x )+sin2x 的最小正周期是( ) (A )π2(B ) π (C ) 2π (D ) 4π 解:(代入法)f (x +π2)=sin[π3-2(x +π2)]+sin[2(x +π2)]=-f (x ),而 f (x +π)=sin[π3-2(x +π)]+sin[2(x +π)]=f (x ).所以应选B ; 另解:(直接法)y =32cos2x -12sin2x +sin2x =sin(2x +π3),T =π,选B . 例11.函数y =sin (2x +25π)的图象的一条对称轴的方程是( ) (A )x =-2π (B )x =-4π (C )x =8π (D )x =45π 解:(代入法)把选择支逐次代入,当x =-2π时,y =-1,可见x =-2π是对称轴,又因为统一前提规定“只有一项是符合要求的”,故选A . 另解:(直接法) ∵函数y =sin (2x +25π)的图象的对称轴方程为2x +25π=k π+2π,即x =2πk -π,当k =1时,x =-2π,选A . 代入法适应于题设复杂,结论简单的选择题。
2011年高考数学_指数、对数函数—高考生必备基础知识
![2011年高考数学_指数、对数函数—高考生必备基础知识](https://img.taocdn.com/s3/m/2a63e0cbf90f76c661371aeb.png)
2011年高考数学_指数、对数函数—高考生必备基础知识指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx -+11,F (x )=x -21+f (x ). (1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明; (2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n ; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解.●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上;(2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标.错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218x x x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n位于函数y =2000(10a )x (0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n . (2)∵函数y =2000(10a )x (0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a )-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7 ∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20. ●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力.(3)应用题目.此类题目要求考生具有较强的建模能力.●歼灭难点训练一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x +1)-x ] C.g (x )=2x ,h (x )=lg(10x +1)-2x D.g (x )=-2x ,h (x )=lg(10x +1)+2x 2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )二、填空题3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02( )(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y =ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a . 三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x )的最大、最小值. 参考答案难点磁场解:(1)由xx -+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1.因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+y y x x x , ∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R . 当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解. 歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1) ①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1) ②由①②得:g (x )=2x ,h (x )=lg(10x +1)-2x . 答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f - -1(x )=⎩⎨⎧<-≥)1( 2)1( log 2x x x x ,从而: f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x 答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x 4.解析:由题意,5分钟后,y 1=ae-nt ,y 2=a -ae -nt ,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10.答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′. ∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aa x -21,∴g (x )=log a ax -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=aa -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-. 6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号), 当a >1时,有log a x 1x 2≤log a (221x x +)2, ∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221x x +)2, ∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u-1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论. (1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2);(2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23.即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8 即M ={x |x ∈[22,8]} 又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3生于忧患,死于安乐《孟子•告子》舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,管夷吾举于士,孙叔敖举于海,百里奚举于市。
2011年高考数学试题分类汇编大全
![2011年高考数学试题分类汇编大全](https://img.taocdn.com/s3/m/c9873697dd88d0d233d46a6a.png)
18.(全国新课标理16) 中, ,则AB+2BC的最大值为_________.
【答案】
19.(重庆理14)已知 ,且 ,则 的值为__________
【答案】
20.(福建理14) 如图,△ABC中,AB=AC=2,BC= ,点D在BC边上,∠ADC=45°,则AD的长度等于______。
【答案】
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
12.(湖南理2)设集合 则“ ”是“ ”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
【答案】A
13.(湖北理9)若实数a,b满足 且 ,则称a与b互补,记 ,那么 是a与b互补的
【答案】A
14.(安徽理9)已知函数 ,其中 为实数,若 对 恒成立,且 ,则 的单调递增区间是
(A) (B)
(C) (D)
【答案】C
二、填空题
15.(上海理6)在相距2千米的 . 两点处测量目标 ,若 ,则 . 两点之间的距离是千米。
【答案】
16.(上海理8)函数 的最大值为。
【答案】
17.(辽宁理16) 已知函数 =Atan( x+ )( ),y= 的部分图像如下图,则 .
9.(全国新课标理10)已知a,b均为单位向量,其夹角为 ,有下列四个命题
其中真命题是
(A) (B) (C) (D)
【答案】A
10.(辽宁理2)已知M,N为集合I的非空真子集,且M,N不相等,若 ,则
(A)M(B)N(C)I(D)
【答案】A
11.(江西理8)已知 , , 是三个相互平行的平面.平面 , 之间的距离为 ,平面 , 之间的距离为 .直线 与 , , 分别相交于 , , ,那么“ = ”是“ ”的
2011届高考数学知识点总结(最新)
![2011届高考数学知识点总结(最新)](https://img.taocdn.com/s3/m/cd941b1f650e52ea551898d3.png)
2011届高考数学知识点总结1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m i n m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量M =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为M=(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左. 85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b yc ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b-=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0A x B yC ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行;(3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅= (m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式dd =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-; (5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ;(2) m n C +1-m n C =m n C 1+. 注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、...个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!!...21211m n n n n p n p n n n p C C C N m m=⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p m m m m m m mp m n n n n n nC C C C C C n A A A A A A =-+-+-+-++- .160.不定方程2n x x x m = 1+++的解的个数(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n kn n n n n n C C C C C C C +--+---+---+---------+-+- 个.161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=. 162.等可能性事件的概率()mP A n=. 163.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 165.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).166.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 167.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-168.离散型随机变量的分布列的两个性质。
2011年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)
![2011年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)](https://img.taocdn.com/s3/m/f0d09a281eb91a37f1115cd3.png)
2011年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)一、选择题:1. (2011全国大纲卷文)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =( )(A)4 (B)42 (C)8 (D)821.【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则22(4)(1)a a a =-+-,即210170a a -+=,所以由两点间的距离公式可求出21212122[()4]2(100417)8C C a a a a =+-=⨯-⨯=.2.(2011四川文)圆22460x y x y +-+=的圆心坐标是( )(A )(2,3) (B )(-2,3) (C )(-2,-3) (D )(2,-3) 答案:D解析:圆方程化为22(2)(3)13x y -++=,圆心(2,-3),选D .3.(2011重庆理)在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A .25B .210C .152D .2204. (2011安徽文)若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为( ) (A )-1 (B) 1 (C) 3 (D) -34. B 【解析】本题主要考查了圆和直线的方程以及直线和圆的位置关系。
圆的方程可变为()()x y 22+1+-2=5,因为直线经过圆的圆心,所以()a 3⨯-1+2+=0,即a =1. 【技巧点拨】解题关键是把圆的方程化为标准方程,求出圆心坐标。
5.(2011北京文)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC V 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)16.(2011北京理)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为( )(A ){}9,10,11 (B ){}9,10,12 (C ){}9,11,12 (D ){}10,11,12 【答案】C【解析】如下图,在t=0,0<t<1,t=1时分别对应点为9,11,12,选C。
2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)
![2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)](https://img.taocdn.com/s3/m/43378e02b7360b4c2e3f64da.png)
2011年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题:1.(2011安徽文)函数2)1()(x ax x f n -=在区间〔0,1〕上的图像如图所示,则n 可能是( ) (A )1 (B) 2 (C) 3 (D) 41.A 【解析】法一:本题主要考查了函数图像、利用导数求函数最值、均值不等式等知识,属于难题。
解题时根据四个选项中的n 先确定函数解析式,再利用导数求出最值点即可利用排除法找到答案。
由函数图像可知0a >,当1n =时,()232()(1)2f x ax x a x x x =-=-+,()(31)(1)f x a x x '=--,所以函数的最大值点为10.53<,所以A 可能;当2n =时,函数22()(1)f x ax x =-的图像关于直线12x =对称,由图像知B 错误;当3n =时,()32543()(1)2f x ax x a x x x =-=-+,()()()222()583531f x ax x x ax x x '=-+=--,最大值点为30.55>,股C 错误;当4n =时,()42654()(1)2f x ax x a x x x =-=-+,()()()5433()61042321f x a x x x ax x x '=-+=--,函数的最大值点为20.53>,由图像知D 不可能.法二:法三: 【技巧点拨】本题利用函数图像提供给学生的重要信息是最值点小于0.5,很多学生解题时不知道先确定函数解析式,然后利用导数工具求出函数的极值点,再用最值点小于0.5这一关键信息对选项进行排除不能把握最值点小于0.5这一关键信息,解题受阻。
同时还有注意题干中函数“可能”,“是否”等这些不确定性词语时,解题常用的技巧是把答案带入进行验证。
2. (2011安徽理)函数n m x ax x f )1()(-=在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是( ) (A )1,1m n == (B) 1,2m n ==(C) 2,1m n == (D) 3,1m n ==2. B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1,2m n ==,)2()1()(232x x x a x ax x f +-=-=,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选B.3. (2011福建文)若a>0, b>0, 且函数f(x)=4x 3-ax 2-2bx+2在x=1处有极值,则ab 的最大值等于( ) A. 2 B. 3 C. 6 D. 93.解析:2()1222,(1)12220,6f x x ax b f a b a b ''=--=--=+=≥9ab ≤,当且仅当3a b ==时等号成立,答案应选D 。
2011高考数学基础知识汇总_
![2011高考数学基础知识汇总_](https://img.taocdn.com/s3/m/ec97f1fac8d376eeaeaa31ac.png)
<<返回目录
<<返回目录
要点13 空间向量与立体几何
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点14 导数及其应用
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点7 三角恒等变换
<<返回目录
<<返回目录
要点8
解三角形
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点9
数列
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点10
不等式
<<返回目录
<<返回目录
<<返回目录
高考数学2011萃取精华试题(4)
![高考数学2011萃取精华试题(4)](https://img.taocdn.com/s3/m/bd9a14d4bcd126fff6050b0e.png)
2011 高考数学萃取精髓30 套( 4)1.北京宣武区二模19.(本分 14 分)已知点足:,且已知( 1)求点的直的方程;( 2)判断点与直的地点关系,并明你的;( 3)求点的极限地点。
解:( 1)由,得:然直的方程⋯⋯⋯⋯⋯⋯ 3 分( 2)由,得:∴点,猜想点在直线上,以下用数学归纳法证明:当 n=2 时,点假定当时,点,即当时,∴点上,点⋯⋯⋯⋯⋯⋯8 分( 3)由,得:∴数列是以首,公差 1 的等差数列即点的极限地点点P(0, 1)⋯⋯⋯⋯⋯⋯14 分20. (本分14 分)已知直线与曲线交于两点A、 B。
( 1)设,当时,求点P 的轨迹方程;( 2)能否存在常数a,对随意,都有?假如存在,求出a的值;假如不存在,说明原因。
( 3)能否存在常数m,对随意,都有为常数?假如存在,求出 m的值;假如不存在,说明原因。
解:( 1)设,则由消去 y,得:依题意有解得:且,即或且∴点 P 的坐标为:消去m,得:,即由,得,解得或∴点 P 的迹方程(或)⋯⋯⋯⋯⋯⋯5分( 2)假存在的常数a由消去 y 得:解得:当,,且方程<2>判式∴随意,A、B两点存在,故当,随意,都有⋯⋯⋯⋯⋯⋯ 10 分( 3)假的常数m存在,随意的,使一常数M。
即即化,得:∵ a 随意正数,即,矛盾。
故的常数m不存在。
⋯⋯⋯⋯⋯⋯14 分2.大连二模20.(本小 分12 分)数列 { a n } , S n 是数列的前 n 和,而且 足 a 11, S n 1 4a n2.(Ⅰ)令 b na n 1 2a n (n 1,2,3 ), 证明{b n } 是等比数列,并求 {b } 的通 公式;n(Ⅱ)令 C nb n ,T n 为数列 {1}的前 n 项和 ,求 lim T n .3log 2 C n 2log 2Cn 1n解:(Ⅰ)f ( x ) 3 x 2 2( a ) x.b ab依 意知, s 、 t 是二次方程f (x)0 的两个 根 .∵f( 0)ab 0,f ( )a 2( a b ) 0, ( )b 2( b a ) 0,⋯⋯2分aab a f bab b∴ f ( x) 0 在区 ( 0, a )与( a ,b )内分 有一个 根 .∵ s t,s a t b.⋯⋯⋯⋯ 4 分(Ⅱ)由 s 、 t是 f (x)0的两个 根,知s t2(ab), st ab .3 3∴f (s)f (t) (s3t 3) (ab)(s2t 2)ab( s t)4 (a b)32ab(ab) ⋯ 6 分273∵f ( s t )f ( a b )2 ( a b) 31 ab(a b)1 ( f ( )f ( )),2 3 3227故 AB 的中点 C (s2 t, f (st) )在曲 y=f(x)上. ⋯⋯8分2(Ⅲ) 曲 上点( x 1 , y 1 ) 的切 方程 yy 1[3x 12 2(a b)x 1ab]( xx 1 ).∵ y 1 x 1 (x 1 a) ( x 1 b) ,又切 原点 .∴x 1 ( x 1 a)( x 1b)x 1[ 3x 12 2(a b)x 1ab].解得 x 1 =0,或 x 1a b .2当 x 1=0 ,切 的斜率a b ;当 x 1a b,切 的斜率 1 ( a b) 2ab. ⋯⋯ 10 分24∵ a 0,b 0, a b2 2, ∴两斜率之[ 1( a b)2ab] ab(ab)21(a b)2ab (ab) 2 2ab (ab 1) 2 1 1.44故两切 不垂直 .⋯⋯⋯⋯⋯⋯ 12 分21.(本小 分12 分)已知函数 f ( x) x( x a)( x b),此中 0 a b.(Ⅰ) f ( x)在 x s 及 x t 取到极 ,此中 s t ,求证 : 0 s a t b;(Ⅱ)A(s, f ( s)), B(t, f (t)),求 : 段 AB 的中点 C 在曲 y= 上;f(x)(Ⅲ)若 ab 2 2 ,求 : 原点且与曲y=f(x) 相切的两条直 不行能垂直 .解:(Ⅰ)以 段 AB 的中点 O 原点,直AB x 成立直角坐 系,作 CD ⊥AB 于 D , 由 知: AB AC1|AB|①2而AB AC | AB | | AC | cos A ②由①② ACcos A1,即|AD|1 . ⋯⋯⋯⋯⋯⋯2 分22同理, |BD|3,则|AB| 2∴A (- 1, 0)、 B ( 1,0)⋯⋯ 4 分2双曲 方程x2y 21, h), E( x 1 , y 1 )22 1(a 0, b 0), c(ab2x 12,由 3BE2EC,得5⋯⋯⋯⋯ 6 分2h.y 151h 214a 2b 2因 E 、 C 两点在双曲 上,因此4 4h 2 1 ⋯⋯⋯⋯⋯⋯ 8 分25a 225b 2c 2 a 2 b 2 1a 2122解得7,∴双曲 方程x y 1 ⋯⋯⋯⋯ 10 分 b 26 1 6777(Ⅱ)M (x 1 , y 1 ), N ( x 2 , y 2 )∵ |TM | |TN |, y 12 ( x 1 x 0 )2 y 22 (x 2 x 0 )2∴ y 12y 22 (x 2 x 0 ) 2 ( x 1 x 0 ) 2 ( x 2 2x 12 ) 2x 0 ( x 1 x 2 ) ①又 M、N 在双曲上,足7 x127y121,7x227y221, y12y226(x12x22 ) ②66将②代入①, 7( x12x22 )2x0 (x1x2 )∵x1x2 ,7( x1x2 ) 2 x0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分又 x1x22 7, x07( x1x2 )7, 72∴ x0取范(7 ,)⋯⋯⋯⋯⋯⋯ 14 分3.德州模拟21.( 12 分)已知定点 A( 0, 1), B( 0,- 1), C( 1, 0),点 P 足( 1)求点 P的迹方程,并明方程表示的曲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
121
<<返回目录
h
122
<<返回目录
h
123
<<返回目录
h
124
<<返回目录
h
125
<<返回目录
h
126
<<返回目录
h
127
<<返回目录
h
128
<<返回目录
h
129
<<返回目录
h
131
<<返回目录
h
133
<<返回目录
h
134
<<返回目录
h
135
<<返回目录
h
136
<<返回目录
h
137
<<返回目录
h
138
<<返回目录
h
139
<<返回目录
要点18 统计
h
140
<<返回目录
h
142
<<返回目录
h
143
<<返回目录
h
144
<<返回目录
h
146
<<返回目录
h
108
<<返回目录
h
109
<<返回目录
h
110
<<返回目录
h
111
<<返回目录
h
112
<<返回目录
h
113
<<返回目录
要点15 复数
h
114
<<返回目录
要点16 排列、组合、二项式定理
h
116
<<返回目录
h
117
<<返回目录
h
118
<<返回目录
h
119
<<返回目录
要点17 概率
96
<<返回目录
h
97
<<返回目录
要点13 空间向量与立体几何
h
98
<<返回目录
h
99
<<返回目录
h
100
<<返回目录
h
101
<<返回目录
h
102
<<返回目录
h
103
<<返回目录
h
104
<<返回目录
h
105
<<返回目录
h
106
<<返回目录
要点14 导数及其应用
h
107
<<返回目录
h
53
<<返回目录
h
54
<<返回目录
h
55
<<返回目录
h
56
<<返回目录
h
57
<<返回目录
要点7 三角恒等变换
h
58
<<返回目录
h
59
<<返回目录
要点8 解三角形
h
61
<<返回目录
h
62
<<返回目录
h
63
<<返回目录
h
64
<<返回目录
要点9 数列
h
65
<<返回目录
h
66
<<返回目录
h
67
<<返回目录
h
68
<<返回目录
h
69
<<返回目录
h
70
<<返回目录
h
71
<<返回目录
h
73
<<返回目录
h
74
<<返回目录
h
75
<<返回目录
h
76
<<返回目录
h
77
<<返回目录
h
78
<<返回目录
h
79
<<返回目录
h
80
<<返回目录
要点10 不等式
h
81
<<返回目录
h
82
<<返回目录
h
83
<<返回目录
h
84
<<返回目录
h
85
Байду номын сангаас
<<返回目录
要点11 简易逻辑
h
86
<<返回目录
h
87
<<返回目录
h
88
<<返回目录
h
89
<<返回目录
h
91
<<返回目录
要点12 圆锥曲线与方程
h
92
<<返回目录
h
93
<<返回目录
h
94
<<返回目录
h
95
<<返回目录
h
2011高考数学基础知识汇总
《试题调研》特辑
h
1
目录
要点1 要点2 要点3 要点4 要点5 要点6 要点7 要点8 要点9
集合
• 要点10 不等式
函数概念与基本初等函数
• 要点11 简易逻辑
立体几何初步
• 要点12 圆锥曲线与方程
平面解析几何初步
• 要点13 空间向量与立体几何
基本初等函数(三角函数) • 要点14 导数及其应用
h
39
<<返回目录
h
40
<<返回目录
h
41
<<返回目录
h
42
<<返回目录
h
44
<<返回目录
h
45
<<返回目录
h
46
<<返回目录
h
47
<<返回目录
要点5 基本初等函数(三角函数)
h
48
<<返回目录
h
49
<<返回目录
h
50
<<返回目录
h
51
<<返回目录
要点6 平面向量
h
52
<<返回目录
平面向量
• 要点15 复数
三角恒等变换 解三角形 数列
• 要点16 排列、组合、二项式定 理
• 要点17 概率
h • 要点18 统计
2
要点1 集合
h
3
<<返回目录
h
4
<<返回目录
h
5
<<返回目录
h
6
<<返回目录
h
7
<<返回目录
h
9
<<返回目录
h
10
<<返回目录
h
11
<<返回目录
h
12
h
26
<<返回目录
h
27
<<返回目录
要点3 立体几何初步
h
28
<<返回目录
h
29
<<返回目录
h
30
<<返回目录
h
31
<<返回目录
h
32
<<返回目录
要点4 平面解析几何初步
h
33
<<返回目录
h
34
<<返回目录
h
35
<<返回目录
h
36
<<返回目录
h
37
<<返回目录
h
38
<<返回目录
<<返回目录
要点2 函数概念与基本初等函数
h
13
<<返回目录
h
14
<<返回目录
h
15
<<返回目录
h
16
<<返回目录
h
17
<<返回目录
h
18
<<返回目录
h
19
<<返回目录
h
20
<<返回目录
h
21
<<返回目录
h
22
<<返回目录
h
23
<<返回目录
h
24
<<返回目录
h
25
<<返回目录