高一数学竞赛讲义:平面几何

合集下载

高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:APAB+AQ AC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DCAQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3)对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ).于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NCME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O与BC 、CA 、AB图6AN CDEB MAGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB .(提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°) 3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)O图107. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG .(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.A BGCD FE图1ABCDPO 图2设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.A图3BPQDHC A EDCB图4解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交 于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有 3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ',E A NCD B FM 12345图6(1)(2)图8ABCA'B'C'c a b a'c'b'ABCa bb c∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=aa '=DB b '. 故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.F DAEC图10图11(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

高中数学竞赛平面几何讲义

高中数学竞赛平面几何讲义

高中平面几何(叶中豪话题几何问题的联系和转化解题和编题的一些规律调和点列,反演与配极,调和四边形完全四边形及其 Miquel 点例题和习题1. △ ABC 中, AB =AC , BD ⊥ AC 于 D , E 在 AC 延长线上,且 CE =CD , F 在CA 延长线上,且 AF = 12CD 。

求证:BE ⊥ BF 。

2. AB 为半圆直径, C 为半圆上一点,由 C 引 AB 的垂线, D 为垂足。

分别在半圆上截取 AE =AD , BF =BD 。

求证:CD 平分 EF 。

3. 已知半圆的直径 AB 的长为 2r ,半圆外的直线 l 与 BA 的延长线垂直,垂足为T ,AT =2a (2a <2r , 半圆上有相异两点 M 、 N , 它们与直线 l 的距离 MP 、 NQ 满足 MP AM=NQAN=1。

求证:AM +AN =AB 。

l PQ T4. 在△ ABC 的边 BC 的延长线上取一点 D ,使 CD =AC ,△ ACD 的外接圆与以BC边为直径的圆交于 C 、 G 两点,直线 BG 、 AC 交于 E ,直线 CG 、 AB 交于F 。

求证:D 、 E 、 F 三点共线。

B5. △ ABC 内心为 I ,内切圆切 AB 、 AC 边于 E 、 F ,延长 BI 、 CI 分别交直线EF 于 M 、N 。

求证:S 四边形 AMIN =S △ IBC 。

B6. AC 是与 BD 垂直于 E 的直径, G 是 BA 延长线上一点,过 B 作 BF ∥ DG 交DA 延长线于 F ,作 CH ⊥ GF 于 H 。

求证:B 、 E 、 F 、 H 四点共圆。

7. 如图,圆 O 1和圆 O 2相交于 E 、 F ,过 E 作割线 AB ,使 AE =EB ,过 F 作割线CD , 联 AD 、 BC ,并过 A 作 AD 的垂线、过 B 作 BC 的垂线,设两条垂线相交于 P 点。

高中数学竞赛平面几何讲座非常详细

高中数学竞赛平面几何讲座非常详细

第一讲 留意添加平行线证题在同一平面内,不相交两条直线叫平行线.平行线是初中平面几何最根本,也是特别重要图形.在证明某些平面几何问题时,假设能根据证题须要,添加恰当平行线,那么能使证明顺畅、简洁. 添加平行线证题,一般有如下四种状况. 1、为了变更角位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角位置变更,以满意求解须要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 平行线得交点D .连结DA . 在△DBP =∠AQC 中,明显∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .那么A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推〞到∠BDP 位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC .明显,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使与未知中四个角通过P 、B 、A 、E 四点共圆,严密联络起来.∠APE 成为∠EBA 与∠ADE 相等媒介,证法很奇妙. 2、欲“送〞线段到当处利用“平行线间间隔 相等〞、“夹在平行线间平行线段相等〞这两条,常可通过添加平行线,将某些线段“送〞到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上随意一点.过P 分别作AC 、AB 、BC 垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 平行线交BD 于F ,过点F 作BC 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边间隔 相等.有KQ =PN . 明显,==,可知PG ∥EC .由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ .这里,通过添加平行线,将PQ “掐开〞成两段,证得PM =PK ,就有PM +PN =PQ .证法特别简捷.3 、为了线段比转化∥=ADBP QC图1PE D GA B FC图2A N E BQ K G CD M FP 图3由于“平行于三角形一边直线截其它两边,所得对应线段成比例〞,在一些问题中,可以通过添加平行线,实现某些线段比良性转化.这在平面几何证题中是会常常遇到.例4 设M 1、M 2是△ABCBC 边上点,且BM 1=CM 2.任作始终线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:+=+.证明:如图4,假设PQ ∥BC ,易证结论成立. 假设PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知=,=,=,=.那么+===+.所以,+=+.这里,仅仅添加了一条平行线,将求证式中四个线段比“通分〞,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA . 证明:如图5,过点A 作BC 平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M . 明显,==.有BD ·AM =DC ·AN . (1) 由==,有AP =. (2) 由==,有AQ =. (3)比照(1)、(2)、(3)有AP =AQ .明显AD 为PQ 中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 平行线,就有大量比例式产生,恰当地运用这些比例式,就使AP 与AQ 相等关系显现出来. 4、为了线段相等传递当题目给出或求证某点为线段中点时,应留意到平行线等分线段定理,用平行线将线段相等关系传递开去.例6 在△ABC 中,AD 是BC 边上中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.假如BM 2+CN 2=DM 2+DN 2,求证:AD 2=(AB 2+AC 2).证明:如图6,过点B 作AC 平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 明显,MD 为EN 中垂线.有 EM =MN .APEDM 2M 1BQ N 1N 2图4图5MP A Q NFBD CEK图6AN CD EBM由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°. 所以,AD 2==(AB 2+AC 2).这里,添加AC 平行线,将BC 以D 为中点性质传递给EN ,使解题找到出路.例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB .二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .明显,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点假设干直线称为一组直线束.一组直线束在一条直线上截得线段相等,在该直线平行直线上截得线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行直线.于是,有==,即=或=.此式说明,DM =ME 充要条件是 BN =NC .利用平行线这一性质,解决某些线段相等问题会很美丽.例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 边BC 外旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB切点.假设OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .明显,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 那么OQ =OP .于是,OK 为PQ 中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中应用.同学们在理论中应留意适时添加平行线,让平行线在平面几何证题中发挥应有作用.练习题AG D O H BFC E图7图8ADBN CEM 图9ABMEFN D C G AO EPC BF Q K 图101. 四边形ABCD中,AB=CD,M、N分别为AD、BC中点,延长BA交直线NM于E,延长CD交直线NM于F.求证:∠BEN=∠CFN.(提示:设P为AC中点,易证PM=PN.)2. 设P为△ABC边BC上一点,且PC=2PB.∠ABC=45°,∠APC=60°.求∠ACB.(提示:过点C作PA平行线交BA延长线于点D.易证△ACD∽△PBA.答:75°)3. 六边形ABCDEF各角相等,FA=AB=BC,∠EBD=60°,S△EBD=60cm2.求六边形ABCDEF面积. (提示:设EF、DC分别交直线AB于P、Q,过点E作DC平行线交AB于点M.所求面积与EMQD面积相等.答:120cm2)4. AD为Rt△ABC斜边BC上高,P是AD中点,连BP并延长交AC于E.AC:AB=k.求AE:EC. (提示:过点A作BC平行线交BE延长线于点F.设BC=1,有AD=k,DC=k2.答:)5. AB为半圆直径,C为半圆上一点,CD⊥AB于D,E为DB上一点,过D作CE垂线交CB于F.求证:=.(提示:过点F作AB平行线交CE于点H.H为△CDF垂心.)6. 在△ABC中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C对边分别为a、b、c.求证:+=.(提示:在BC上取一点D,使AD=AB.分别过点B、C作AD平行线交直线CA、BA于点E、F.)7. △ABC内切圆分别切BC、CA、AB于点D、E、F,过点F作BC平行线分别交直线DA、DE于点H、G.求证:FH=HG.(提示:过点A作BC平行线分别交直线DE、DF于点M、N.)8. AD为⊙O直径,PD为⊙O切线,PCB为⊙O割线,PO分别交AB、AC于点M、N.求证:OM =ON.(提示:过点C作PM平行线分别交AB、AD于点E、F.过O作BP垂线,G为垂足.AB∥GF.)第二讲巧添协助妙解竞赛题.1、挖掘隐含协助圆解题有些问题题设或图形本身隐含着“点共圆〞,此时假设能把握问题供应信息,恰当补出协助圆,并合理挖掘图形隐含性质,就会使题设和结论逻辑关系明朗化.1.1 作出三角形外接圆例1如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.分析:关键是寻求∠BED=2∠CED与结论联络.简单想到作∠BED平分线,但因BE≠ED,故不能干脆证出BD=2CD.假设延长AD交△ABC外接圆于F,那么可得EB=EF,从而获得.证明:如图1,延长AD与△ABC外接圆相交于点F,连结CF与BF,那么∠BFA =∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.ABGCDFE图1又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 平分线交BF 于G ,那么BG =GF . 因∠GEF =∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC .于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.那么sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、DBA 、CD 交于P ,那么∠ADP =∠ABC =60°. 设AD =x ,有AP =x ,DP =2x .由割线定理得(2+x )x =2x (1+2x ).解得AD =x =2-2,BC =BP =4-.由托勒密定理有 BD ·CA =(4-)(2-2)+2×1=10-12.又S ABCD =S △ABD +S △BCD =. 故sin ∠AOB =.例3 :如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 面积S =AP ·BD .分析:因S △ABC =BC 2=AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点). 证明:记BD 与AH 交于点Q ,那么由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =AC ·BC =AP ·BD .2 、构造相关协助圆解题有些问题貌似与圆无关,但问题题设或结论或图形供应了某些与圆性质相像信息,此时可大胆联想构造出与题目相关协助圆,将原问题转化为与圆有关问题加以解决. 2.1 联想圆定义构造协助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 长. 分析:由“AD =DC =DB =p 〞可知A 、B 、C 在半径为p ⊙D 用圆性质即可找到AC 与p 、q 关系.解:延长CD 交半径为p ⊙D 于E 点,连结AE .明显A 、B 、C 在⊙D 上.ABCDP O 图2A图3BP QD HCAEDCB图4∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC ==.2.2 联想直径性质构造协助圆例5 抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .假设在x 轴上侧A 点为抛物线上动点,且∠BAC 为锐角,那么AD 取值范围是____.分析:由“∠BAC 为锐角〞可知点A 在以定线段BC 为直径圆外,又点A 在x 轴上侧,从而可确定动点A 范围,进而确定AD 取值范围.解:如图5,所给抛物线顶点为A 0(1,9),对称轴为x =1,与x 轴交 于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,那么两圆与抛物线均交于两点P (1-2,1)、Q (1+2,1).可知,点A 在不含端点抛物线PA 0Q 内时,∠BAC <90°.且有 3=DP =DQ <AD ≤DA 0=9,即AD 取值范围是3<AD ≤9. 2.3 联想圆幂定理构造协助圆 例6 AD 是Rt △ABC 斜边BC 上高,∠B 平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造协助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 延长线于E .那么AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB-AN )=AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.分析:因EP 和FQ 是⊙O 切线,由结论联想到切割线定理,构造协助圆使EP 、FQ 向EF 转化. 证明:如图7,作△BCE 外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造协助圆例8 如图8,△ABC 与△A 'B 'C '三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A+∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.A B D C P Q E yx0(1,9)(-2,0)(4,0)图5E ANC D B FM 12345图6O PC B GFD(1)(2)图8ABCA'B'C'ca b a'c'b'证明:作△ABC 外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB . 有==,即==. 故DC =,DB =.又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·+b ·. 故aa '=bb '+cc '.练习题1. 作一个协助圆证明:△ABC 中,假设AD 平分∠A ,那么=.(提示:不妨设AB ≥AC ,作△ADC 外接圆交AB 于E ,证△ABC ∽△DBE ,从而==.)2. 凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =∠BKM=10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .那么CG =AH ,由割线定理可证得结论.)⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.E 是△ABC 外接圆之劣弧BC 中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作协助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 假设正五边形ABCD E 边长为a ,对角线长为b ,试证:-=1.A BCDa bb c图9F DAB EC图10EDA B O O 12图11(提示:证b 2=a 2+ab ,联想托勒密定理作出五边形外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点一般证明方法及梅涅劳斯定理、塞瓦定理应用。

高中数学平面几何竞赛讲座

高中数学平面几何竞赛讲座
于是,∠PNC= ∠PBC= ∠PDA, ∴Q,N,D,C四点共圆, PQ×PN=PC×PD
两式相减有 PQ2=PC×PDBQ×QC=P的幂+Q的 幂。
例二:设P是圆O外一点,PAB,PCD是两条切线, AD,BC交于点Q,延长BD,AC交于点R.求证: PQ2=P的幂+Q的幂 PR2=P的幂+R的幂
这将导致K为BC中点,矛盾。从而必有 A,B,C,D四点共圆。
下面来看几道关于根轴根心的题目。
例五.设三角形ABC的边AB,AC上分别有N,K两点, 且N,K,C,B四点共圆。若三角形ABC,三角形ANK外 接圆还交于异于A的点M。求证:AM⊥OM
解析:易知NK,BC 不平行。设三圆 根轴(BC,NK,AM) 交于点P,连结 PO,AO,KM。设 圆O半径R。则由 ∠KMP= ∠ANK= ∠ACB得M,P,C,K 四点共圆。
例八.如图,四边形ABCD内接于圆。其边AB, CD延长线交于点P。AD,BC延长线交于点Q。 由点Q作圆的两切线QE,QF。证明:P,E,F共 线。
证明:连QP并在QP上取点M使 得B,C,M,P四点共圆 则 QE2=QC×QB=QM×QP①
∵∠PMC=∠ABC=∠QDC
∴Q,M,C,D四点共圆
∴PC×PD=PM×PQ②
最后,再来看一道比较复杂的问题
例八.如图,四边形ABCD内接于圆。其边AB, CD延长线交于点P。AD,BC延长线交于点Q。 由点Q作圆的两切线QE,QF。证明:P,E,F共 线。
连PF交圆ABCD于E’ 做 QG⊥PF于G 则有PC×PD=PE’ ×PF③
QC×QB=QF2④
①+②并注意③ ④有
为定值的点的轨迹是一条垂直于该两点连线的直 线。该直线称为等差幂线。反之,等差幂线上任 一点到所对应两点距离的平方差为定值。

高中数学竞赛-平面几何讲义(很详细)

高中数学竞赛-平面几何讲义(很详细)

HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=

S AMDN

1 2
AM

AD sin

1 2
AD
AN sin(

)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF

S△ABA’=
1 2
sin
AFE

AB

A'
F
=
1 2
s
in
A
EF

A
C

A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。

高中数学竞赛讲义-平面几何证明 新人教A版

高中数学竞赛讲义-平面几何证明 新人教A版

§20平面几何证明1.线段或角相等的证明(1)利用全等△或相似多边形;(2)利用等腰△;(3)利用平行四边形;(4)利用等量代换;(5)利用平行线的性质或利用比例关系(6)利用圆中的等量关系等。

2.线段或角的和差倍分的证明(1)转化为相等问题。

如要证明a=b±c,可以先作出线段p=b±c,再去证明a=p,即所谓“截长补短”,角的问题仿此进行。

(2)直接用已知的定理。

例如:中位线定理,Rt△斜边上的中线等于斜边的一半;△的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。

3.两线平行与垂直的证明(1)利用两线平行与垂直的判定定理。

(2)利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。

(3)利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。

例题讲解1.从⊙O外一点P向圆引两条切线PA、PB和割线PCD。

从A点作弦AE平行于CD,连结BE交CD于F。

求证:BE平分CD。

2.△ABC内接于⊙O,P是弧 AB上的一点,过P作OA、OB的垂线,与AC、BC分别交于S、T,AB交于M、N。

求证:PM=MS充要条件是PN=NT。

3.已知A为平面上两半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点。

求证:∠O1AO2=∠M1AM2。

4.在△ABC中,AB>AC,∠A的外角平分线交△ABC的外接圆于D,DE⊥AB于E,求证:AE=。

.5.∠ABC的顶点B在⊙O外,BA、BC均与⊙O相交,过BA与圆的交点K引∠ABC平分线的垂线,交⊙O于P,交BC于M。

求证:线段PM为圆心到∠ABC平分线距离的2倍。

6.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。

7.菱形ABCD的内切圆O与各边分别切于E、F、G、H,在EF与GH上分别作⊙O的切线交AB于M,交BC于N,交CD于P,交DA于Q。

高中数学竞赛平面几何讲座(非常详细).

高中数学竞赛平面几何讲座(非常详细).

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQAC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BCAN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来. 4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB图6AN CDEB M AGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG.O图10(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.A BGCD FE图1ABCDPO 图2又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有A图3BPQDHC A EDCB图4图53=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab .E A NCD B FM 12345图6(1)(2)图8ABCA'C'cb a'c'b'A BCDabb c图9又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)F DAEC图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

高中数学平面几何拓展-数学竞赛知识讲义

高中数学平面几何拓展-数学竞赛知识讲义

高中数学平面几何拓展第一大定理:共角定理(鸟头定理)即在两个三角形中,它们有一个角相等(互补),则它们就是共角三角形。

它们的面积之比,就是对应角(相等角、互补角)两夹边的乘积之比。

内容:若两三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。

即:若△ABC 和△ADE 中,∠B AC= ∠ DAE ,则 S △ABC÷ S △ADE=第二大定理:等积变换定理。

1、等底等高的两个三角形面积相等;2、两个三角形(底)高相等,面积之比等于高(底)之比。

3、在一组平行线之间的等积变形。

以下图, S △ACD=S △BCD ;反之,假如S △ACD=S △BCD ,则可知直线AB 平行于 CD 。

第三大定理:梯形蝴蝶定理。

随意四边形中,相同也有蝴蝶定理。

上述的梯形蝴蝶定理,就是由于AD ‖ EC 得来的第四大定理:相像三角形定理。

1、相像三角形:形状相同,大小不相等的两个三角形相像;2、找寻相像模型的大前提是平行线:平行于三角形一边的直线和其余两边或两边延伸线订交,所构成的三角形与原三角形相像。

3、相像三角形性质: 1.相像三角形的全部对应线段 (对应高、对应边)的比等于相像比;②相像三角形周长的比等于相像比;③相像三角形面积的比等于相像比的平方。

相像模型大概分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有BC 平行DE 这样的一对平行线!图形:第五大定理:燕尾定理。

性质: 1.S △ABG : S△ACG=S △BGE : S△CGE=BE : CE2.S △BGA : S△BGC=S △GAF : S△GCF=AF : CF3.S △AGC : S△BGC=S △AGD : S△BGD=AD :BD这就是燕尾模型。

其余几何定理:塞瓦定理塞瓦定理是指在△ABC内任取一点O,延伸 AO 、 BO 、 CO 分别交对边于D、 E 、F ,则(BD/DC) ×(CE/EA) ×(AF/FB)=1 。

2019-2020年高中数学竞赛教案讲义(16)平面几何

2019-2020年高中数学竞赛教案讲义(16)平面几何

2019-2020年高中数学竞赛教案讲义(16)平面几何一、常用定理(仅给出定理,证明请读者完成)梅涅劳斯定理 设分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理 条件同上,若则三点共线。

塞瓦定理 设分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若三线平行或共点,则塞瓦定理的逆定理 设分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若则三线共点或互相平行。

角元形式的塞瓦定理 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。

斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•+AC 2•-BP •PC.西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。

西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。

九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。

蒙日定理 三条根轴交于一点或互相平行。

(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且二、方法与例题1.同一法。

即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。

例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。

高中数学竞赛——平面几何基础知识(基本定理、基本性质)

高中数学竞赛——平面几何基础知识(基本定理、基本性质)

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a −+=. 4. 垂线定理:2222BD BC AD ACCD AB −=−⇔⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===−−−=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=−+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222−+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE −==−==−==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠−︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠−︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr −−−==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF −=∆∆.。

高中数学竞赛专题讲座---平面几何选讲

高中数学竞赛专题讲座---平面几何选讲

平面几何选讲 反演变换基础知识 一. 定义1. 设O 是平面π上的一个定点,k 是一个非零常数.如果平面π的一个变换,使得对于平面π上任意异于O 的点A 与其对应点'A 之间,恒有(1)',,A O A 三点共线;(2)'OA OA k ⋅=,则这个变换称为平面π的一个反演变换,记做(,)I O k .其中,定点O 称为反演中心,常数k 称为反演幂,点'A 称为点A 的反点.2. 在反演变换(,)I O k 下,如果平面π的图形F 变为图形'F ,则称图形'F 是图形F 关于反演变换(,)I O k 的反形.反演变换的不动点称为自反点,而反演变换的不变图形则称为自反图形.3. 设两条曲线u v 、相交于点A ,l 、m 分别是曲线u v 、在点A 处的切线(如果存在),则l 与m 的交角称为曲线u v 、在点A 处的交角;如果两切线重合,则曲线u v 、在点A 处的交角为0.特别地,如果两圆交于点,那么过点作两圆的切线,则切线的交角称为两圆的交角.当两圆的交角为90时,称为两圆正交;如果直线与圆相交,那么过交点作圆的切线,则切线与直线的交角就是直线与圆的交角.当这个交角为90时,称为直线与圆正交. 二. 定理定理1. 在反演变换下,不共线的两对互反点是共圆的四点.定理2. 在反演变换(,)I O k 下,设A B 、两点(均不同于反演中心O )的反点分别为''A B 、,则有''B A =''kA B AB OA OB=⋅.定理3. 在反演变换下,过反演中心的直线不变.定理 4. 在反演变换下,不过反演中心的直线的反形是过反演中心的圆;过反演中心的圆的反形是不过反演中心的直线.定理5. 在反演变换下,不过反演中心的圆的反形仍是不过反演中心的圆.定理6. 在反演变换下,两条曲线在交点处的交角大小保持不变,但方向相反.定理7. 如果两圆或一圆一直线相切于反演中心,则其反形是两条平行直线;如果两圆或一圆一直线相切于非反演中心,则其反形(两圆或一圆一直线)相切.定理8.典型例题一. 证明点共线例1. ABC 的内切圆与边BC 、CA 、AB 分别相切于点D 、E 、F ,设L 、M 、N 分别是EF 、FD 、DE 的中点.求证:ABC 的外心、B内心与LMN 的外心三点共线.证明:如图,设ABC 的内心为I ,内切圆半径为r .以内心I 为反演中心,内切圆为反演圆作反演变换2(,)I I r ,则A 、B 、C 的反点分别为L 、M 、N ,因而ABC 的反形是LMN的外接圆.故ABC 的外心、内心和LMN 的外心三点共线.二. 证明线共点 例2. 四边形ABCD 内接于O ,对角线AC 与BD 相交于P ,设外心分别为1O 、2O 、3O 、4O .求证:OP 、13O O 、24O O 证明:作反演变换(,)I P PC PA ⋅,则A 、C 互为反点,B 、D 互为反点,O 不变,直线1PO 不变,ABP 的外接圆的反形是直线CD .由于直线1PO 与ABP 的外接圆正交,因而1PO 与CD正交,即有1PO CD ⊥.又3OO CD ⊥,所以13//PO O O ;同理31//PO O O ,所以四边形13PO OO 为平行四边形,从而13O O 过PO 的中点;同理24O O 也过PO 的中点.故OP 、13O O 、24O O 三线共点. 三. 证明点共圆例3. 设半圆的直径为AB ,圆心为O ,一直线与半圆交于C 、D 两点,且与直线AB 交于M .再设AOC 与DOB 的外接圆的第二个交点为N .求证:ON MN ⊥.证明:以O 为反演中心作反演变换2(,)I O r ,其中,r 为半圆的半径,则半圆上的每一点都不变,()AOC 与()DOB 的反形分别为直线AC 、BD .且设M 、N 的反点分别为'M 、'N ,则'N 为直线AC 与BD 的交点,'M 在直径AB 上,直线MN 的反形为''OM N 的外接圆,直线CD 的反形为CDO的外接圆.而'ON NM ON ⊥⇔是''OM N 外接圆的直径'''M N OM ⇔⊥.于是问题转化为证明'''M N OM ⊥.因为'AD BN ⊥,'BC AN ⊥,O 是AB 的中点,所以过O 、C 、D 三点的圆是'N AB的九点圆,而'M 在九点圆上,又在边AB 上(不同于O 点),故''M N AB ⊥,因此ON MN ⊥.四. 证明一些几何(不)等式O4例 4. 设六个圆都在一定圆内,每一个圆都与定圆外切,并且与相邻的两个小圆外切,若六个小圆与大圆的切点依次为1A 、2A 、3A 、4A 、5A 、6A .证明:123456234561A A A A A A A A A A A A ⋅⋅=⋅⋅证明:如图以6A 为反演中心作反演变换6(,1)I A ,则O 与6O 的反形为两条平行线,其余5个圆的反形皆是与两条平行线中一条相切的圆;且反形中第一个圆与第五个圆均与两平行线相切,而其余三圆均与相邻的两圆相切.设1A 、2A 、3A 、4A 、5A 的反点分别为'1A 、'2A 、'3A 、'4A 、'5A,则其反形中的五个圆与两平行线中的一条(即O 的反形)依次切于'1A 、'2A 、'3A 、'4A 、'5A ;再设这五个圆的半径依次为1r 、2r 、3r 、4r、5r ,则由勾股定理可得''12A A==同理''23A A =,''34A A =''45A A =15r r =,于是''''''''12342345A A A A A A A A ⋅=⋅.但''12126162A A A A A A A A =⋅,''34346364A A A A A A A A =⋅,''23236263A A A A A A A A =⋅,''45456465A A A A A A A A =⋅.所以1234234561626364626364A A A A A A A A A A A A A A A A A A A A A A ⋅⋅=⋅⋅⋅⋅⋅342345636462636465A A A A A A A A A A A A A A A A A A ⋅=⋅⋅⋅⋅故123456234561A A A A A A A A A A A A ⋅⋅=⋅⋅.练习:1. (2002土耳其数学奥林匹克)两圆外切于点A ,且内切于另一Γ于点B 、C ,另D 是小圆内公切线割Γ的弦的中点,证明:当B 、C 、D 不共线时,A 是BCD 的内切圆圆心.2. (第30届IMO 预选题)双心四边形是指既有内切圆又有外接圆的四边形.证明双心四边形的两个圆心与对角线的交点共线.3. (1997全国高中数学联赛)已知两个半径不等的圆1O 与圆2O 相交于M 、N 两点,圆1O 与圆2O 分别于圆O 内切于S 、T .求证:OM MN ⊥的充分必要条件是S 、N 、T 三点共线.'5A 4A 3A '2A '1A。

平面几何的26个定理

平面几何的26个定理

ED C B A 高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:假设直线l 不通过ABC ∆的极点,而且与ABC ∆的三边,,BC CA AB 或它们的延长线别离交于,,P Q R ,那么1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 别离是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,那么1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,而且当且仅当四边形ABCD 内接于圆时,等式成立。

()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC ADBC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C D ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;注:托勒密定理的逆定理也成立4. 西姆松定理:假设从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足别离为,,D E F ,那么,,D E F 三点共线。

西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足别离为,,D E F 。

假设,,D E F 三点共线,那么点P 在ABC ∆的外接圆上。

5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 别离交PQ 于X ,Y ,那么M 为XY 当中点。

高一数学竞赛讲义42——平面与平面垂直,二面角

高一数学竞赛讲义42——平面与平面垂直,二面角

高一数学竞赛讲义42——平面与平面垂直,二面角一、知识要点:1.二面角定义:从一直线出发的两个半平面组成的图形. 说明:这条直线叫二面角的棱,每个半平面叫二面角的面.2.二面角的平面角:过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线OA ,OB ,则AOB ∠叫做二面角l αβ--的平面角.说明:(1)二面角的大小可以用平面角来度量,平面角是直线的二面角叫直二面角.(2)两个平面相交,如果它们的二面角是直二面角,就说这两个平面垂直.3.平面与平面垂直的判定:一个平面经过另一个平面的垂线,则这两个平面垂直平面与平面垂直的性质.(1)两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (2)垂直于同一个平面的两条直线平行.二、经典例题1.如图正方体1111ABCD A B C D -中,E 、F 、M 、N 分别是11A B 、BC 、11C D 、11B C 的中点.(1)求证:平面MNF ⊥平面ENF .(2)求二面角M EF N --的平面角的正切值.2.已知三棱锥P ABC -中,PA PB PC ==,AB BC ⊥,求证:平面PAC ⊥平面ABC .αβlθ二面角αl βθFE C B ADl二面角ABCD L BCFEθN MB A二面角M AB NA 1B 1C 1D 1CB AD PCBA3.在正方体1111ABCD A B C D -中,(1)求二面角111B AC B --的正切值. (2)求二面角111A BD C --的余弦值.4.如图,平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,且12AF AD a ==,G 是EF 的中点.(1)求证:平面AGC ⊥平面BGC . (2)求GB 与平面AGC 所成角的正弦值. (3)求二面角B AC G --的余弦值.三、精选习题:1.已知两个平面互相垂直,下列命题中(1)一个平面内已知直线必垂直于另一个平面的任意一条直线;(2)一个平面内的已知直线必垂直于另一个平面的无数条直线;(3)一个平面内的任一条直线必垂直于另一个平面;(4)过一个平面内任意点作交线的垂直线,则此垂线必垂直于另一个平面,其中正确的个数是( ).A .3B .2C .1D .02.自二面角内一点分别向两个平面引垂线,它们所成的角与二面角的平面角的大小关系是( ). A .相等 B .互补 C .无关D .相等或互补3.平面α⊥平面β,直线a α∥,则一定有( ).A .a β∥B .a β⊆C .α与β相交D .以上都可能4.过正方形ABCD 顶点A 作线段AP ⊥平面ABCD ,若AB PA =,则面ABP 与CDP 所成二面角是( ). A .90︒ B .60︒ C .45︒ D .30︒ 5.长方形ABEF 与长方形DCEF 互相垂直,4AB CD ==,3BE =,2CE =,EAC α∠=,ACD β∠=,则cos :cos αβ( ).A 1B 1C 1D 1CB AD FEC BA GDA .54B .45C .12D .26.长方形ABCD 中,E 是AB 的中点,如将DAE △与CBE △分别沿DE 、CE 折起,使AE 与BE (记为P ),则面PCD 与面ECD 成的二面角大小为( ).A .30︒B .45︒C .60︒D .90︒7.若m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列选项中正确的是( ). A .若m β⊂,αβ⊥,则m α⊥ B .若m n αγβγ==,m n ∥,则αβ∥ C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥8.正方体1111ABCD A B C D -中E 为1BB 的中点,则平面1AEC 与底面ABCD 所成的二面角的余弦值是( ).ABCD9.从一点P 引三条射线PA 、PB 、PC 且两两成60︒角,则二面角A PB C --的余弦值是( ). A .13B .23C .13-D .23-10.已知正方体1111ABCD A B C D -的棱长为1,P 是AB 的中点,求二面角1B AC P --的大小.11.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥面ABCD ,PA AD a ==,M 、N 分别是AB 、PC 的中点.(1)求证:平面PAD ⊥平面PCD . (2)求证:平面MND ⊥平面PCD .四、拓展提高:PA 1B 1C 1D 1CB AD PNM CBAD12.如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,SD AD a ==,点E 是线段SD 上任意一点.(1)求证:AC BE ⊥.(2)若二面角C AE D --的大小为60︒,求线段ED 的长.13.如图,PA ABCD ⊥,ABCD 是矩形,1PA AB ==,PD 与平面ABCD 所成角是30︒,点F 是PB 的中点,点E 在边BC 上移动.(1)点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由. (2)证明:无论点E 在边BC 的何处,都有PE AF ⊥. (3)当BE 等于何值时,二面角P DE A --的大小为45︒.S ECAD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面几何习题 2016.4.18
例1、(2005)13.已知点 M 是 ABC ∆ 的中线 AD 上的一点, 直线 BM 交边
AC 于点N , 且 AB 是 NBC ∆ 的外接圆的切线, 设
BC BN λ=, 试求 BM
MN
(用 λ 表示).
例2、(2006)15. △ABC 中,AB<AC,AD,AE 分别是BC 边上的高和中线,且∠BAD=∠EAC,
证明∠BAC 是直角.
例3、(2007)12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,
AC =14,AD =7,AB =28,CE =12.求BC .
E
B
C
D
A
A
B
C
D
N
M
A
B C
P
例4、(2010)13.如图,圆内接五边形ABCDE 中,AD 是外接圆的直径,BE AD ⊥,
垂足H .
过点H 作平行于CE 的直线,与直线AC 、DC 分别交于点F 、G . 证明: (1) 点A 、B 、F 、H 共圆; (2) 四边形BFCG 是矩形.
例5、(2011)13.如图,P 是ABC 内一点.
(1)若P 是ABC 的内心,证明:1
902
BPC BAC ∠=+∠;
(2)若1902BPC BAC ∠=+∠且1
902
APC ABC ∠=+∠,证明:P 是ABC 的内心.
A
B
C D
E
F
H G
M B
D
O
A
例6、(2012) 13. 如图,半径为1的圆O 上有一定点M, A 为圆O 上动点,
在射线OM 上有一动点B,AB=1,OB>1. 线段AB 交圆O 于另一点C,D 为线段OB 的中点,求线段CD 长的取值范围
例7、(2013)12.如图,梯形ABCD 中,B 、D 关于对角线AC 对称的点分别是'B 、
'D ,A 、C 关于对角线BD 对称的点分别是'A 、'C .证明:四边形''''
A B C D 是梯形.
例8、(2014) 13.如图,已知ABC ∆是锐角三角形,以AB 为直径的圆交边AC 于点D ,
交边AB 上的高CH 于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG AE =.
例9、(2015) 12.如图,△ABC 中,AB >AC ,点D 、E 分别在边AB 、AC 上,且BD
=CE .∠BAC 的外角平分线与△ADE 的外接圆交于A 、P 两点. 求证:A 、P 、B 、C 四点共圆.
A
B
C
D
P
(第12题图)
E。

相关文档
最新文档