结晶器介绍
DTB连续结晶器介绍
DTB连续结晶器简介一、概述结晶是一个重要的化工过程,是物质提纯的主要手段之一。
众多化工、医药产品及中间产品都是以晶体形态出现的,结晶往往是大规模生产它们的最好又最经济的方法。
结晶过程是一个复杂的传热、传质过程。
在溶液和晶体并存的悬浮液中,溶液中的溶质分子向晶体转移(结晶),同时晶体的分子也在向溶液扩散(溶解)。
在未饱和溶液中溶解速度大于结晶速度,从宏观上看这个过程就是溶解;在过饱和溶液中结晶速度大于溶解速度,从宏观上看这个过程就是结晶。
所以,结晶的前提是溶液必须有一定的过饱和度。
对于不同的物料特性,有的溶液可以通过降温来实现过饱和,而有的溶液则必须移走溶剂才能实现过饱和。
过饱和度是物料结晶的推动力,但当过饱和度超出介稳区时将产生大量的细晶,这在结晶过程中是需要避免的。
在结晶过程中,晶体表面裹有一层饱和浓度的液膜,阻碍着晶体与溶液之间的传质。
液膜越薄、更新越快,则晶体生长就越快。
一般来说,连续结晶都是在全密闭条件下进行的,原料连续加入,晶浆连续排出,可以方便地控制其温度、压力和浓度。
通过对温度、压力、流量、蒸发量等参数的精确控制,可以准确地控制料液的过饱和度,给结晶过程提供恒定的推动力,使物料始终处在最适合结晶的状态。
连续结晶设备均设有晶浆循环系统,可为晶浆提供良好的流体动力学条件,使结晶的传质充分、迅速。
和传统的间歇结晶工艺相比,连续结晶具有收率高、能耗低、母液少、产品质量好、自动化程度高、设备占地面积小及操作人员少等优点。
由于连续结晶器具有较高的生产效率,一套连续结晶器往往可以取代数套乃至数十套间歇结晶器,相应配套设备的数量也大大减少。
二、DTB型结晶器DTB(Draft Tube Baffle)型结晶器是上世纪50年代出现的一种高效能的结晶器。
经过多年的实际运行的考察,证明这种形式的结晶器性能良好,生产强度高,器内不易结疤。
能生产大晶粒(600~1200μm)。
已成为连续结晶器的主要形式之一。
结晶器简介全解
结晶器简介连铸结晶器结构有哪几种型式按连铸机型式不同,结晶器可分为直的和弧形的两大类。
按铸坯规格和形状来分,有小方坯、大方坯、板坯和异形坯结晶器。
按结晶器本身结构来说,可分为3种类型:管式结晶器:它是用壁厚为6~12mm的铜管制成所需要的断面,在铜管外面,套有套管以形成5~7mm的冷却水通路,保证冷却水流速为每分钟6~10m。
这种结晶器结构简单,制造方便,广泛用于小方坯连铸机上。
整体式结晶器:它是用整块铜锭刨削制成的,在其内腔四周钻有许多小孔用以通冷却水。
这种结晶器刚性好,易维护,寿命较长,但制造成本高,耗铜多,近几年已不采用。
组合结晶器:它是由4块铜板组合成所需要的内腔。
在20~50㎜的钢板上刨槽,并与一块钢板联结起来,冷却水在槽中通过。
大方坯和板坯连铸机都用这种形式的结晶器。
连铸结晶器应具有哪些性能结晶器是连铸机的重要部件。
钢液在结晶器中凝固成型,结成一定厚度的坯壳并被连续拉出进入二次冷却区。
良好的结晶器应具有下列性能:(1)良好的导热性,能使钢液快速凝固。
每lkg钢水浇注成坯并冷却到室温,放出的热量约为1340kJ/kg,而结晶器约带走5~10%,即67~134kJ/kg,若板坯尺寸为250×1700mm,拉速为lm/min时,结晶器每分钟带走的热量多达20万kJ。
而结晶器长度又较短,一般不超过lm,在这样短的距离内要能带走大量的热量,要求它必须具有良好的导热性能。
若导热性能差,会使出结晶器的铸坯坯壳变薄,为防止拉漏,只好降低拉速,因此结晶器具有良好的导热性是实现高拉速的重要前提。
(2)结构刚性要好。
结晶器内壁与高温金属接触,外壁通冷却水,而它的壁厚又很薄(仅有10~20mm),因此在它的厚度方向温度梯度极大,热应力相当可观,其结构必须具有较大的刚度,以适应大的热应力。
(3)装拆和调整方便。
为了能快速改变铸坯尺寸或快速修理结晶器,以提高连铸机的生产能力,现代结晶器都采用了整体吊装或在线调宽技术。
结晶器的原理
结晶器的原理结晶器是一种常见的实验设备,用于从溶液中分离出晶体。
它的原理基于溶解度和结晶过程的物理化学规律。
在结晶器中,溶液中的溶质随着溶剂的挥发逐渐饱和,导致溶质逐渐凝结成晶体,从而实现了分离的目的。
首先,溶液中的溶质在溶剂中的溶解度是一个关键因素。
溶解度取决于溶质和溶剂的性质,温度和压力等因素。
当溶质在溶剂中的溶解度达到饱和状态时,就会出现过饱和现象,这时溶质会开始凝结成晶体。
其次,结晶器中的温度控制也是至关重要的。
通常情况下,通过控制结晶器的温度,使溶剂逐渐挥发,从而导致溶质逐渐饱和并凝结成晶体。
温度的控制可以影响结晶速率和晶体的质量,因此在实验过程中需要精确控制温度。
此外,结晶器的设计也对结晶过程有着重要影响。
结晶器通常采用圆底烧瓶或结晶皿等容器,通过表面积和形状的设计来影响溶剂的挥发速率和晶体的形成。
合适的结晶器设计可以提高结晶效率和晶体的纯度。
总的来说,结晶器的原理是通过控制溶质在溶剂中的溶解度和温度,以及结晶器的设计,实现溶质从溶液中凝结成晶体的过程。
这一原理在化学、生物、药物等领域都有着广泛的应用,是一种重要的分离和纯化技术。
结晶器的原理虽然看似简单,但在实际操作中需要注意许多细节。
例如,在控制温度时需要避免温度波动,以免影响结晶过程;在结晶器的设计中需要考虑溶剂的挥发速率和晶体的收集等因素。
只有充分理解结晶器的原理,并在实验操作中严格控制各项条件,才能获得理想的结晶效果。
总之,结晶器作为一种重要的分离和纯化技术,其原理基于溶解度和结晶过程的物理化学规律。
通过控制溶质在溶剂中的溶解度和温度,以及结晶器的设计,可以实现溶质从溶液中凝结成晶体的目的。
在实际操作中,需要注意各项条件的控制,以获得理想的结晶效果。
连铸连轧生产:结晶器
双锥度、多锥度甚至抛物线型锥度,以便更符合钢液凝固时体
积的变化规律,但是这种结晶器加工困难,使用并不普遍。
2.4.2 结晶器的重要参数
2 结晶器倒锥度
实际生产过程中要根据铸坯断面、拉速和钢的高温收缩率综 合选定合适的结晶器倒锥度,如果倒锥度选取过小,则坯壳与 结晶器铜板之间的气隙过大,可能导致铸坯变形,产生角部纵 裂纹等缺陷;如果倒锥度选取过大,会增加拉坯阻力,容易产 生横裂纹。
谢谢同学们!
对于板坯连铸机,目前都是采用宽度可调的结晶器。
2.4.1 结晶器的类型与构造
(3)多级结晶器:随着连铸技术的不断发展进步,连铸机 的拉速不断提高,出结晶器下口时坯壳的厚度越来越薄,为了 避免因坯壳厚度过薄导致漏钢等恶性事故,在结晶器下口安装 足辊、冷却板或冷却格栅,称为多级结晶器。
2.4.1 结晶器的类型与构造
1605
8
1702
1685
8.5
1803
1785
9
2007
1985
11ቤተ መጻሕፍቲ ባይዱ
2.4.2 结晶器的重要参数
3 结晶器断面 (3)板坯结晶器
B 结晶器窄边,与结晶器的辊缝制度以及动态轻压下工艺密
切相关,不同连铸机差别很大,所以无法推荐普遍适用的计算
公式。对于具有全程动态轻压下连铸机,可以参考
250mm 300mm 400mm
2.4 结晶器
2.4.2 结晶器的重要参数
1 长度 作为一次冷却,结晶器长度是一个非常重要的参数,它是保 证连铸坯出结晶器时能否具有足够安全坯壳厚度的重要因素。 如果长度太短,出结晶器下口时铸坯厚度达不到安全厚度,容 易产生漏钢事故;如果长度太长,拉坯阻力大,加工也困难。 所以,确定结晶器长度的主要依据是铸坯出结晶器下口时的坯 壳最小安全厚度,具体计算过程如下:
结晶器内部构造
结晶器内部构造摘要:一、结晶器简介二、结晶器内部构造1.容器部分2.搅拌器部分3.冷却装置部分4.过滤器部分5.控制仪表部分三、结晶器内部构造的影响因素1.容器材质2.搅拌器形式3.冷却方式4.过滤器形式正文:结晶器是化工、石油、冶金等工业生产过程中的一种重要设备,用于将溶液或熔融物中的某些成分转化为固态晶体。
结晶器内部构造的重要性不言而喻,它直接影响到结晶过程的效果和效率。
一、结晶器简介结晶器通常由容器、搅拌器和冷却装置等组成。
容器是结晶器的主体部分,用于容纳溶液或熔融物。
容器内部通常为圆形或方形,有平底或锥底等不同形式。
二、结晶器内部构造1.容器部分结晶器容器通常由不锈钢、碳钢等材质制成,具有优良的耐腐蚀性、耐磨性和热稳定性。
容器内部通常为圆形或方形,有平底或锥底等不同形式,以满足不同结晶过程的需求。
2.搅拌器部分搅拌器用于在容器内保持溶液或熔融物的均匀混合,以保证结晶过程的稳定进行。
搅拌器的形式有多种,如桨式、螺旋式、涡轮式等。
根据实际需求选择合适的搅拌器形式。
3.冷却装置部分冷却装置用于控制结晶过程中的温度,以保证晶体生长速率的适宜范围。
常见的冷却方式有水冷、风冷、油冷等。
根据实际需求选择合适的冷却方式。
4.过滤器部分过滤器用于分离晶体与母液,从而获得纯净的晶体。
过滤器的形式有多种,如布袋式、框式、板式等。
根据实际需求选择合适的过滤器形式。
5.控制仪表部分控制仪表用于实时监测结晶过程中的各项参数,如温度、压力、流量等,以便及时调整参数,保证结晶过程的稳定进行。
常见的控制仪表有温度控制器、压力计、流量计等。
三、结晶器内部构造的影响因素1.容器材质容器材质对结晶过程有重要影响。
通常,容器材质需要具有优良的耐腐蚀性、耐磨性和热稳定性。
根据实际需求选择合适的容器材质。
2.搅拌器形式搅拌器形式的选择应根据实际需求,以保证结晶过程中的混合效果。
不同的搅拌器形式可适用于不同类型的结晶过程。
结晶器分类
连铸结晶器结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模,它的性能对连铸机的生产能力和铸坯质量起着十分重要的作用,因此,被称之为连铸设备的“心脏”。
1、结晶器的作用结晶器是连铸机的心脏,它的重要作用表现在:1)在尽可能高的拉速下保证出结晶器时形成足够的坯壳厚度,以抵抗钢水静压力而不拉漏;2)结晶器周边坯壳厚度能均匀稳定生长;3)结晶器内的钢水——渣相——坯壳——铜壁之间的相互作用,对铸坯表面质量有决定性影响。
上述第1)个作用决定了连铸机的生产率;2)、3)作用决定了铸坯表面质量。
2、结晶器的性能1)有较好的导热性能,能迅速形成足够厚度的初生坯壳;2)有良好的结构刚度和结构工艺性,便于加工制造,易于拆装和调整;3)有较好的耐磨性及较高的热疲劳性;4)重量轻、以便在振动时有较小的惯性力。
3、结晶器的分类按连铸机型式不同,结晶器可分为直形和弧形两大类。
1)直型结晶器。
直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。
该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。
直形结晶器用于立式和立弯式及直弧连铸机。
2)弧形结晶器。
弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。
弧形结晶器用在全弧形和椭圆形连铸机上。
按铸坯规格和形状来分,有小方坯、大方坯、板坯和异性坯结晶器。
按结晶器结构可分为管式、整体式和组合式三种。
连铸结晶器:就是一个钢水制冷成型设备。
其由框架,结晶器冷却背板或水箱和铜板,调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。
连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。
保护材料用途:1.确保连铸工艺顺行;2.改善铸坯表面质量。
连铸结晶器钢水流动控制技术1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。
结晶器的原理
结晶器的原理结晶器是一种常见的实验设备,它主要用于从溶液中分离出固体晶体。
结晶器的原理涉及到溶解度、饱和度和过饱和度等概念,下面我们来详细介绍一下结晶器的原理。
首先,我们需要了解溶解度这一概念。
溶解度是指在一定温度下,单位溶剂中最多能溶解多少量的溶质。
当溶质的溶解度达到最大值时,我们称溶液为饱和溶液。
溶解度取决于溶质和溶剂的性质,温度也会对溶解度产生影响。
一般来说,随着温度的升高,溶解度会增加。
其次,饱和溶液中的溶质可以通过降温或者蒸发溶剂来形成固体晶体。
当溶液中的溶质含量超过了饱和溶液的溶解度时,就会形成过饱和溶液。
过饱和溶液是不稳定的,它会在适当的条件下形成固体晶体,这就是结晶的过程。
结晶器利用了过饱和溶液的原理。
在结晶器中,我们首先需要将溶剂和溶质混合在一起,然后通过加热或者搅拌等方式使溶质充分溶解。
接着,我们可以逐渐降低温度或者让溶剂蒸发,使溶液的溶质含量超过饱和溶液的溶解度,从而形成过饱和溶液。
最后,在适当的条件下,过饱和溶液中的溶质就会析出,形成固体晶体。
结晶器的原理可以用来分离溶液中的杂质,纯化溶液中的溶质,或者制备一些晶体材料。
通过控制溶液的温度、浓度和溶剂的蒸发速度等因素,我们可以得到不同形状和大小的晶体。
因此,结晶器在化学、生物、药物等领域都有着广泛的应用。
总的来说,结晶器的原理涉及溶解度、饱和度和过饱和度等概念。
通过控制溶液的条件,我们可以实现溶质从溶液中析出形成固体晶体的过程。
结晶器在实验室和工业生产中都有着重要的应用,它为我们提供了一种有效的方法来分离和纯化物质。
希望本文对结晶器的原理有所帮助,谢谢阅读。
结晶器内部构造
结晶器内部构造
【原创版】
目录
1.结晶器的概念与作用
2.结晶器的内部构造
3.结晶器的操作方法与原理
4.结晶器的应用领域
正文
结晶器是一种用于实现溶液过饱和度并结晶的设备,其内部构造和操作方法对于结晶过程的效果至关重要。
首先,结晶器通常由一个或多个容器组成,这些容器用于盛放溶液。
容器的内部构造通常包括一个或多个加热器,用于加热溶液,使其达到沸腾状态。
此外,结晶器还配备有冷却系统,用于在溶液蒸发后降低容器内的温度,促进结晶过程的发生。
其次,结晶器的操作方法通常包括蒸发结晶法和真空冷却结晶法。
蒸发结晶法是通过加热溶液,使其在常压或减压下蒸发溶剂,以达到溶液过饱和度的方法。
真空冷却结晶法则是在减压条件下,通过降低溶液的温度,使其达到过饱和度并结晶的方法。
最后,结晶器广泛应用于化学、生物、医药等领域。
在化学工业中,结晶器用于制备盐类、糖类等晶体物质;在生物医药领域,结晶器用于提取纯化生物大分子,如蛋白质和核酸等。
第1页共1页。
结晶器
结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模。
称之为连铸设备的“心脏”。
结晶器的定义:一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。
结晶槽可用作蒸发结晶器或冷却结晶器。
为提高晶体生产强度,可在槽内增设搅拌器。
结晶槽可用于连续操作或间歇操作。
间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。
这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。
结晶器的作用:(1)使钢液逐渐凝固成所需要规格、形状的坯壳;(2)通过结晶器的振动,使坯壳脱离结晶器壁而不被拉断和漏钢;(3)通过调整结晶器的参数,使铸坯不产生脱方、鼓肚和裂纹等缺陷;(4)保证坯壳均匀稳定的生成。
结晶器的类型(1)结晶器的类型按其内壁形状,可分为直形及弧形等 1)直型结晶器。
直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。
该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。
直形结晶器用于立式和立弯式及直弧连铸机。
2)弧形结晶器。
弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。
弧形结晶器用在全弧形和椭圆形连铸机上。
(2)按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
通俗的讲连铸结晶器:就是一个钢水制冷成型设备。
基本由框架,水箱和铜板(背板与铜板),调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。
连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。
保护材料用途: 1.确保连铸工艺顺行; 2.改善铸坯表面质量。
oslo结晶器和fc结晶器原理
oslo结晶器和fc结晶器原理Oslo结晶器和FC结晶器原理引言:结晶器是一种用于实现物质结晶过程的设备。
在化学、冶金、生物、材料等领域中,结晶过程被广泛应用于纯化、提纯、晶体生长和材料制备等方面。
本文将介绍两种常见的结晶器——Oslo结晶器和FC结晶器,分别探讨其工作原理和应用特点。
一、Oslo结晶器的原理Oslo结晶器是一种常用的连续结晶设备,其原理基于湿式结晶的过程。
它主要包括稳定器、冷却器、搅拌器和收集器等部分。
Oslo结晶器通过控制温度、溶液浓度和搅拌速度等参数,使溶液中的溶质逐渐凝结成晶体。
Oslo结晶器的工作原理可概括为以下几个步骤:1. 溶液进入稳定器:溶液首先进入稳定器,通过稳定器中的调节装置控制温度和浓度,以保持溶液在稳定的状态。
2. 溶液进入冷却器:稳定的溶液随后进入冷却器,在冷却器中通过降低溶液温度,使溶质逐渐达到过饱和状态。
3. 溶液进入搅拌器:过饱和的溶液进入搅拌器,通过搅拌器中的机械搅拌或气体搅拌等方式,引入扰动,促进晶体的形核和生长。
4. 溶液进入收集器:晶体在搅拌器中逐渐生长,随着溶液流动,晶体被带到收集器中,从而实现结晶过程。
Oslo结晶器的特点:1. 高效连续:Oslo结晶器能够实现高效连续的结晶过程,大大提高了生产效率。
2. 粒度可控:通过调节温度、浓度和搅拌速度等参数,可以控制晶体的粒度和形状,满足不同需求。
3. 适用范围广:Oslo结晶器适用于各种溶液的结晶过程,具有较广泛的应用领域。
二、FC结晶器的原理FC结晶器是一种常见的批式结晶设备,其原理基于气体扩散结晶的过程。
它主要包括反应器、冷却器和收集器等部分。
FC结晶器通过控制温度、压力和流速等参数,使气体中的溶质逐渐凝结成晶体。
FC结晶器的工作原理可概括为以下几个步骤:1. 溶液进入反应器:溶液首先进入反应器,通过加热使其达到过饱和状态。
2. 过饱和气体进入冷却器:过饱和的气体进入冷却器,通过降低温度,使气体中的溶质逐渐凝结成晶体。
结晶器
结晶器的维护
• 使用中应避免各种不当操作对结晶器内壁 的损坏。 • 结晶器水槽应定期进行清理、除污、密封 件应定期调换。 • 定期、定时分析结晶器冷却水水质,保证 符合要求。 • 结晶器检修调换结晶器
班级:机电一班 姓名: 学号:
简介
• 结晶器:是连铸机主体设备中一个关键的 部位,它类似于一个强制水冷的无底钢锭 模。 • 作用:使钢液逐渐凝固成所需规格、形状 的壳,且使壳不被拉断、漏钢及不产生歪 扭和裂纹等缺陷,保证壳均匀稳定的成长。
• 主要参数:结晶器的断面形状和尺寸、结 晶器的倒锥度、长度及水缝面积等。 • 结晶器结构:整体式、管式和组合式。 主要由内壁、外壳、冷却水装置及支撑框 架等零部件组成。
• 管式结晶器:外壳是圆筒形。这种结晶器 结构简单,易于制造和维护,多用于浇铸 小方呸或方呸。 • 组合式结晶器: 由4块复合壁板组合而成。 组合式结晶器改变结晶器的宽度可以在不 浇铸钢时离线调整,也可以在浇铸过程中 进行在线调整。
结晶器宽度及锥度的调整、锁定
• 调宽装置是在结晶器的每个窄面中心线的 上下两个部位各安装一套蜗轮丝杆伺服马 达,并带有位置控制器。每一个蜗轮传动 轴跟伺服马达相联接。在自动调宽时,结 晶器两个窄边的4套蜗杆伺服马达传动装置 驱动两个窄边相向或反向同速运行,实现 调宽所要达到的宽度。可以在浇铸前将结 晶器调整到所要求的宽度,也可以边浇铸 边改变结晶器的宽度
结晶器
结晶器一、河北诺达化工设备有限公司1、OSLO结晶器(1)概述OSLO结晶器分为蒸发式OSLO结晶器和冷却式OSLO结晶器两大类。
蒸发式OSLO结晶器是由外部加热器对循环料液加热进入真空闪蒸室蒸发达到过饱和,再通过垂直管道进入悬浮床使晶体得以成长,由于OSLO结晶器的特殊结构,体积较大的颗粒首先接触过饱和的溶液优先生长,依次是体积较小的溶液;冷却式OSLO结晶器冷却器是由外部冷却器对饱和料液冷却达到过饱和,再通过垂直管道进入悬浮床使晶体得以成长,由于OSLO结晶器的特殊结构,体积较大的颗粒首先接触过饱和的溶液优先生长。
因此OSLO结晶器生产出的晶体具有体积大、颗粒均匀、生产能力大。
并具有连续操作、劳动强度低等优点(2)工作原理及特点特点:a、由于OSLO的本身特殊结构使生产出的产品具有颗粒较大,粒度分布较窄的优点;b、溶液循环量较大,溶液的过饱和度较小,不易产生二次晶核有利于结晶操作;c、可连续生产,产量可大可小;d、清液循环不存在晶体破碎问题;e、悬浮床内过饱和度均匀给晶体成长提供了良好的条件,d>20μ2、OSLO结晶器(1)概述DTB结晶器是一种高效率的结晶设备,由PLC控制物料温度,其独特的结构和工作原理决定了它具有传热效率高、配置简单、操作控制方便、操作环境好等特点,广泛适用于化工、医药、农药、等行业的结晶作业。
现生产制造设备处理量50~3000kgh,共十种型号的系列产品,可根据用户的需要提供与之相配套的各种辅助设备。
(2)工作原理及特点原理:结晶过程中,溶液的过饱和度、物料温度的均匀一致性以及搅拌转速和冷却面积是影响产品晶粒大小和外观形态的决定性因素。
本结晶机采用了专用的搅拌桨,且温度、搅拌桨转速可调易实现系统自控制,以适应各种物料结晶要求的。
(3)DTB结晶器特点:a、是一种典型的晶浆内循环式结晶器b、具有良好的流体动力学效果c、开发了专用螺旋浆,实现了高效内循环,而几乎不出现二次晶核d、很少出现内壁结疤现象e、用于药厂可满足GMP要求f、晶浆过饱和度均匀,粒度分布良好,实现了高效率g、能耗低h、可安装淘洗腿实现连续生产操作i、本身有高的换热面不需要另设加热器或冷却器j、可进行冷却结晶,也可用于真空蒸发冷却结晶k、转速低,调控容易,适用性强,运行可靠,故障少。
氯化钾工艺中的结晶器有
氯化钾工艺中的结晶器有
多种类型,以下是其中几种常见的结晶器:
1) 悬浮结晶器:将热溶液通过喷淋器或高速旋转的热空气中,使其迅速冷却结晶而得到的晶体。
这种结晶器体积小、占地少、操作简单,适用于小中型规模的生产。
2) 内循环晶种结晶器:在搅拌反应器中添加晶种,结晶器中会不断产生新的晶种,通过内循环可以保证产量和产质的稳定性。
3) 外循环晶种结晶器:在结晶器内注入外来种子晶体,通过搅拌作用将种子晶体分散,增加结晶产量和质量。
4) TEMA结晶器:利用温度梯度和流体动力学条件来促进晶体的建立,使用起来比较灵活,可适应多种类型的晶体生长。
5) 搅拌桨式结晶器:通过搅拌桨的旋转来促进晶体生长,具有操作简单、工艺稳定等特点,适用于中小型规模的生产。
结晶器原理
结晶器原理结晶器是一种常见的实验设备,用于从溶液中结晶出固体物质。
它的原理基于溶解度的变化,通过控制温度和溶液浓度来促使溶质从溶液中结晶出来。
下面我们将详细介绍结晶器的原理及其相关知识。
首先,结晶器的原理是基于溶解度的变化。
溶解度是指单位溶剂中溶质的最大溶解量,通常用单位质量溶剂中的溶质质量来表示。
在一定温度下,溶质的溶解度是固定的,但随着温度的变化,溶质的溶解度也会发生变化。
一般来说,随着温度的升高,溶质的溶解度会增加,反之则会减少。
这就是结晶器利用温度控制来促使溶质结晶的原理之一。
其次,结晶器还可以通过控制溶液的浓度来促使溶质结晶。
溶液的浓度是指溶质在单位溶剂中的质量或体积的比例。
当溶液的浓度超过其饱和浓度时,溶质就会开始结晶沉淀。
因此,结晶器可以通过控制溶剂的加入量或者溶剂的蒸发来改变溶液的浓度,从而促使溶质结晶出来。
除了温度和浓度的控制,结晶器还需要合适的结晶种子来促使溶质结晶。
结晶种子是一种晶体或者微小颗粒,可以作为结晶的起始点,促使溶质在其表面结晶。
在结晶器中,可以通过加入适量的结晶种子来快速促使溶质结晶,从而加快结晶速度。
此外,结晶器还需要合适的搅拌和过滤装置来保证结晶过程的顺利进行。
搅拌可以使溶质均匀地分布在溶液中,促使结晶种子更容易吸附溶质并形成晶体。
而过滤装置则可以将结晶后的固体物质从溶液中分离出来,得到纯净的结晶产物。
综上所述,结晶器的原理是基于温度和浓度的控制,通过合适的结晶种子和搅拌过滤装置来促使溶质从溶液中结晶出固体物质。
它在化学实验和工业生产中都有着重要的应用,可以用来纯化化合物、提取有用物质等。
因此,对结晶器的原理及操作方法有着深入的了解,对于化学领域的研究和应用具有重要意义。
结晶器的原理已经被广泛应用于实验室和工业生产中,它不仅可以用于纯化化合物,提取有用物质,还可以用于制备晶体材料,生产药品和化工产品等。
通过对结晶器原理的深入研究和实践操作,我们可以更好地利用这一技术,为化学领域的发展和应用做出更大的贡献。
结晶器内部构造
结晶器内部构造摘要:一、结晶器简介二、结晶器内部构造1.容器2.冷却系统3.搅拌器4.晶体生长区域5.收集器三、结晶器内部构造对晶体质量的影响正文:结晶器是化工、石油、冶金等工业中广泛应用的设备,主要用于制备晶体。
结晶器内部构造的不同,会影响到晶体的形成和质量。
一、结晶器简介结晶器是用于制备晶体的设备,其内部构造会直接影响到晶体的形成和质量。
结晶器可以应用于化工、石油、冶金等工业领域,制备的晶体广泛应用于各个行业。
二、结晶器内部构造1.容器结晶器通常由不锈钢等材料制成,具有耐腐蚀、耐高温等特性。
容器内部可以是光滑的表面,也可以是具有一定纹理的表面,以促进晶体生长。
2.冷却系统结晶器内部需要保持恒定的温度,因此通常配备有冷却系统,包括水冷和油冷等。
冷却系统的设计会影响到结晶器的稳定性和晶体质量。
3.搅拌器结晶器内部通常需要搅拌,以保持晶体生长所需的均匀性和稳定性。
搅拌器可以是固定式的,也可以是旋转式的,具体形式取决于结晶过程的需求。
4.晶体生长区域晶体生长区域是结晶器内部最关键的部分,其设计直接影响到晶体的形成和质量。
根据晶体生长原理,晶体生长区域可以设计为不同的形状和尺寸,如圆柱形、板状等。
5.收集器结晶器内部需要设置收集器,用于收集生长的晶体。
收集器可以是固定的,也可以是移动的,以适应不同结晶过程的需求。
三、结晶器内部构造对晶体质量的影响结晶器内部构造的优化,可以提高晶体的形成速度和质量。
例如,适当的容器尺寸和形状可以促进晶体生长;合理的冷却系统设计可以保持结晶过程中的温度稳定,提高晶体质量;适当的搅拌器和收集器设计,可以提高晶体生长速度和收率。
结晶器的原理
结晶器的原理
结晶器是一种常见的实验仪器,用于从溶液中分离出固体晶体。
它的原理是利用溶液中过饱和度的变化,使溶质凝结成固体晶体。
结晶器的原理可以分为三个主要步骤,饱和溶液的制备、过饱和度的改变和晶体的生长。
首先,要制备饱和溶液。
饱和溶液是指在一定温度下,溶质在溶剂中达到最大溶解度的溶液。
通常情况下,可以通过加热溶剂,逐渐加入溶质并充分搅拌的方法来制备饱和溶液。
在这个过程中,溶质会逐渐溶解,直到达到饱和状态。
其次,过饱和度的改变是结晶器实现分离的关键。
过饱和度是指溶液中溶质的实际浓度大于其平衡浓度的程度。
当过饱和度达到一定程度时,溶质就会开始凝结成固体晶体。
过饱和度的改变可以通过降低溶液温度、加入其他物质或者减少溶剂量来实现。
最后,晶体的生长是结晶器原理的最终体现。
一旦过饱和度达到一定程度,溶质就会开始在溶液中形成固体晶体。
这些晶体会不断生长,直到溶液中的溶质全部凝结成晶体为止。
晶体的生长速度和形态受到多种因素的影响,包括溶液浓度、温度、搅拌速度等。
总的来说,结晶器的原理是利用溶液中过饱和度的变化,使溶质凝结成固体晶体。
通过制备饱和溶液、改变过饱和度和促使晶体生长这三个步骤,可以实现溶质的分离和纯化。
结晶器在化学、生物等领域中有着广泛的应用,是一种重要的实验技术。
对结晶器原理的深入理解,有助于更好地掌握结晶技术,并在实验中取得更好的效果。
结晶器原理
结晶器原理
在结晶器中,有两种结晶过程:一种是晶体在溶液中析出,另一种是晶体在溶液中溶解。
结晶过程的关键在于溶液中的溶质和溶剂达到平衡,而这一过程的实现主要取决于温度、压力、搅拌速度和时间等。
如果温度升高,溶液的浓度减小,此时不需要搅拌就能析出晶体;反之,如果温度升高,则必须通过一定的搅拌才能析出晶体。
结晶过程中的最大压力是指单位时间内溶液所承受的压力,它与温度密切相关。
例如,温度在20℃时,压力为0.001MPa时,单位时间内产生的最大压力为1MPa。
结晶器中进行的是低温、低浓度、过饱和的溶液分离操作。
结晶器有两种:一种是将结晶器安置在由一个圆柱形容器内组成的圆筒中;另一种是将一个圆筒置于两个圆柱形容器内。
这两种结晶器有很多相似之处。
它们都有一个由外部控制和调节的搅拌器,且都需要在不停地搅拌下进行操作。
除此之外,两种结晶器都是通过利用溶液和晶体在其空间中的分布来控制结晶过程的。
—— 1 —1 —。
连铸结晶器总成(特制材料)
结晶器结晶器(mould)承接从中间罐注入的钢水并使之按规定断面形状凝固成坚固坯壳的连续铸钢设备。
它是连铸机最关键的部件,其结构、材质和性能参数对铸坯质量和铸机生产能力起着决定性作用。
开浇时引锭杆头部即是结晶器的活动内底,钢水注入结晶器逐渐冷凝成一定厚度坯壳并被连续拉出,此时,结晶器内壁承受着高温钢水的静压力及与坯壳相对运动的摩擦力等产生的机械应力和热应力的综合作用,其工作条件极为恶劣。
为了能获得合格的铸坯,结晶器应满足的基本条件有:(1)具有良好的导热性,以使钢水快速冷凝成形。
(2)有良好的耐磨性,以延长结晶器的寿命,减少维修工作量和更换结晶器的时间,提高连铸机的作业率。
(3)有足够的刚度,特别在激冷激热、温度梯度大的情况下需有小的变形。
(4)结构简单、紧凑,易于制造,拆装方便、调整容易,冷却水路能自行接通、以便于快速更换;自重小,以减小结晶器振动时的惯性力和减少振动装置的驱动功率,并使结晶器振动平稳。
分类按拉坯方向上断面内壁的线型分结晶器的型式有弧形和直形两种;按其总体结构,不论弧形或直形均有套管式和组合式两种。
套管式内壁铜管、内外水套组成的冷却水套和足辊是它的主要构件(图1)。
直形或弧形的铜管外面由冷却水套、法兰和密封元件等组成供水、供油系统。
为了保证铸坯有规整的外形尺寸,在结晶器底部安装了2~3组足辊,以利于提高拉速和防止铸坯脱方(见鼓肚与菱变)。
图l 弧形套管式结晶器1一结晶器罩}2一内水套;3一润滑油盖;4一内壁铜管5一放射源容器;6一盖板;7一外水套;8一进水管;9一回水管;10一接收装置;l l一水环;12一足辊;13一定位销组合式由宽面及窄面4块复合壁板及外框架组成。
多用于板坯连铸、大断面方坯连铸及异型坯连铸。
组合结晶器的每块复合壁板又由用螺柱联结的内壁铜板(外侧面铣有冷却水沟)和外壁钢制水箱组成。
内壁铜板和外壁间构成冷却水缝,以通水冷却。
4块复合壁之间用夹紧机构压紧。
为了实现结晶器在线调宽以及形成所要求的倒锥度,在结晶器的窄面壁板的上、下部分别装有4组调整装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结晶器
结晶器-正文
用于结晶操作的设备。
结晶器的类型很多,按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
常用的结晶器有:
结晶槽一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。
结晶槽可用作蒸发结晶器或冷却结晶器。
为提高晶体生产强度,可在槽内增设搅拌器。
结晶槽可用于连续操作或间歇操作。
间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。
这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。
强制循环蒸发结晶器一种晶浆循环式连续结晶器(图1)。
操作时,料液自循环管下部加入,与离开结晶室底部的晶浆混合后,由泵送往加热室。
晶浆在加热室内升温(通常为2~6℃),但不发生蒸发。
热晶浆进入结晶室后沸腾,使溶液达到过饱和状态,于是部分溶质沉积在悬浮晶粒表面上,使晶体长大。
作为产品的晶浆从循环管上部排出。
强制循环蒸发结晶器生产能力大,但产品的粒度分布较宽。
DTB型蒸发结晶器即导流筒-挡板蒸发结晶器,也是一种晶浆循环式结晶器(见彩图)。
器下部接有淘析柱,器内设有导流筒和筒形挡板,操作时热饱和料液连续加到循环管下部,与循环管内夹带有小晶体的母液混合后泵送至加热器。
加热后的溶液在导流筒底部附近流入结晶器,并由缓慢转动的螺旋桨沿导流筒送至液面。
溶液在液面蒸发冷却,达过饱和状态,其中部分溶质在悬浮的颗粒表面沉积,使晶体长大。
在环形挡板外围还有一个沉降区。
在沉降区内大颗粒沉降,而小颗粒则随母液入循环管并受热溶解。
晶体于结晶器底部入淘析柱。
为使结晶产品的粒度尽量均匀,将沉降区来的部分母液加到淘析柱底部,利用水力分级的作用,使小颗粒随液流返回结晶器,而结晶产品从淘析柱下部卸出(图2)。
奥斯陆型蒸发结晶器又称为克里斯塔尔结晶器,一种母液循环式连续结晶器(图3)。
操作的料液加到循环管中,与管内循环母液混合,由泵送至加热室。
加热后的溶液在蒸发室中蒸发并达到过饱和,经中心管进入蒸发室下方的晶体流化床(见流态化)。
在晶体流化床内,溶液中过饱和的溶质沉积在悬浮颗粒表面,使晶体长大。
晶体流化床对颗粒进行水力分级,大颗粒在下,而小颗粒在上,从流化床底部卸出粒度较为均匀的结晶产品。
流化床中的细小颗粒随母液流入循环管,重新加热时溶去其中的微小晶体。
若以冷却室代替奥斯陆蒸发结晶器的加热室并除去蒸发室等,则构成奥斯陆冷却结晶器。
这种设备的主要缺点是溶质易沉积在传热表面上,操作较麻烦,因而应用不广泛。