高数(上)复习题解答

合集下载

高等数学习题及解答(1)

高等数学习题及解答(1)

一般班高数作业(上)第一章 函数1、试判断以下每对函数是不是同样的函数,并说明原因: (2) y sin(arcsin x) 与(6) yarctan(tan x) 与 y x ;(4)y x ;(8)y x 与 y x2;y f ( x) 与 xf ( y) 。

解:判断两个函数的定义域和对应法例能否同样。

(2) y sin(arcsin x) 定义域不一样,所以两个函数不一样;(4) y x 2x ,两个函数同样;(6) y arctan(tan x) 定义域不一样,所以两个函数不一样;(8) yf (x) 与 xf ( y) 定义域和对应法例都同样,所以两个函数同样。

2、求以下函数的定义域,并用区间表示:x 211(2) yx;(7) y ex x;(3) y 2 xarcsinln 1x解:(2) x [ 2,0) ;(3) x [1 e 2 ,0) (0,1 e 2 ] ;(7) x(0, e)(e,) 。

1 。

1 ln xf (x)x 2 1, x 03、设 1x 2, x ,求 f ( x) f ( x) 。

解:按 x 0 , x 0 , x 0 时,分别计算得, f (x)0 x 0f ( x)x 。

2 04、议论以下函数的单一性(指出其单增区间和单减区间) :(2) y4xx2;(4) y x x 。

解:(2) y 4xx24 ( x 2) 2单增区间为 [0,2] ,单减区间为 [ 2,4] 。

(4) yx x2x x 0) 。

0 x ,定义域为实数集,单减区间为 ( ,5、议论以下函数的奇偶性:(2)f ( x) x x2 1 tanx ;(3)f (x) ln( x2 1 x);(6) f ( x) cosln x ;1 x, x 0 (7) f (x)x, x 0。

1解:(2)奇函数;(3)奇函数;( 6)非奇非偶函数;( 7)偶函数。

6、求以下函数的反函数及反函数的定义域:2x), D f ( ,0) ;() f ( x) 2x 1, 0 x 1()。

高等数学微积分上复习题及解答

高等数学微积分上复习题及解答

(D)a、b、c 都任意
22、设 f (x)
=
1 − e−x2 x
0
(A)0
(B) 1 2
x ≠ 0 , 则 f ′(0) = ( D )。 x=0
(C)-1
(D)1
23、设 f (x) 是可导函数, 则 ( A )
(A)若 f (x) 为奇函数, 则 f ′(x) 为偶函数
(B)若 f (x) 为奇函数, 则 f ′(x) 亦为奇函数
(D)- 1 (1 − x 2 )3/ 2 + C 3
∫ 30、当 ( C ) 时,广义积分 0 e−kxdx 收敛。 −∞
(A) k >0
(B) k ≥0
(C) k <0
(D) k ≤0
∫ 31、设 f (x=) sin x sin t2dt, g(x=) x3 + x4 ,则当 x → 0 时 f (x) 是 g(x) 的(B )无穷小. 0
1− x x ≥ 0
1− x2 x < 0 (D)
1+ x x ≥ 0
42. 设 x → 0 时, esin x − ex 与 xn 是同阶无穷小,则 n = ( C ).
(A)1
(B)2
(C)3
(D) 4
43. 设 f (x) 在 x = 0 的某个领域内可导,且 f ′(0) = 0 及 lim f ′(x) = 1 ,则( A ). x→0 1− cos x 2
(D) A, B,C 都不对
1− x
41.

g(x)
=

x
+
1
x≤0
x2
x
>
0

f

高数(上)第二章 复习题(含参考答案)

高数(上)第二章 复习题(含参考答案)

高数上第二章 复习题1. 求下列函数的导数: (1) y =ln(1+x 2); 解 222212211)1(11xx x x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=;解[]22212222121222122)2()(21)()(21)(x a x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='.(5)xx y 2sin =;解222sin 2cos 212sin 22cos xxx x x x x x y -=⋅-⋅⋅='.(6)x y arcsin =;解2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=;解])(211[1)(12222222222'+++⋅++='++⋅++='x a xa x a x x a x x a x y2222221)]2(211[1x a x x a x a x +=++⋅++=.(8)xx y +-=11arcsin .解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x xxx x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)xx y -+=11arctan ;解222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(10)x x x y tan ln cos 2tan ln ⋅-=; 解)(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解xx x x x x x x x x x e ee e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ; 解1ln +='x y ,11-==''x xy , y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n xn xn . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dxyd .解 方程两边求导数得 y '=e y +x e y y ', ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4.求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d :解t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=, t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(t t t t t t dx y d -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dtdh h dt dV ⋅⋅=2312π, dtdVh dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx x x x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2); 解dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x2)=2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(3)2211arctan xx y +-=;解)11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=000 1sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不导数.。

高等数学上数学试题及答案

高等数学上数学试题及答案

高等数学上数学试题及答案一、选择题(每题5分,共20分)1. 极限的定义中,若函数f(x)在点x=a处的极限存在,则对于任意的正数ε,都存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。

则以下哪个选项是正确的?A. ε和δ可以互换B. δ依赖于ε和函数f(x)C. δ依赖于ε和aD. ε依赖于δ和函数f(x)答案:B2. 函数f(x)=x^2在区间[0,1]上的定积分表示的是?A. 曲线y=x^2与x轴围成的面积B. 曲线y=x^2与y轴围成的面积C. 曲线y=x^2与x轴围成的体积D. 曲线y=x^2与y轴围成的体积答案:A3. 以下哪个函数是偶函数?A. f(x)=x^3B. f(x)=x^2C. f(x)=x^2+1D. f(x)=x^3-1答案:B4. 函数f(x)=sin(x)的导数是?A. cos(x)B. -sin(x)C. tan(x)D. -cos(x)答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-3x+2的导数是_________。

答案:3x^2-32. 函数f(x)=e^x的不定积分是_________。

答案:e^x+C3. 函数f(x)=ln(x)的导数是_________。

答案:1/x4. 函数f(x)=x^2+2x+1的极值点是_________。

答案:x=-1三、解答题(每题15分,共30分)1. 计算定积分∫[0,1] (2x+1)dx,并说明其几何意义。

解:∫[0,1] (2x+1)dx = [x^2+x] | [0,1] = (1^2+1) - (0^2+0) = 2几何意义:表示曲线y=2x+1与x轴在区间[0,1]上的面积。

2. 求函数f(x)=x^3-6x^2+9x+1在区间[0,3]上的单调区间。

解:首先求导数f'(x)=3x^2-12x+9,令f'(x)=0,解得x=1或x=3。

在区间[0,1)上,f'(x)>0,函数单调递增;在区间(1,3]上,f'(x)<0,函数单调递减。

大学高等数学上考试题库(附答案)

大学高等数学上考试题库(附答案)

.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题 3分,共 30分).1.下列各组函数中,是相同的函数的是( ) .(A ) f xln x 2 和 g x2ln x( B ) f x| x | 和 g xx 2(C ) f xx2( D ) f x| x | 和 g x和 g xx1xsin x 4 2x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A ) 0(B )1( C )1(D )243.曲线 y xln x 的平行于直线 xy 1 0 的切线方程为() .(A ) y x 1 ( B ) y(x 1)( C ) yln x 1 x 1(D ) y x4.设函数f x| x |,则函数在点 x 0 处() .(A )连续且可导( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 yx 4 的() .(A )驻点但非极值点 ( B )拐点(C )驻点且是拐点( D )驻点且是极值点6.曲线 y1 的渐近线情况是( ) .| x |(A )只有水平渐近线 ( B )只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f1 1dx 的结果是().x x 2(A ) f1 C( B )1 C ( C ) f1 C1 Cxfx( D ) fxx8.dx 的结果是() .xe xe(A ) arctan e x C( B ) arctan e xC( C ) e xe x C( D ) ln( e x e x ) C9.下列定积分为零的是() ..(A )4arctanxdx ( B ) 4x arcsin x dx ( C ) 1 e xe x 1 21x 2 12dx ( D )x x sin x dx44 110.设 f x12x dx 等于() .为连续函数,则 f(A ) f 2f 0(B )1f 11f 0(C )1f 2f 0 ( D ) f 1 f 022二.填空题(每题4 分,共 20 分)1.设函数 fxe 2x 1 x在 x 0 处连续,则 a.xa x2.已知曲线 yf x 在 x2 处的切线的倾斜角为5 ,则f 2.6x3. y的垂直渐近线有条 .2x 14. dx.ln 2 xx 15. 2 x 4 sin xcosx dx.2三.计算(每小题 5 分,共 30 分)1.求极限1 x2 xxsin x①limx②limx 21xx 0x e2.求曲线 y ln x y 所确定的隐函数的导数y x .3.求不定积分①dx ②dx a③xe x dxx 1 x 3x 2 a 2四.应用题(每题 10 分,共 20 分)1. 作出函数 yx 3 3x 2 的图像 .y 22x y x 4.《高数》试卷 1 参考答案一.选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C 二.填空题1. 22.3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16x y 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内,每题 3分,共 30分)1. 下列各组函数中, 是相同函数的是 ().(A)f x x 和 g x x2(B)f x x21和 y x1x1(C)f x x 和 g x x(sin 2 x cos2 x)(D)f x ln x2和 g x2ln xsin 2x 1x1x12. 设函数f x2x1,则 lim f x() .x2x 1 1x1(A)0(B) 1(C)2(D)不存在3. 设函数y f x在点 x0处可导,且f x>0,曲线则 y f x在点x0 , f x0处的切线的倾斜角为 {}.(A)0(B)2(C)锐角(D)钝角4. 曲线y ln x 上某点的切线平行于直线y2x3,则该点坐标是().(A)2,ln 1(B)2,1(C)1(D)1ln 2 2ln,ln 2,2225. 函数y x2e x及图象在1,2内是 ().(A) 单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D) 单调增加且是凹的6. 以下结论正确的是 ().(A)若 x0为函数y f x的驻点 , 则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 , 一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 , 则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .17. 设函数y f x的一个原函数为x2e x,则f x =().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8. 若f x dx F x c ,则sin xf cosx dx().(A) F sin x c(B) F sin x c (C)F cosx c(D)F cos x c9.设 F x为连续函数 , 则1x dx =(). f02(A) f1f0(B) 2 f1f0(C)2f2f0(D)1f0 2 f2ba b 在几何上的表示(10. 定积分dx).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b 1 (D)矩形面积 b a1二. 填空题 (每题 4 分,共 20分)ln1x2x0 ,1.设 f x1cos x在 x0 连续,则a=________.a x02.设 y sin2x ,则 dy _________________d sin x.3.函数 yx1 的水平和垂直渐近线共有_______条 . x2 14.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三. 计算题 ( 每小题5分,共 30分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2. 求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分 :①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10分, 共 20 分)1. 作出函数y 1 x3x 的图象.(要求列出表格)3.2. 计算由两条抛物线:y2x, y x2所围成的图形的面积.《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. - 2 2.2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.① e2② 1 2.y x e y2y3.① sec3 x c② ln x2a2x c③x22x 2 e x c3四. 应用题: 1.略 2.S13《高数》试卷3(上)一、填空题(每小题 3分, 共24分)1. 函数y1的定义域为 ________________________.9x2.设函数sin 4x0 则当 a 时 在处连续2. fxx , x,, f x x 0.=_________a,x3. 函数 f ( x)x 2 1的无穷型间断点为 ________________.x 23x24. 设 f ( x) 可导 , yf (e x ) , 则 y ____________.5.limx 2 1_________________.2x 2x 5x6. 1 x 3 sin 2 xdx =______________.1x 4x 2 17. d x 2e tdt _______________________.dx 08. yyy 30 是_______阶微分方程 .二、 求下列极限 ( 每小题 5 分,共 15分)x1x 31 x1.lim e ;2.lim ; 3.lim 1.sin xx 2 9 2xx 0x 3x三、求下列导数或微分 ( 每小题 5 分 , 共 15分) 1. yx x , 求 y (0) .2.ye cos x , 求 dy .2 求 dy.3. 设 xy e x y ,dx四、求下列积分 ( 每小题 5 分, 共 15 分)1. 1 2sin x dx .2.x ln(1x)dx .x3. 1e 2 xdx五、 (8 分) 求曲线xtcost 在 t 2处的切线与法线方程 .y1六、 (8 分) 求由曲线 yx 2 1, 直线 y0, x 0 和 x1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分) 求微分方程 y6 y 13 y 0的通解 ..八、 (7 分) 求微分方程 yye x 满足初始条件 y 10 的特解 .x《高数》试卷 3 参考答案一. 1. x 3 2. a 43. x 24.e xf '(e x )5.16.07.2 xe x28. 二阶2二 .1. 原式 =limx 1x 0x2. lim11 x 3 x3 63. 原式 =lim[(11 1)2 x] 2 ex2x三.1.y ' 2 2 , y'(0)1( x 22)122.dysin xe cos x dx3. 两边对 x 求写: yxy ' e x y (1 y ')y 'e x yy xy yxe x yxxy四.1. 原式 =lim x2cos x C2. 原式 ===2x 2lim(1x)d ( x)lim(1 x) 1 x 2d [lim(1 x)] 22 x 21 x x2 11xx) dx x) 1 lim(12lim(1 ( x )dx 21 x2 2 1 x x 2x)1 x2 x lim(1 x)] Clim(1[ 2223.原式 =1 e 2x d (2 x)e2x 0 1 ( e 1)1112222五.dy sin tdy t 1 且 t, y 1dxdx 22 切线: y1 x2 ,即 y x 12法线: y1 ( x),即 y x 122六.12 1)dx (1x2x)13 S(x22V1 1)2dx1 2x21)dx(x2( x 4x 522128(xx) 0155 3七. 特征方程 :r 2 6r 13 0 r3 2iy e 3x (C 1 cos2x C 2 sin 2x)八. y e1dx1dxx( e x e xdx C )1 [( x 1)e x C] x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是() .A2,1 B2,1C 2,1 D2,12、极限 lim e x 的值是().xA 、B、C 、 D、 不存在3、 limsin(x1) () .x 11 x 211A 、 1B 、 0C、2D 、24、曲线 yx 3x 2 在点 (1,0) 处的切线方程是()A 、 y2(x 1)B、 y 4( x 1)C 、 y 4x 1D、 y 3( x 1)5、下列各微分式正确的是() .A 、 xdx d ( x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d(5x)D、 d ( x 2 ) (dx )26、设f (x)dx 2 cosxC ,则 f ( x)() .2xB、sin xC、xC D、xA、sin2sin 2 sin222 7、2ln x dx() .xA、212x CB、1x2Cln(2x22ln )21ln xC、ln 2ln x CD、Cx 28、曲线y x2, x1, y0所围成的图形绕y 轴旋转所得旋转体体积V () .A、1B1 x4 dx、ydy 0011C、(1 y)dyD、(1 x 4 )dx009、1 e xx dx() .0 1e1eB、ln2eC1eD12eA、ln2、ln3、ln2210、微分方程y y y2e2 x的一个特解为() .A、y 3 e2 x B 、y 3 e x C 、y 2 xe2 x D 、y 2 e2 x7777二、填空题(每小题 4 分)1、设函数y xe x,则y;2、如果lim 3sin mx2,则 m.x 02x313、x3cos xdx;14、微分方程y 4 y 4 y0 的通解是.5 、函数f ( x)x 2x在区间 0,4上的最大值是,最小值是;三、计算题(每小题 5 分)、求极限lim 1 x1 x ;2、求 y 1cot2 x ln sin x的导数;1x2 x 03、求函数x 3 1 4、求不定积分dx ;y3的微分;1x 1x15、求定积分e ln x dx ;6dyx1、解方程 ;edxy 1 x 2四、应用题(每小题 10 分)1、 求抛物线 yx 2 与 y 2 x 2 所围成的平面图形的面积 .2、 利用导数作出函数 y 3x 2 x 3 的图象 .参考答案一、1、C ; 2 、D ; 3 、C ; 4 、B ; 5 、C ; 6 、B ; 7 、B ; 8 、A ; 9 、A ; 10、D ;二、 1、 ( x 2)e x; 2、4;3、0; 4、 y(C 1 C 2 x)e 2 x ; 5 、 8,09三、1、 1 ; 2、 cot 3 x ; 3 、6x 2 dx ; 4 、2 x 1 2 ln(1 x 1) C ;(x 3 1) 25、 2(21) ;6 、 y 22 1 x 2C;e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1、函数 y1的定义域是().2 x1)lg( xA 、 2,10,B 、1,0 (0, )C、(1,0)(0,)D、 (1, )2、下列各式中,极限存在的是() .A、lim cosxB、 lim arctan xC、 lim sin xD、lim 2xx 0x x x 3、lim (x) x() .x 1 xA 、e B、e2C、 1D、1 e4、曲线y xln x 的平行于直线x y 1 0的切线方程是() .A、y xB、 y(ln x1)( x1)C、y x1D、 y(x1)5、已知y x sin 3x,则 dy() .A、( cos3x3sin 3x)dxB、 (sin 3x3x cos3x)dxC、(cos3x sin 3x)dxD、 (sin 3x x cos3x) dx6、下列等式成立的是() .A、C、x dx1x 1CB、a x dx a x ln x C11 cosxdx sin x C D、 tan xdx Cx217、计算e sin x sin xcos xdx的结果中正确的是() .A、e sin x CB、e sin x cosx CC、e sin x sin x CD、 e sin x (sin x 1) C8、曲线y x2, x1, y 0 所围成的图形绕x 轴旋转所得旋转体体积V().1x4 dx1ydyA、B、001(1 y)dy D1C、、(1 x 4 )dx00aa2x2 dx (9、设a﹥0,则) .A、a2B、 a2 C 、1a20 D 、1a2244 10、方程()是一阶线性微分方程 ..A、x2y ln y0B、 y e x y 0 xC、(1x2 ) y ysin y 0D、 xy dx ( y 26x) dy 0二、填空题(每小题 4 分)1、设f (x)e x1, x0,则有 lim f (x),lim f ( x);ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1 x 2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x5、求定积分eln x dx ;1e6x2 y xy y满足初始条件y(1) 4的特解 .、求方程2.四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、1、B; 2 、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10、B.二、 1、 2 , b ;2、( x2)e x;3、ln 5 , 0 ;4、 0 ;5、C1e x C 2e2x.三、1、1; 2 、x arccos x 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x24、2 2ln x C ;5、 2(21) ; 6 、y 2 e e x四、 1、9 ; 2 、图略21x;2单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

《高等数学》上复习题及解析

《高等数学》上复习题及解析

《高等数学》上复习题及解析解析:1、f(x)在x=0处连续,则极限值等于函数值,f(0)=1,x趋于0时,e^asinx-1~ asinx,极限为a/2,故a=2。

2、若两个无穷小商α/β的极限为∞,则称α是比β的低阶无穷小。

求极限时分子分母同乘根式sqr(x^2+2)-sqr(x^2-2)的共轭根式sqr(x^2+2)+sqr(x^2-2),宜得到结果。

3、因为x趋于0时,f(x)/x的极限等于1,所以f(x)必为无穷小,即limf(x)=0;又因为f(x)在x=0处连续,故f(0)=0,由导数定义得f'(0)=1。

4、求出顶点坐标为(1,-1),以及y'=0,y''=4,曲率为4,注意曲率半径为曲率的倒数。

5、f[g(x)]在x=1处的导数等于f'(g(1))g'(1),如图,直线PB的方程为y=6-3x,则g(1)=3,故f'(3)是直线AC的斜率,其中点A(2,4),斜率为(3-4)/(6-2);g'(1)是直线PB的斜率-3。

解析:1、在同一变化过程下的等价无穷小具有传递性。

x趋于0时,只要是与sinx等价的无穷小就是答案。

ln(1-x)~ -x,sinIxI~IxI,选项C 等价于(1/2)x,而sqr(1+2x)-1~x,故正确答案是D。

2、选项C是充分必要条件(为连续定义),选项A、B是必要条件(连续必有极限且在某邻域内有界);因可导函数一定连续,但连续不一定可导,故答案是D。

3、f(x)在x=0处无定义但有极限0(无穷小乘以有界变量还是无穷小),这是可去间断点的特征。

故选A。

注意跳跃间断点是左右极限存在但不相等。

4、在闭区间上可导的函数一定在该区间上连续,连续则一定可积,闭区间上可积的函数一定有界(有界是闭区间上定积分定义的必要条件,不信?看书去!)5、某点处一二阶导数为0,三阶导数不等于0,则该点是拐点,这是求拐点的另一个方法,任课老师一定讲过,是不是上课没有认真听?答案就是D。

高等数学(上册)总复习题答案

高等数学(上册)总复习题答案

高等数学A (1)复习题参考解答一、函数与极限1.判断下列每个命题是否正确判断下列每个命题是否正确 (1)若数列{}nx 满足a x nn =¥®lim ,则数列{}n x 在a 的任一e 邻域之外(其中0>e ),数列中的点至多只有有限多个。

中的点至多只有有限多个。

(2)若数列{}n x 满足满足::+Î>N n x n,0,且a x n n =¥®lim ,则0>a 。

(3)设axnn =¥®lim,且0>a ,则存在0>N ,当N n >时,有4a x n >。

(4)若函数)(x f 的极限)(lim 0x f x x ®存在,则)(x f 在0x 的任一邻域内一定有界。

的任一邻域内一定有界。

(5)若函数)(x f 在0x 处没有定义,则极限)(lim 0x f x x ®一定不存在。

一定不存在。

解:正确的是(1),(3)2.设极限设极限 xx ax a x )2(lim -+¥®= 5,求a 。

解:5=a x a x aa a x x e ax a 333)31(lim =-+×-×-¥®,5ln 31=a 。

3.求极限求极限(1)231sin 2cos 23lim 3223=+-++¥®x x x x x x ;(2)1111lim )11(lim 222222-+++-+=--++¥®+¥®x x x x xx x x x x111112lim22=-++=+¥®xx x ;(3)1)sin 11sin(lim 0-=-®x xx x x ; (4)212sin lim 2cos lim 1sin lim 2111sin lim00202=+=-=--=----®®®®x e x x e xx e x x e x x x x x x x x ; (5)xx x e x x arctan 1)1ln(lim 0---+®()()()21!3213121!31!211lim 333323320-=÷øöçèæ+---÷øöçèæ+---+++++=®x o x x x x o x x x x o x x x x ; (6))ln(cos sin 1sin 1lim )(cos lim x xx xx e x ×®®++=0cos sin lim )ln(cos 1lim )ln(cos sin 1lim 000=-=×=×+++®®®xx x x x x x x x 1)(cos lim sin 10=+®xx x ;(7))cos 1(2)211(lim )cos 1()211(lim22002x x xx x dtt t dtt t x x x x ---+=---+++®®òò 621)211(2lim 2220=--+=+®x x x x ; (8)()3ln 5ln 21235lim )1ln()35(lim00-=-=+-®®òx x x dt x x x xt t x 。

高数(上)复习参考题(答案)

高数(上)复习参考题(答案)

高 等 数 学 (上) 期 终 复 习 思 考 题 解 答(2015)1. ()()()()()()().12111111122222222+=-++--+=⎥⎥⎦⎤⎢⎢⎣⎡-+=⎥⎥⎦⎤⎢⎢⎣⎡x xx x x x x x f x f f 2. (C) 当0≥x 时,.)()()]([22x x x e e e f x f f ---=-=-=3. (B) 当0→x 时,()[]x x x x x x -+-=-~sin 22ο或利用1sin lim 20-=-→xx x x , 可得0→x 时,x x sin 2-与x 是同阶无穷小,而不是等价无穷小. 4.(C)()0)()(lim'==--→a f ax a f x f ax ,所以当a x →时,()()a f x f -是关于a x -的高阶无穷小.5. (1) 304220220422sin lim sin lim sin 11lim x x x x x x x x x x x -=-=⎪⎭⎫ ⎝⎛-→→→ .31242sin 4lim 1222cos 2lim020-=-=-=→→x x x x x x (2) ()()()⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+=+→→→)8(38ln 812lim exp 38ln 2lim exp 8lim 0032xx x x x x x x x x x x()3248ln 132exp e =⎥⎦⎤⎢⎣⎡+=. (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎪⎪⎭⎫⎝⎛-+∞→-+∞→+∞→x x x x x xx x x xx πππππcos 2sin limexp cos ln limexp cos lim 2231 22π-=e . 或令xt 1=原式()[]()22010221cos lim exp cos lim πππ-→→=⎥⎦⎤⎢⎣⎡-==++e t t t t t t(4) ()ttt t x x x t tx x +-++=+++-+-→-=→2584lim 12584lim 2012接下去可以利用分子有理化,原式()(),325842584lim 2220=⎥⎦⎤⎢⎣⎡-+++--++=+→t t t t t t t t或用洛必达法则都可得到一样结果.(5)()[]t t t t t x x x t t tx x 2111lim 1ln 1lim 11ln 1lim 02012+-=+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++→→=+∞→ ()2112lim 0=+=+→t t t t .或利用带皮亚诺余项的泰勒公式)(21)1ln(22t o t t t +-=+. (6)()()()()xx x x x x x x dtt t t dt t t x x xx x cos 11sec limsin 2tan 2lim sin 2tan lim 200002--=--=--+++→→→⎰⎰ 221l i m c o s 1t a n l i m22020==-=++→→x x x x x x (7)t a a a t a a a a x t t t t t t tx xx x 2ln )(lim 2lim 2lim0201112-→-→=-+∞→-=-+=⎪⎪⎭⎫ ⎝⎛-+++ a a a a t tt 220ln ln )(21lim =+=-→+. 6. .0tan sec 2)0(,1sec )0(,0tan )0(02"02'0=========x x x xx f xf xf().sec 2tan sec 4422"'x x x x f += ()()()()()3'"2"'!310!2100tan x f x f x f f x x f ξ+++== ()()之间在x 0,.sec tan sec 2313422ξξξξx x ++=.7. ()()[].,ln ,中值定理上利用在证法一:对Cauchy b a x x g x x f ==. ().,b a ∈∃ξ 使()()()()()().''ξξg f a g b g a f b f =-- 即 ξξ121ln ln =--a b a b . 也就是 ab a b ln2ξ=-. ()[].,ln 中值定理上利用在证法二:对Lagrange b a x x f =()b a ,∈∃ξ使()()()()a b f a f b f -=-ξ'. 即()()a b a b -=-ξ1ln ln 21.即且则令,ln 2..ln 2abx a b x a b a b =-==-ξξ当()b a ,∈ξ时, 有b x a <<.8. (A) ()()()00lim lim 1lim00lim '0232003f x xx x ex f x f x x xx x ===--=-=--→→-→→.9. 证:令()()()()()[]()()[]⎰⎰---=-=btt adx t f x f dx x f t f t B t A t g λλ.显然()x g 在[]b a ,上连续,则 ()()()[],0<--=⎰badx a f x f a g λ()()()[]0>-=⎰ba dx x fb f b g .根据闭区间上连续函数的零值定理可知,方程()0=t g 在()b a ,内有解.()()()()()()t g t b t f a t t f t g .0'''>-+-=λ 在 ()b a , 内单调增.()t g ∴ 在 ()b a , 内有且仅有一个零点.10. ())1)(1(1-++=x x x x x x f 间断点有三个0,121=-=x x ,13=x 。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

期末高等数学(上)试题及答案

期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答以下各题(本大题共 16 小题,总计 80 分 )1、(本小题 5 分)求极限limx 3 12 x 163 9x 212x 4x 22x2、 (本小题 5 分 )求x2 2dx. (1 x )3、(本小题 5 分)求极限 limarctan x arcsin1xx4、(本小题 5 分)求x d x.1 x5、 (本小题 5 分 )求 dx 21 t 2dt .dx6、 (本小题 5 分 )求 cot 6 x csc 4 x d x.7、(本小题 5 分)21 cos 1dx .求 1 x 2 x 8、 (本小题 5 分 )xe t cost 2y( x), 求dy.设确立了函数 y ye 2t sin tdx9、 (本小题 5 分 )3求 x 1x dx .10、 (本小题 5 分 )求函数 y 4 2 x x 2 的单一区间 11、 (本小题 5 分 )求 2sin x dx .sin 2 x0 812、 (本小题 5 分 )设 x t) e kt(3cos t4 sint ,求 dx .()13、 (本小题 5 分 )设函数 yy x 由方程 y 2ln y 2x 6 所确立 , 求 dy .( )dx14、 (本小题 5 分 )求函数 yexe x的极值215、 (本小题 5 分 )求极限 lim( x1)2(2x 1)2 ( 3x 1) 2(10x 1)2x16、 (本小题 5 分 )(10x 1)(11x 1)求cos2x d x. sin xcos x 1二、解答以下各题(本大题共 2 小题,总计 14 分 )1、(本小题 7 分)某农场需建一个面积为 512平方米的矩形的晒谷场 ,一边可用本来的石条围 沿,另三边需砌新石条围沿 ,问晒谷场的长和宽各为 多少时 ,才能使资料最省 .2、(本小题 7 分)求由曲线 yx 2 和 y x 3 所围成的平面图形绕 ox 轴旋转所得的旋转体的 体积 .28三、解答以下各题 (本大题6分 )设 f (x)x(x 1)( x 2)( x 3), 证明 f ( x) 0有且仅有三个实根 .一学期期末高数考试 (答案 )一、解答以下各题(本大题共 16 小题,总计 77 分 )1、(本小题 3 分)解:原式lim 3x 2 12218x 12x 2 6x6xlimx 212 x 1822、(本小题 3 分)xd x(1 x 2 )21 d(1 x2 ) 2(1x 2 ) 2112 1 x 2c.3、(本小题 3 分)因为 arctan x2而 limarcsinx故 limarctan x arcsin1xx4、(本小题 3 分)x d x1 x1 x 1 d x 1 xd xd x1 xx ln 1 x c.5、(本小题 3 分)原式2 x 1 x 46、(本小题 4 分)cot 6 x csc 4 x d xcot 6 x(1cot 2 x) d(cot x)1 0x1cot 7 x 1cot 9x c.797、 (本小题 4 分 )211原式1 cos d ()x x1 sin2 118、 (本小题 4分 )解:dy e2t (2 sin t cost)dx e t (cos t 22t sin t 2 )e t (2 sin t cost)(cost 22t sin t 2 ) 9、 (本小题 4分 )令 1 x u2原式 2 (u4u2 ) du12( u5u3) 12531161510、 (本小题 5 分 )函数定义域 (,)y 2 2 x2(1x)当 x 1, y 0当x,y函数单一增区间为,1 10当x,y函数的单一减区间为1,1011、 (本小题5 分 )原式2d cos x09cos2x13cosx 2lncosx 0631ln 2612、 (本小题 6 分 )dx x (t) dte kt(43k ) cos t ( 4k 3 ) sin t dt13、 (本小题 6 分 )2yy2y6x5yy 3yx5 y2114、 (本小题 6 分 )定义域 (,), 且连续y2e x (e2 x1)2驻点: x1 ln 12 2因为 y2e xe x故函数有极小值 ,, y( 1ln 1 ) 2215、 (本小题 8 分 ) 22(1 1 ) 2 ( 2 1 )2 ( 3 1 ) 2(10 1 ) 2原式lim x x xxx(10 1)(11 1)10 11 21x x 6 10 117216、 (本小题 10 分)解 :cos2x dxcos2x dx1 sin x cos x11sin 2xd(12sin 2x 1)2 11sin 2x1 2sin 2xcln 12二、解答以下各题(本大题共 2 小题,总计 13 分 )1、 (本小题 5 分 )设晒谷场宽为 x, 则长为512米 ,新砌石条围沿的总长为x L2x512(x0)xL2512 独一驻点x 16x 2L10240 即 x 16 为极小值点x 3故晒谷场宽为 16米 , 长为51232米时 , 可使新砌石条围沿16所用资料最省2、(本小题 8 分)解:x 2x 3 , 22x3x 1,.28x0 x 148V x4 x 2 ) 2 (x 3 2dx 4 x 4x 6() 0()dx28464(11 x 541 1 x 7 ) 4 564 7 044 ( 11 ) 51257 35三、解答以下各题 (本大题10分)证明 : f (x)在 ( , ) 连续 , 可导 , 进而在 [ 0,3]; 连续 , 可导 .又 f (0) f (1) f (2) f (3) 0则分别在 [0,1],[ 1,2],[2,3] 上对 f ( x) 应用罗尔定理得, 起码存在1 (0,1),2(1,2), 3(2,3)使 f ( 1 ) f (2 ) f (3 ) 0即 f (x) 0起码有三个实根 , 又f (x) 0,是三次方程,它至多有三个实根,由上述 f ( x) 有且仅有三个实根参照答案一。

高数上学期题库及答案

高数上学期题库及答案

高数上学期题库及答案一、选择题1. 函数f(x)=x^2+3x+2在区间[-2, 1]上的最大值是:A. 1B. 3C. 5D. 7答案:C2. 极限lim(x→∞) (1-1/x)^x的值是:A. 0B. 1C. e^-1D. e答案:D3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0C. 1D. 2答案:C二、填空题4. 函数f(x)=sin(x)+cos(x)的周期是______。

答案:2π5. 若f(x)=x^3-6x^2+11x-6,则f'(x)=______。

答案:3x^2-12x+11三、解答题6. 求函数y=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

解:首先求导数y'=3x^2-12x+11,令y'=0,解得x=1和x=3(重根)。

由于是重根,需要计算二阶导数y''=6x-12,代入x=1和x=3,得到y''(1)=-6,y''(3)=6。

因此,x=1处为极大值点,x=3处为极小值点。

计算端点和极值点的函数值,得到y(1)=0,y(3)=-2,所以最大值为0,最小值为-2。

7. 求曲线y=x^2与直线y=4x在第一象限的交点坐标。

解:联立方程组:\[\begin{cases}y = x^2 \\y = 4x\end{cases}\]解得x=0(舍去,因为不在第一象限)和x=4,代入任一方程得y=16,所以交点坐标为(4,16)。

四、证明题8. 证明:若f(x)在[a,b]上连续,则f(x)在[a,b]上可积。

证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上有界且只有有限个间断点。

根据达布定理,对于任意的ε>0,存在一个分割P:a=x_0<x_1<...<x_n=b,使得U(P,f)-L(P,f)<ε。

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。

参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。

由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

高等数学1(上册)试题答案及复习要点汇总(完整版)

高等数学1(上册)试题答案及复习要点汇总(完整版)

承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。

21 D. 21 C. 12 B. 21 A.)A (4 sin 1cos cos 22----+=⎩⎨⎧+=+=点处的法线斜率为上在对应曲线、πt t y t t x大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5.=+→xx x sin 2)31(lim . 6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x x x f d cos )(则 .7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=- 10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:10330()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高等数学(上册)总复习题答案

高等数学(上册)总复习题答案

高等数学A (1)复习题参考解答一、函数与极限1.判断下列每个命题是否正确(1)若数列{}n x 满足a x n n =∞→lim ,则数列{}n x 在a 的任一ε邻域之外(其中0>ε),数列中的点至多只有有限多个。

(2)若数列{}n x 满足:+∈>N n x n ,0,且a x n n =∞→lim ,则0>a 。

(3)设a x n n =∞→lim ,且0>a ,则存在0>N ,当N n >时,有4ax n >。

(4)若函数)(x f 的极限)(lim 0x f x x →存在,则)(x f 在0x 的任一邻域内一定有界。

(5)若函数)(x f 在0x 处没有定义,则极限)(lim 0x f x x →一定不存在。

解:正确的是(1),(3) 2.设极限 xx ax a x )2(lim -+∞→= 5,求a 。

解:5=a xa x aa a x x e ax a 333)31(lim =-+⋅-⋅-∞→,5ln 31=a 。

3.求极限(1)231sin 2cos 23lim 3223=+-++∞→x x x x x x ; (2)1111lim )11(lim 222222-+++-+=--++∞→+∞→x x x x xx x x x x111112lim22=-++=+∞→x x x ;(3)1)sin 11sin(lim 0-=-→x xx x x ; (4)212sin lim 2cos lim 1sin lim 2111sin lim00202=+=-=--=----→→→→x e x x e xx e x x e x x x x x x x x ; (5)xx x e x x arctan 1)1ln(lim 0---+→()()()21!3213121!31!211lim333323320-=⎪⎭⎫⎝⎛+---⎪⎭⎫ ⎝⎛+---+++++=→x o x x x x o x x x x o x x x x ;(6))ln(cos sin 1sin 1lim )(cos lim x xx xx e x ⋅→→++=0cos sin lim )ln(cos 1lim )ln(cos sin 1lim 000=-=⋅=⋅+++→→→xxx x x x x x x 1)(cos lim sin 10=+→xx x ;(7))cos 1(2)211(lim )cos 1()211(lim220002x x xx x dtt t dtt t x x x x ---+=---+++→→⎰⎰ 621)211(2lim 2220=--+=+→x x x x ; (8)()3ln 5ln 21235lim )1ln()35(lim00-=-=+-→→⎰x x x dtx x x x t t x 。

高等数学I(上)复习题共7套(答案)

高等数学I(上)复习题共7套(答案)

x)
1 1 lim 1 x lim
x
lim 1 1
x0 2 x
x0 2x(1 x) x0 2(1 x) 2
12.
1
e
1 x dx .
0
解:设 1 x t, 则 x 1 t2, dx 2tdt, 且 x 0 时, t 1 ; x 1时, t 0 ,
1 e
1 x dx
证. 对任意 x ,由于 f ( x) 是连续函数,所以
F ( x x) F ( x)
lim
x 0
x
lim f ( ) x0
xx f t dt x f t dt
lim 0
0
x 0
x
2
xx f t dt
lim x
x 0
x
f ( )x lim
x0 x
其 中 介 于 x 与 x x 之 间 , 由 lim f ( ) f ( x) , 可 知 函 数 F( x) 在 x 处 可 导 , 且 x0
所以
dy cos π π sin π 1 . dx π 1 sin π π cos π 1 π
法二: dy cos (sin )d cos sin d .
dx 1 sin (cos )d 1 sin cos d .
5
dy
dy dx
d dx
cos sin ; 1 sin cos
0 ,驻点 x
f (0) .
在 t 0 两侧, dy 变号,故驻点是函数 y y( x)的极值点。 dx
1
(2)
d2 y dx 2
dt dt
1 dx
1 0 f (t)
dt
,曲线 y y( x)没有拐点.

高等数学1(上册)试题答案及复习要点汇总(完整版)

高等数学1(上册)试题答案及复习要点汇总(完整版)

承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5.=+→xx x sin 2)31(l i m . 6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x x x f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x Ax ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=- 10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:133()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高数(上)习题及解答(极限)

高数(上)习题及解答(极限)

= lim

1
1 + x2
洛比达法则
x→+∞
1
1 x →+∞
1
sin x
− x2 cos x
x2 = lim
x→+∞ 1 + x2
=1
π
− arctan x
lim 2
不存在
x →∞
1
sin
x
lim(sin x)tan x
x→π 2
解:令y = sin xtan x , 则lny = tan x ⋅ln sin x
x→0⎝ x

1⎞
ex
⎟ −1⎠
=
lim
x→0
ex x
−1− x ex −1
=
lim
x→0
ex
ex −1 −1 + xex
=
lim
ቤተ መጻሕፍቲ ባይዱx→0
2ex
ex +
xex
1 = lim
x→0 2 + x =1
2
lim
x→∞
⎛ ⎜ ⎝
2x 2x
+3 +1
x+1
⎞ ⎟ ⎠
=
⎛ ⎜ lim ⎜ x→∞⎜
1+ 1+
3
2x 1
= e x→0+ 2 x = 1
lim
x→1
⎛ ⎜ ⎝
1 ln x

1⎞ x −1⎟⎠
=
lim
x→1
x −1− ln x
ln x⋅ ( x −1)
1
1−
= lim
x
x→1 x −1 + ln x

高等数学上册试题及答案

高等数学上册试题及答案

高等数学上册试题及答案一、选择题(每题4分,共40分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为()。

A. -3B. 0C. 3D. 42. 函数y=x^3-3x+1的导数为()。

A. 3x^2-3B. x^2-3C. 3x^2-3xD. x^3-33. 极限lim(x→0) (sinx/x)的值为()。

A. 0B. 1C. -1D. 24. 函数y=e^x的不定积分为()。

A. e^x + CB. e^x - CC. x*e^x + CD. x*e^x - C5. 以下哪个选项是微分方程y''-y=0的通解()。

A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*x^2+C2*x6. 曲线y=x^2在点(1,1)处的切线斜率为()。

A. 0B. 1C. 2D. 47. 已知函数f(x)=x^3-6x^2+11x-6,求f'(x)=()。

A. 3x^2-12x+11B. 3x^2-12x+6C. 3x^2-6x+11D. 3x^2-6x+68. 函数y=ln(x)的导数为()。

A. 1/xB. xC. ln(x)D. 19. 已知函数f(x)=x^2-2x+1,求f(2)=()。

A. 1B. 3C. 5D. 710. 极限lim(x→∞) (1/x)的值为()。

A. 0B. 1C. ∞D. -∞二、填空题(每题4分,共20分)1. 若函数f(x)=x^3+2x^2-5x+1,则f'(x)=______。

2. 求定积分∫(0 to 1) (2x+3)dx的值,结果为______。

3. 函数y=x^2-4x+c在x=2处的极值点,当c=______时,该点为极大值点。

4. 函数y=e^(-x^2)的二阶导数为______。

5. 曲线y=x^3-3x^2+2在点(1,0)处的切线方程为y=______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》复习题(2011——2012(1))一.计算题1.)1)1ln(1(lim 0x x x -+→ )1)1ln(1(lim 0x x x -+→ 2122x 0x 0x 0x ln(1+x)-x ln(1+x)-x 1+x lim lim lim xln(1+x)x x →→→===== 2. nn n n b a ⎪⎪⎭⎫⎝⎛+∞→2lim )0,0(>>b alim 1→∞⎧⎛⎪=+ ⎨ ⎝⎭⎝⎭⎪⎪⎩⎭n nn211lim lim lim 222→∞→∞→∞⋅=⋅+⋅n n n n n n 其中1111ln ln ln ln 1111ln lim(1)lim(1)lim lim 22222lim 2→∞→∞→∞→∞→∞=-⋅+-⋅=⋅+⋅==⎛∴= ⎝⎭a b a b n nn n n n n n nn ab e n e n n n3. nn n x nx -∞→⎪⎪⎭⎫⎝⎛++22221lim ()lim lim 222222222222221122+-⋅⋅-+-→∞→∞⎛⎫⎛⎫+++=+= ⎪ ⎪⎝⎭⎝⎭n nx x nn nx xn x n n nx x nx x e n n4. 若212lim1x x ax b x →-++=+,求a 、b lim lim ;,221122031→-→-++=⇒++=+⇒==由x x x ax b x ax x a b5.求22132x y x x -=-+的间断点,并判别间断点的类型。

()()x x y x x -+=--11, x=1是跳跃间断点,x=2是无穷间断点.6 .并在可导处求出的可导性 ,,试讨论)(,00)1ln()(sin x f x e x x k x f x '⎪⎩⎪⎨⎧<≥++=011sinxsinx k+ln(1+x), x 0f(x)=e , x 0k =1f(x), x 01+x f (x)=x =0cosx e , x 0x ≥⎧⎨<⎩=⎧>⎪⎪'⎨⎪<⎪⎩当时,在连续。

7.已知11ln)sin(=+-y x xy ,求0=x dx dy11sin()ln1cos()()01'+'-=+-+=+x y xy x xy y xy y x y在两端求的导数:1cos()11cos()-+'=+y xy x y x xy y8. 设)(2x f y = ,求dy ;2dy =2xf (x)dx ' 9.0000202=2()()()()limh f x h f x h f x f x h →++--''设,求000002000000000()()2()()()limlim2()()()()11lim lim ()=222()→→→→''++--+--=''''+---''=+=-h h h h f x h f x h f x f x h f x h h hf x h f x f x h f x f x h h 注意下面的做法不正确(增加了条件:二阶导数存在并连续):0000000()()()()limlim ()22→→''''''+--++-''==⇒⇒h h f x h f x h f x h f x h f x h 注.二阶导数存在一阶导数连续,但二阶导数连续 10. 设⎪⎩⎪⎨⎧+=+=12223te y t x ,求222=t dx y d 。

222422252(1),,639288=-'''''====t t t t e e e t e y y y t t t 11. )()1()(331x g x x f -=,其中)(x g 在点1=x 处连续,且6)1(=g ,求)1(f '。

33111()(1)(1)()0(1)lim lim 331(0)198611x x f x f x g x f g x x →→---'===⋅=--12. 设42211x x y -+= 分别求y 的单调区间,极值和拐点. 3222,26,:(,1),(0,1);:(1,0),(1,);1,:(:,y x x y x x x '''=-=-↑-∞-↓-+∞=±3取极大值,=0取极小值02凹凸其余区间2323拐点,,)181813. 求内接椭圆2222b y a x +=1且底边平行于x 轴的等腰三角形,使面积最大。

(,()(=x s x x b设右交点为2222()[)[2()](2)(),.2'==+--=-+=∴b b b s x a t at a a t t a t a a at at a t x 是唯一驻点显然是s 的最大值点.当时面积最大14. 已知曲线方程为32e =--y x xy,求此曲线上0=y 所对应的点处的切线方程和法线方程。

10()0=-1(,xy y =0x =-1,e y+xy -2-y =y y =-x-1y =x+1-'''⇒)时切线:法线:15.a 为何值时,x x a y 3sin 31sin +=在3π=x 处有极值?它是极大还是极小?cos cos3,()02,()0,().333''''=+=⇒==<y a x x y a y y πππ由由极大 16.在1,2,33,44,…,n n ,…中求出最大的一个数。

1102211661ln 1(),()(),,().23.89().'==-+=∴=====x xnx f x x f x x x e f e x x n n f n n n 设是唯一驻点且最大最大项在或.注.不能直接对中的自变量求导数 17.设c bx ax x f ++=2)(,a,b,c 为何值时,使)(x f 在1=x 处有极大值7,且曲线)(x f y =过点(2,-2)。

(1)77,(1)020,(2)24222,9,18.'=⇒++==⇒+==-⇒++=-⇒=-=-=f a b c f a b f a b c c a b18.给定半径的球内,内接一正圆锥,问圆锥的高和底面半径的比值为何时,圆锥体积最大?222220,:,:,4(),(()),(2),,33+-==-==R h r V h r h r h R R Rh h h h R r R ππ设球半径:锥高锥底半径则=时最大.33 19. 已知xxsin 是)(x f 的一个原函数,求⎰'dx x f x )(。

xcosx-sinx sinxxf (x)dx xf(x)f(x)dx x xsinxf(x)dx xC '=-=-+=⎰⎰⎰注:20.⎰∞+- 321xdx; 32222 3 311111111ln 2()ln ,lim lim (ln )121112111212+∞→+∞→+∞++=+=+===---+-----⎰⎰⎰bb b b dx x dx dx xC x x x x xx x x ,21.⎰1d ln x x x ;12222 1 00222000221ln d ln ,ln d lim (ln )2424411ln ln 11ln 11lim ln lim lim lim lim0()112221++++→→+∞→+∞→→→=-=-=-==-=-=-==⎰⎰a a x x a a a x x x x x x x x x x x x a x a x a a x x a a a 由其中令 22. 给定函数]1,0[),(∈x x g ,且图(1)中的三条曲线分别是:dx x g y x g y x g y x⎰='==1321)(),(),(的图形,指出图中的123,,C C C 所对应的曲线。

答案:1231xC g (x),C g(x)dx,C g(x)''⎰:::23. 设x e f x +='1)(,求)(x f1f (t )=1+ln t,f(x )=(ln x )dx x ln x C '+=+⎰ 24. ⎰+dx xxcos 2sin 3;. 322cos 22sin 1(4)33(2)2cos 222cos 23ln 22cos 3ln 2cos 22=--+==-+++++=-+++=-+++==⎰⎰⎰⎰⎰t xx t t dx dt dt t dt dtx t t t t x t t C x x C 25. 22 0cos d limsin x xx t t tdt→⎰⎰2240 00 0cos d 2cos lim lim 2sin sin →→===⎰⎰x x x x t tx x x tdt原式 26.⎰∞+- 0d xe x x n (n 为自然数)101112132 0d ()0lim122332!.()d (0),()""+∞+∞-------→+∞+∞-==-⋅+=+∴==⇒==⇒==⋅⇒⇒==>⎰⎰⎰⎰bn x x n n x n bn x n n b n t x I x e x e x nx e dxnx e dx I nI I I I I I I n I t x e x t I t 注若函数则是自然数阶乘函数的推广27.计算 ⎥⎥⎦⎤⎢⎢⎣⎡-+++++++∞→222222)1(121111lim n n n n n n 。

1022222211211lim[()()()]()11111lim[(0)()()]1lim 12(1)1111lim 1n n n n n f f f n n nn n nf x dxn f f f nn n n n n n n n n n n n n →∞→∞→∞→∞⎧⋅+⋅++⋅⎪⎪=⎨-⎪⋅+⋅++⋅⎪⎩⎡⎤++++⎢⎥+++-⎢⎥⎣⎦⎡⎤⎢⎥=⎢⋅+++⎥⎢⎥⎢⎣⎦⎰或4tan 14ln(sec tan )1)x tt t =⎥==+===⎰⎰ππ28 求半径为6的球内体积最大的正圆柱体。

2222220(()6),()(36),243()(36),4h hV r h r V h h V h h h r h =+=∴=-'=-=∴==πππ其中唯一驻点当.29. 已知5)2(,3)2(,1)0(='==f f f 计算⎰''1)2(dx x f x22 122 20 00 01111(2)()()()()222444='''''''==-===⎰⎰⎰⎰t xt xf x dx f t dt tdf t tf t f t dt 30. 给定半径的球内,内接一正圆锥,问圆锥的高和底面半径的比值为何时,圆锥体积最大?22223220,(02)(())(2),334(34),.()0().334,,.33<<-+=∴-+'''-+=<∴∴==h r h h a h a r a h ah h ah a V h V ha r a rπππ00设r 为圆锥底面半径为圆锥高,V 圆锥体积,a 为球的半径,则11V=其中V(h)=1V (h)=h 是唯一驻点且h 必是最大值当h=即 31. 求曲线x y ln =当x 在区间(2,6)内的一条切线,使得该切线与6,2==x x 和曲线x y ln =所围成的图形的面积最小。

相关文档
最新文档