连续和离散系统分析
连续时间系统和离散时间系统的时域分析比较
卷积写法上的区别
优缺点
• 不连续时间系统相比较,离散时间系统具有下列 优点:容易做到精度高、可靠性好,便于实现大 规模集成,从而在重量和体积方面显示其优越性。 • 一般的数字系统中都包括有存储器,存储器的合 理运用可以使系统具有灵活的功能,这些功能在 连续时间系统中往往难以实现。 • 此外,对于连续时间系统,通常只注重一维变量 的研究,而在离散时间系统中,二维戒多维技术 得到广泛应用。
2.从实例出发阐述连续及离散系统的优缺点,从你 个人的职业规划角度说明更愿意接受哪种系统 题目和具体内容由小组讨论决定,但要求从自身 理解出发,论据及理由充分,图标丼例清晰明了
引言
• 连续时间信号:指时间自变量t和表示信号的函数 值f(t)都是连续变化的信号。 •
函数的波形都是具有平滑 曲线的形状,也称模拟信 号
优缺点
• 近年来,由于可编程器件技术日趋成熟,对于数 字系统容易利用可编程技术,借助于软件控制, 适应用户设计不修改系统的各种系统需求,大大 改善了设备的灵活性不通用性,在连续系统中是 难以实现的。 • 但是,数字化技术幵丌会取代一切连续时间系统 的应用。人类在自然界中遇到的待处理信号相当 多的部分都是连续时间信号。工作频率较高时, 用连续时间系统处理有时更简便。
系统的输入输出都是离散的时间信号离散信号可以由模拟信号抽样而得也可以由实际系统生成联系?离散时间系统和连续时间系统实际上是分析信号的系统是用来分析信号产生的系统是用来分析信号产生传输接收转换等过程中是否会产生失真等影响的一种数学
1.理解连续信号不系统和离散信号不系统的联系不 区别,从与业知识戒日常生活角度丼例论述两者 的状冴,说明理由
卷积
• 在连续时间系统中,利用卷积的方法求系统的零 状态响应。首先把激励信号分解为冲激函数序列, 然后令每一冲激函数单独作用于系统求其冲激响 应,最后把这些响应叠加即可得到系统对此激励 信号的零状态响应。这个叠加的过程表现为求卷 积积分。 • 在离散时间系统中,可以采用大体相同的方法进 行分析,由于离散信号本身就是一个丌连续的序 列,因此,激励信号分解为脉冲序列的工作就很 容易完成,对应每个样值激励,系统得到对此样 值的响应,每个响应也是一个离散时间序列,把 这些序列叠加得到零状态响应。因为离散量的叠 加无需进行积分,因此,叠加过程表现为求“卷 积和”。
信号与系统知识点归纳
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。
离散控制与连续控制的比较与分析
离散控制与连续控制的比较与分析离散控制与连续控制是自动控制领域中两种不同的控制方法。
离散控制适用于那些以离散事件为基础的系统,而连续控制则适用于那些以连续参数为基础的系统。
本文将对离散控制与连续控制进行比较与分析。
一、基本概念离散控制:离散控制是一种以时间为基础的控制方法,它依靠离散事件的发生来触发控制动作。
在离散控制中,系统的状态在不同的时间点上以离散的方式进行变化。
连续控制:连续控制是一种以连续参数的变化为基础的控制方法,它依靠系统的连续性状态来实时调整控制器的输出值。
在连续控制中,系统的状态在任意时间点上以连续的方式进行变化。
二、控制器设计离散控制:离散控制通常使用离散控制算法,如PID控制算法。
这些算法将采样时间作为基准,通过对离散数据进行处理来确定控制器的输出值。
离散控制器的设计相对简单,容易实现。
连续控制:连续控制通常使用连续控制算法,如模糊控制、神经网络控制等。
这些算法通过对系统状态的连续监测,实时调整控制器的输出值。
连续控制器的设计复杂度高,需要考虑系统的动力学特性等因素。
三、响应速度离散控制:离散控制的响应速度相对较慢,因为其控制动作是通过离散事件的发生来触发的。
离散控制器在两个采样点之间的时间段内,无法对系统状态进行控制。
连续控制:连续控制的响应速度相对较快,因为其控制动作是实时调整的。
连续控制器可以在任意时间点上对系统状态进行控制,能够快速响应系统的变化。
四、系统稳定性离散控制:离散控制系统相对容易保持稳定,因为其控制动作是基于对离散数据的处理。
离散控制器可以通过调整采样周期来实现系统的稳定性。
连续控制:连续控制系统相对较难保持稳定,因为其控制动作是基于对连续参数的调整。
连续控制器需要考虑系统的动力学特性以及噪声等因素,以保证系统的稳定性。
五、应用领域离散控制:离散控制适用于那些以离散事件为基础的系统,如自动化生产线、数字电子设备等。
离散控制在许多工业领域中得到广泛应用。
连续控制:连续控制适用于那些以连续参数为基础的系统,如化工过程、机械控制系统等。
连续和离散系统分析
连续和离散系统分析连续系统分析:连续系统的数学描述通常使用微分方程。
对于一个线性时不变(LTI)系统,其数学模型可以表示为:y(t)=x(t)*h(t)其中,y(t)是系统的输出,x(t)是输入,h(t)是系统的冲激响应(即单位冲激函数对系统的响应)。
该式可以进一步表示为积分形式:y(t)=∫[x(τ)*h(t-τ)]dτ这是一种卷积形式的表达。
对连续系统进行频域分析时,通常使用拉普拉斯变换。
假设输入信号x(t)的拉普拉斯变换为X(s),输出信号y(t)的拉普拉斯变换为Y(s),系统的传递函数(频域特性)为H(s),则系统的频域响应可以表示为:Y(s)=X(s)*H(s)其中,*表示拉普拉斯变换中的乘法运算。
离散系统分析:离散系统的数学描述通常使用差分方程。
对于一个线性时不变系统,其数学模型可以表示为:y[n]=x[n]*h[n]其中,y[n]是系统的输出,x[n]是输入,h[n]是系统的冲激响应。
离散系统的频域分析通常使用傅里叶变换或者z变换。
在离散系统中,傅里叶变换将离散信号转换到周期连续频域上。
假设输入信号x[n]的傅里叶变换为X(e^jω),输出信号y[n]的傅里叶变换为Y(e^jω),系统的传递函数为H(e^jω),则系统的频域响应可以表示为:Y(e^jω)=X(e^jω)*H(e^jω)其中,*表示傅里叶变换中的卷积运算。
另一种广泛应用的离散系统分析方法是z变换。
z变换将离散信号转换到z平面上,相当于傅里叶变换的离散形式。
假设输入信号x[n]的z变换为X(z),输出信号y[n]的z变换为Y(z),系统的传递函数为H(z),则系统的频域响应可以表示为:Y(z)=X(z)*H(z)其中,*表示z变换中的乘法运算。
对于离散系统,还需要考虑采样定理以及采样频率对系统分析的影响。
采样定理指出,如果连续信号的最高频率成分小于采样频率的一半,那么可以通过离散信号获得连续信号的信息。
总之,连续和离散系统分析是信号与系统理论中的基础内容。
自动控制原理离散系统知识点总结
自动控制原理离散系统知识点总结自动控制原理中的离散系统是指在时间域和数值范围上都是离散的系统。
在离散系统中,信号是以离散时间点的形式传递和处理的。
本文将对自动控制原理离散系统的知识点进行总结,包括离散系统的概念、离散信号与离散系统的数学表示、离散系统的稳定性分析与设计等。
一、离散系统的概念与特点离散系统是指系统输入、输出和状态在时间上都是以离散的方式存在的系统。
与连续系统相比,离散系统具有以下特点:1. 离散时间:离散系统的输入、输出和状态是在离散时间点上采样得到的,而不是连续的时间信号。
2. 离散数值:离散系统的输入、输出和状态都是以离散数值的形式存在的,而不是连续的模拟数值。
二、离散信号与离散系统的数学表示离散信号是指在离散时间点上采样得到的信号。
离散系统可以通过离散信号的输入与输出之间的关系进行描述。
常见的离散系统数学表示方法有差分方程和离散时间传递函数。
1. 差分方程表示:差分方程是通过离散时间点上的输入信号和输出信号之间的关系来描述离散系统的。
差分方程可以是线性的或非线性的,可以是时不变的或时变的。
2. 离散时间传递函数表示:离散时间传递函数描述了离散系统输入与输出之间的关系,类似于连续时间传递函数。
离散时间传递函数可以通过Z变换得到。
三、离散系统的稳定性分析与设计离散系统的稳定性是指系统的输出在有限时间内收敛到有限范围内,而不是无限增长或震荡。
离散系统的稳定性分析与设计是自动控制原理中的重要内容。
1. 稳定性分析:离散系统的稳定性可以通过判断系统的极点位置来进行分析。
若系统的所有极点都位于单位圆内,则系统是稳定的;若存在至少一个极点位于单位圆外,则系统是不稳定的。
2. 稳定性设计:若离散系统不稳定,可以通过调整系统的参数或设计控制器来实现稳定性。
常见的稳定性设计方法包括PID控制器调整、根轨迹设计等。
四、离散系统的性能指标与优化离散系统的性能指标与优化是指通过调整控制器参数或控制策略,使离散系统的性能得到优化。
仿真建模中的离散事件仿真与连续系统模拟技术
仿真建模中的离散事件仿真与连续系统模拟技术在仿真建模领域中,离散事件仿真(Discrete Event Simulation, DES)与连续系统模拟技术是两种常用的方法。
离散事件仿真通过模拟系统组成部分之间的事件交互,以离散的时间步长进行模拟,适用于涉及离散事件和事件交互的系统。
而连续系统模拟技术则基于连续时间模型,将系统的状态从一个时间点演化到下一个时间点,适用于涉及连续变量和连续过程的系统。
本文将对离散事件仿真与连续系统模拟技术进行详细介绍和对比。
离散事件仿真是一种在离散事件驱动的基础上进行系统模拟的方法。
离散事件驱动指的是系统的状态变化是由离散事件的发生所触发的。
这些事件可以是任何可能影响系统行为的事物,如任务到达、资源请求和完成等。
离散事件仿真将系统中的所有活动建模为一系列事件,并通过事件的发生和处理来模拟系统的行为。
在仿真过程中,建模者需要明确定义系统中的各个事件及其发生的条件,以及事件发生后系统状态的变化规则。
离散事件仿真的优点是能够精确地模拟系统中的时间和事件交互,使得仿真结果具有较高的精确度。
它常用于模拟涉及排队、流程调度、供应链管理等问题的系统,如银行业务、交通系统和制造业生产线。
在离散事件仿真中,时间步长是指仿真模型中的事件触发机制。
不同的仿真模型可以选择不同的时间步长,以确保仿真结果的准确性和效率。
时间步长的选择应考虑系统中事件的发生频率和对结果的精确度要求。
当事件发生频率较高时,适合选择较小的时间步长,以提高仿真的精确度。
而当事件发生频率较低时,可以选择较大的时间步长以提高模拟效率。
常用的时间步长选择策略包括固定时间步长和自适应时间步长。
固定时间步长是指在整个仿真过程中使用相同的时间间隔,适用于事件发生频率稳定的仿真模型。
自适应时间步长则根据事件发生的频率动态调整时间间隔,以保持较高的仿真精确度和效率。
相比之下,连续系统模拟技术则更适用于描述连续变量和连续过程的系统。
在连续系统模拟中,系统的状态是以连续的时间点为基准进行演化的。
信号与线性系统分析--第三章
第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k
可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)
单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数
连续系统与离散系统的概念
连续系统与离散系统的概念连续系统和离散系统是系统控制理论中两种基本的模型类型。
连续系统是指系统的输入和输出信号是连续变化的,并且系统的状态可以在任意时间点进行测量和控制。
而离散系统则是指系统的输入和输出信号是离散的,即只在离散的时刻进行测量和控制,而在两个离散时刻之间的信号变化是未知的。
首先,我们来详细介绍连续系统。
连续系统可以用微分方程来描述,通常采用微分方程的求解方法来求得系统的时域响应。
连续系统可以是线性的,也可以是非线性的。
线性连续系统的特点是具有叠加性质,即输入的线性组合对应于输出的线性组合。
而非线性连续系统则是具有非线性性质,输入的线性组合对应于输出的非线性组合。
连续系统的状态可以通过求解微分方程来得到,并且可以通过选择系统的控制输入来实现对系统状态的调节。
在连续系统中,我们可以利用传递函数来描述系统的频域特性,传递函数是输入和输出的拉普拉斯变换的比值。
传递函数可以用来分析系统的稳定性、频率响应、阻尼特性等。
接下来,我们来介绍离散系统。
离散系统可以用差分方程来描述,通过求解差分方程可以得到系统的时域响应。
离散系统也可以是线性的或非线性的,线性离散系统满足叠加性质,非线性离散系统则不满足叠加性质。
离散系统的状态可以通过迭代差分方程来得到,并且可以通过选择系统的控制输入来实现对系统状态的调节。
离散系统的频域特性可以用离散时间傅里叶变换(DTFT)或离散傅里叶变换(DFT)来描述,这些变换可以将系统的输入和输出信号从时域转换到频域。
离散系统的稳定性、频率响应等也可以通过这些变换来进行分析。
在实际应用中,连续系统和离散系统都有各自的优缺点。
连续系统具有高精度和高灵敏度的特点,适用于需要高精度控制和测量的应用,如机器人控制、飞行器导航等。
而离散系统则具有较低的复杂度和较好的实时性,适合于计算机控制、数字信号处理等应用。
此外,由于实际系统中往往存在传感器采样和控制执行的离散性,所以很多情况下需要将连续系统进行离散化,从而使用离散系统进行建模和控制。
离散-连续域耦合 edem-详细解释说明
离散-连续域耦合edem-概述说明以及解释1.引言1.1 概述概述离散-连续域耦合(EDEM)是指在数学和物理领域中,离散域和连续域之间相互耦合的现象和方法。
离散域通常是指离散的点或区域,如离散的数据点或离散的粒子系统;而连续域则是指连续的空间或区域,如连续的物质分布或连续的场。
EDEM的研究旨在探究离散和连续领域之间的相互作用和联系,以及如何有效地描述和模拟这种耦合现象。
在科学与工程领域,离散-连续域耦合具有重要的理论和实际意义。
它不仅可以用于描述和分析物质的微观-宏观行为,还可以在材料科学、力学、流体力学等领域中提供有效的数值模拟和分析方法。
因此,对离散-连续域耦合的研究是十分必要和具有前瞻性的。
本文将从离散域和连续域的基本概念出发,介绍离散-连续域耦合的概念、方法和应用。
通过对离散-连续域耦合的深入探讨,旨在揭示其在科学研究和工程应用中的重要性,并展望其未来的应用前景。
文章结构部分内容如下:1.2 文章结构本文将首先介绍离散域的基本概念和特点,包括离散数据的定义、特点以及在实际应用中的优势和局限性。
接着,我们将详细讨论连续域的特点和应用领域,以及在不同领域中的重要性和作用。
最后,我们将重点探讨离散-连续域的耦合,包括两者之间的联系与相互影响,以及在工程和科学领域中的具体应用和研究进展。
通过对离散域和连续域的介绍和对比,本文旨在探讨其耦合的重要性,并展望其在未来的应用前景。
1.3 目的本文旨在探讨离散域和连续域的耦合问题,即离散-连续域耦合。
通过对这一问题的深入研究和分析,我们旨在深化对这一领域的理解,为相关领域的研究和应用提供理论支持。
同时,通过对离散-连续域耦合的重要性、应用前景以及结论的总结,旨在为相关领域的研究人员和决策者提供参考,促进该领域的发展和应用。
2.正文2.1 离散域介绍离散域是指在一定的时间或空间范围内,对系统进行离散化处理,将其分解成离散的单元或节点。
在离散域中,系统的状态只能在离散的时间或空间点上进行变化,而在这些点之间则视为恒定状态。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
离散连续详解
matlab/simulink/simpowersystem中连续vs离散!1.连续系统vs离散系统连续系统是指系统状态的改变在时间上是连续的,从数学建模的角度来看,可以分为连续时间模型、离散时间模型、混合时间模型。
其实在simpowersystem 的库中基本所有模型都属于连续系统,因为其对应的物理世界一般是电机、电源、电力电子器件等等。
离散系统是指系统状态的改变只发生在某些时间点上,而且往往是随机的,比如说某一路口一天的人流量,对离散模型的计算机仿真没有实际意义,只有统计学上的意义,所以在simpowersystem中是没有模型属于离散系统的。
但是在选取模型,以及仿真算法的选择时,常常提到的discrete model、discrete solver、discrete simulate type等等中的离散到底是指什么呢?其实它是指时间上的离散,也就是指离散时间模型。
下文中提到的连续就是指时间上的连续,连续模型就是指连续时间模型。
离散就是指时间上的离散,离散模型就是指离散时间模型,而在物理世界中他们都同属于连续系统。
为什么要将一个连续模型离散化呢?主要是是从系统的数学模型来考虑的,前者是用微分方程来建模的,而后者是用差分方程来建模的,并且差分方程更适合计算机计算,并且前者的仿真算法(simulationsolver)用的是数值积分的方法,而后者则是采用差分方程的状态更新离散算法。
在simpowersystem库中,对某些物理器件,既给出的它的连续模型,也给出了它的离散模型,例如:离散模型一个很重要的参数就是采样时间sampletime,如何从数学建模的角度将一个连续模型离散化,后面会有介绍。
在simpowersystem中常用powergui这个工具来将系统中的连续模型离散以便采用discrete算法便于计算机计算。
2.连续模型的数学建模vs离散模型的数学建模Note:这里的连续和离散都是指时间上的连续和离散,无关乎现实世界的连续系统和离散系统。
信号及系统的谱分析
信号及系统的谱分析谱分析是信号及系统领域中一种重要的分析方法,用于研究信号的频谱特性。
频谱描述了信号在不同频率上的能量分布情况,揭示了信号的频率成分、频率幅度、相位关系等重要信息,对于进一步了解信号的特性、处理信号、设计滤波器等具有重要意义。
在信号及系统分析中,信号可以分为连续时间信号和离散时间信号两种。
连续时间信号是在连续时间上变化的信号,可表示为函数形式,如x(t)表示连续时间信号的函数表达式。
而离散时间信号是在离散时间点上取值的信号,通常用序列表示,如x[n]表示离散时间信号的序列。
首先,我们来介绍连续时间信号的频谱分析方法。
对于连续时间信号x(t),其频谱可以通过傅里叶变换进行分析。
傅里叶变换将信号从时域转换到频域,得到的结果是信号在不同频率上的复振幅谱。
具体地,对于连续时间信号x(t),其傅里叶变换可以表示为:X(ω) = ∫[from -∞ to +∞] x(t)e^(-jωt) dt其中X(ω)表示信号x(t)的频谱,在频率ω处的复振幅。
频谱的实部表示信号的幅度,虚部表示信号的相位。
对于离散时间信号x[n],其频谱可以通过离散时间傅里叶变换(DTFT)进行分析。
离散时间傅里叶变换将离散时间序列转换到连续频率上的变换,得到信号在不同频率上的复振幅谱。
具体地,对于离散时间信号x[n],其离散时间傅里叶变换可以表示为:X(ω) = ∑[from -∞ to +∞] x[n]e^(-jωn)类似于连续时间信号,离散时间信号的频谱的实部表示信号的幅度,虚部表示信号的相位。
除了傅里叶变换,还有其他一些方法可用于信号的频谱分析,如快速傅里叶变换(FFT)和功率谱密度分析(PSD)。
FFT是一种高效的计算傅里叶变换的算法,可以快速地计算离散时间信号的频谱。
PSD是对信号功率谱的估计,可以用于研究信号的能量分布特性。
通过PSD分析,可以了解信号在不同频率上的功率贡献,找到频域上的主要成分。
总之,谱分析是信号及系统中重要的分析方法,可以帮助我们了解信号的频谱特性。
线性离散控制系统及其与连续系统间的关系
1 s
-
1 e -Ts s
1 - e -Ts s
注意:这里的输入为1×δ(t),是单位 幅值脉冲经理想脉冲调制后的信号,即 单位理想脉冲,其拉氏变换为1。
13
零阶保持器的频率特性:
传递函数 频率特性
Gh( s )
1 s
-
1 e -Ts s
1 - e -Ts s
Gh( j )
1 - e - jT
第一个表达式对应蓝色线的 Z变换;zkF(z)对应全部蓝色
实线的Z变换,所以只有当
-kT 0
kT
t 虚线部分=0时才有第二个表
超前定理的直观解释 达式
21
4. 终值定理(掌握)
设 f(t) 的Z变换为F(z),且F(z) 在z平面不含有单位圆上 及圆外的的极点(除 z=1外的单根),则 f(t) 的终值为
n0
Z反变换为 Z -1 [ F ( z )] f ( t )
17
关于Z变换的几点说明:
Z变换的无穷级数表达式与信号在采样时刻的取值一一对
应。
F ( z ) f ( nT )z-n
n0
z-1 又称为延迟算子
f ( 0 ) f ( T )z-1 f ( 2T )z- 2 f ( 3T )z- 3
0
z-k f ( nT )z-n z-k F ( z )
k0
19
f(t)
f(t-kT)
0 kT
t
延迟定理的直观表示
注:连续系统的迟后环节 e-kTs 在离散系统中只 是 z-k,属于有理式,便于分析。因此,对于有 迟后环节的系统,按离散时间系统进行分析和设 计通常较连续时间系统更方便。
离散系统的稳定性分析
由闭环离散系统的特征方程式 1 G(z) 0 ,得
z 2 4.95z 0.368 0
z1 0.076 z2 4.876
系统有一特征根位于z 平面单位圆外,系统不稳定。
离散系统的劳斯稳定判据
劳斯判据只能判断特征方程式的根是否位于复 平面s 的左半平面,为此需采用双线性变换,将z 平 面的单位圆映射到 r 平面的虚轴上,z 平面单位圆内 的所有点,均映射到r 的左半平面。这样,对 r平面 中的变量就可应用劳斯稳定判据。
z r 1 r 1
r z 1 z 1
离散系统的劳斯稳定判据
例14 判断图示闭环离散系统的稳定性。 解 z 2 4.95z 0.368 0 令 z r 1,上式化简后,得
r 1 6.32r 2 1.264r 3.584 0
劳斯表中第一列有一次符号变 化,所以有一根位于 r右半平面, 即对应有一个根位于 z平面单位圆 之外,系统不稳定。
离散系统的稳定性分析
线性连续系统稳定的充要条件是:闭环传递函 数的所有极点均位于s 的左半平面。
线性离散系统稳定的充要条
离散系统稳定条件
例13 判断图示闭环离散系统的稳定性。
解 G(s) 10
s(s 1)
G(z)
10 z(1 e1) (z 1)( z e1)
第七章 连续与离散系统的状态变量分析
0
tbf ( )ea(t )d
0
eat bf (t)
y(t) y(0)eat eat bf (t)
对状态方程
X(t) AX(t) Bf (t)
其解
x(t) eAtx(0) t eA(t )Bf ( )d 0 eAtx(0) eAt Bf (t)
7.1 线性系统状态方程
状态变量的概念
状态变量是一组反映系统内部状态变化规律的量。如x1( t), x2(t),, xn(t),它们在t = t0时刻的数值连同t t0时的输入,可以唯一地确定t > t0任一时刻的状态和其它
各个响应。
在电系统中,独立的电容上电压uC(t)和电感电流iL(t)有
➢ 级联系统
以积分器的输出为状态变量x,则有
图3
x1 a1x1 x2 x2 a2x2 f (t) 即
x1
x2
a1
0
1
a2
x1
x2
0 1
f (t)
➢ 输出方程
以状态变量和输入信号表示的代数方程组。
资格称为状态变量。
状态方程与输出方程
例 对图1,由KCL和KVL,得
L
diL dt
R2iL
uC
0
C
duC dt
uC R1
iL
0
即有
duC
dt diL
1
R1C 1
dt L
1
C R2 L
连续时间系统和离散时间系统的时域分析比较
联系
Байду номын сангаас
一开始进入ADC(数模转换器)的是 连续时间信号,抽样后就为离散时间 信号,再经编码器编码量化后就成为
数字信号。
• 离散时间系统和连续时间系统实际上是分析信号 的系统,是用来分析信号产生、传输、接收、转 换等过程中是否会产生失真等影响的一种数学方 法。
连续时间系统——微分方程 离散时间系统——差分方程
单位冲激响应 单位样值响应 (联系与区别)
在连续线性系统中,我们注意研究单位冲激信号σ(t) 作为激励引起的零状态响应h(t)——单位冲激响应。
对于离散线性系统,我们来考察单位样值σ(n)作为 激励而产生的系统零状态响应h(n)——单位样值 响应。
• 单位冲激响应的一般求法: • 1.简单电路,列出微分方程,直接求冲激响应。
对我来说
• 我喜欢看电视,所以我更希望用数字信号(离散 信号)。
• 以前的电视传输声音、图象、色彩用连续变化的 物理量表示的信号,例如黑、深黑、灰黑、灰、 灰白、白、亮白等一连串连续的量转变为电磁信 号来传输图象,是模拟信号。这种方法容易受到 干扰。现在用0和1来将这些信号进行编码,将0, 1转变成电磁信号进行传输。数字信号不容易被模 糊和干扰,传输的质量好。
区别
连续时间系统——微分方程
常系数线性微分方程
离散时间系统——差分方程
一般形式
N
M
a k y(n k) bk x(n r)
k0
r 0
解法(联系)
• 时域经典解法: 完全解=其次解+特解 全响应=自由响应+强迫响应
近代时域解法: 全响应=零输入响应+零状态响应
这种方法是求解差分方程的主要方法
连续系统离散化方法
连续系统离散化方法一、概述连续系统离散化方法是一种将连续系统转化为离散系统的方法,常用于控制系统的设计和分析。
该方法可以将一个无限维度的连续系统转化为有限维度的离散系统,使得控制器设计和分析变得更加简单和可行。
二、连续系统模型在开始进行连续系统离散化的过程中,需要先建立一个连续系统模型。
通常情况下,这个模型可以由微分方程或者差分方程来表示。
三、离散化方法1. 时域离散化方法时域离散化方法是最基本的离散化方法之一。
它通过将时间轴上的信号进行采样,从而将一个连续时间信号转换为一个离散时间信号。
这个过程中需要确定采样周期以及采样点数目等参数。
2. 频域离散化方法频域离散化方法是一种利用傅里叶变换将一个连续时间信号转换为一个频域信号,然后再对该频域信号进行采样得到一个离散时间信号的方法。
这个过程中需要确定采样频率以及采样点数目等参数。
3. 模拟器法模拟器法是一种将连续系统转化为离散系统的方法。
这个方法的核心思想是利用一个数字模拟器来模拟连续系统的行为,从而得到一个离散时间信号。
4. 差分方程法差分方程法是一种将连续系统转化为离散系统的方法。
这个方法的核心思想是利用微分方程在离散时间点上进行近似,从而得到一个差分方程。
四、误差分析在进行离散化过程中,会产生一定的误差。
因此,需要对误差进行分析和评估,以确保离散化后的结果与原始连续系统相近。
五、应用实例1. 机械控制系统机械控制系统中通常需要对连续时间信号进行采样和处理。
通过使用离散化方法,可以将连续信号转换为数字信号,并且可以在数字域上进行控制器设计和分析。
2. 电力电子控制系统电力电子控制系统中通常需要对高频信号进行处理。
通过使用频域离散化方法,可以将高频信号转换为数字信号,并且可以在数字域上进行控制器设计和分析。
六、总结连续系统离散化方法是一种将连续系统转化为离散系统的方法。
通过使用不同的离散化方法,可以将连续时间信号转换为数字信号,并且可以在数字域上进行控制器设计和分析。
离散系统的 稳定性分析
s平面
0 ,虚轴
,左半部分
0
为负常数,虚轴的平行线
0 ,右半部分
0 ,实轴
为常数,实轴的平行线
z平面 r 1 ,单位圆 r 1 ,单位圆内
r为常数,同心圆
r 1,单位圆外
正实轴
端点为原点的射线
稳定性讨论 临界稳定
稳定
稳定
不稳定 不稳定 不稳定
2.离散系统稳定的充要条件
由于在s平面系统稳定的条件是极点 0,故离散系统稳定的条件是 r ,1
【例 7-7】如图所示系统中,设采样周期 T 1 s , 试分析当 K 4 和 K 5 时系统的稳定性
【解】 系统连续部分的传递函数为
G(s) Ks(s 1)则Fra bibliotekG(z)
Z
K s(s 1)
Kz(1 (z 1)(z
eT ) eT
)
所以,系统 的闭环脉冲传递函数为
cr
(z)
C(z) R(z)
w 1
45
w w
13 1
117
w w
1 2 1
119
w w
1 1
39
0
两边乘 (w 1)3 ,化简后得 D(w) w3 2w2 2w 40 0
由劳斯表
w3
1
2
w2 2 40
w1 18
w0 40
因为第一列元素有两次符号改变,所以系统不稳定。正如连续系统中介绍的那
样,劳斯判据还可以判断出有多少个根在右半平面。本例有两次符号改变,即有两
个根在w右半平面,也即有两个根在z平面的单位圆外。
自动控制原理
因为 z1 ,z2 均在单位圆内,所以系统是稳定的。
(2)将 K 5 ,T 1代入系统的闭环特征方程,得
连续系统的离散化方法及近似解课件
离散化后的控制系统可以用差分方程来描述,差分方程是连续时间微分方程在离散时间域 上的对应形式。通过求解差分方程,可以得到离散控制系统的输出响应。
Z变换
Z变换是离散时间信号和系统分析的重要工具,它可以将差分方程转换为代数方程,从而 简化离散系统的分析和设计。
电路模拟中的离散化方法及近似解应用
离散系统
离散系统是指系统状态在时间上 是离散的,即系统的状态变量只 在某些特定的时刻有定义,且在 这些时刻间不发生变化。
连续系统与离散系统的区别与联系
区别
连续系统和离散系统最主要的区别在于时间的连续性。连续系统的时间变量是连 续的,而离散系统的时间变量是离散的。
联系
两者之间存在密切的联系。实际上,许多连续系统可以通过离散化方法转化为离 散系统进行处理,这是因为数字计算机在处理问题时,只能处理离散的时间信号 。反之,离散系统的某些理论和方法也可以用来处理连续系统。
连续系统的离散化方法 及近似解课件
目 录
• 连续系统与离散系统概述 • 连续系统的离散化方法 • 离散系统的近似解法 • 连续系统离散化及近似解的应用案例 • 实验与仿真
01
连续系统与离散系统概述
连续系统与离散系统的定义
连续系统
连续系统是指系统状态在时间上 是连续的,即系统的状态变量在 任何时刻都有定义且随时间连续 变化。
感谢观看
前向差分法:前向差分法使用当前时刻及其前一时刻的输入信号来近似 计算下一时刻的输出信号。这种方法简单直观,但离散化误差相对较大 。
后向差分法:后向差分法使用当前时刻及其下一时刻的输入信号来近似 计算当前时刻的输出信号。相比前向差分法,后向差分法具有较小的离
散化误差。
以上内容即为连续系统的离散化方法及近似解课件的部分内容。在实际 应用中,可以根据具体需求和场景,选择合适的离散化方法和参数,以 实现连续系统的高效、准确离散化处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 z 1 0.5z 2
性。
程序: num=[1 1]; den=[1 -1 0、5]; sys=tf(num,den); w=-10:0、001:10; H=freqs(num,den,w); subplot(2,1,1);plot(w,abs(H));title ('幅频特性'); subplot(2,1,2);plot(w,angle(H));tit le('相频特性');
3 已知描述某连续系统的微分方程为
y '' (t) 5y ' (t) 6 y(t) 2x' (t) 8x(t)
连续和离散系统分析
求该系统的单位冲激响应。
程序: b=[2 8];a=[1 5 6]; sys=tf(b,a); t=0:0、1:10; y=impulse(sys,t); plot(t,y); xlabel(‘时间(t)’);ylabel(‘y(t)’);tltle(‘单位冲激响应’);
连续和离散系统分析
实验一 连续与离散系统分析
一、实验目的 学习连续系统与离散系统响应的 matlab 求解方法;
二、实验主要仪器设备与材料 计算机
三、实验方法、步骤及结果测试 实验方法:编程,上机调试,分析实验结果; 步骤: 编程实现上述各实验内容
四、实验结果 1、某系统的传递函数为:Y (s) / X (x) 1
结论: y=filter(p,d,x)用来实现差分方程,d 表示差分方程输出 y 的系数,p 表示输入 x 的系数,而 x 表示输入序列。
输出结果长度数等于 x 的长度; 而 y=conv(x,h)就是用来实现卷积的,对 x 序列与 h 序列进行卷积,输出的结果个数等于 x 的长度与 h 的长
度之与减去 1; y=impz(p,d,N)就是用来实现冲击响应的,d 与 p 的定义同 filter,N 表示冲击响应输出的序列个数。
y=impulse(sys,t) 连续时间系统阶跃响应可用 step 函数直接求出,其调用形式为:
y=step(sys,t) t 表示计算系统响应的抽样点向量, sys 就是 LTI 系统模型、
2) matlab 中用于离散系统求解的命令有哪些?各基于什么求解方法?
答:①y=filter(p,d,x)用来实现差分方程,d 表示差分方程输出 y 的系数,p 表示输入 x 的系数, 而 x 表示输入序列。输出结果长度数等于 x 的长度;
程y=序ls:im(sys,f,t);
num=[1 2];den=[1 0、4 0、12]; plot(t,y) y1=impz(num,den,20);
% system model
sxulbapbleolt(('1t2i1m)e;(ssetce)m'()y1); title('impulse response');
连续和离散系统分析
B:单位阶跃响应 (1)用 Filter 函数
(2)用 Conv 函数
(3)用 Impz 函数
(II) y[n] 0.25{x[n 1] x[n 2] x[n 3] x[n 4]}
理论计算结果:
单位冲激响应:
n
பைடு நூலகம்
0
h(n)
0
单位阶跃响应:
N
0
y(n)
0
程序计算结果:
A:单位冲激响应 (1)用 filter 函数
连续和离散系统分析
1
2
3
4
5
0、25
0、25
0、25
0、25
0
1
2
3
4
5
0、25
0、5
0、75
1
1
(2)用 Conv 函数
(3)用 Impz 函数
B:单位阶跃响应 (1)用 filter 函数
连续和离散系统分析
(2)用 Conv 函数 (3)用 Impz 函数
4 计算上述系统在输入为 x(t) etu(t) 时的零状态响应。
程序: ts=0;te=10;dt=0、01;
5 已知系统函数 H (z)
1 2z 1
,求
1 0.4z 1 0.12 z 2
sys=tf([2 8],[1 5 6]); t=ts:dt:te; f=exp(-t);
1)离散系统的单位冲激响应 h(n); 2) 输入为 x(n) u(n) ,求系统的零状态响应。
理论计算结果:
单位冲激响应:
n
0
h(n)
1
1 -1、75
2 1、19
3 -0、67
4 0、355
5 -0、18
单位阶跃响应:
n
0
y(n)
1
程序计算结果:
A:单位冲激响应 (1)用 Filter 函数
1 -0、75
2 0、44
3 -0、234
4 0、12
5 -0、06
(2)用 Conv 函数
(3)用 impz 函数
②y=conv(x,h)就是用来实现卷积的,对 x 序列与 h 序列进行卷积,输出的结果个数等于 x 的长度与 h 的长度之与减去 1;
③y=impz(p,d,N)就是用来实现冲击响应的,d 与 p 的定义同 filter,N 表示冲击响应输出的 序列个数。
五、思考题 1)连续系统响应的计算机求解可以分为哪些方法?各就是什么原理?
答:①连续时间系统零状态响应的求解 y lsim(sys,f,t)
连续和离散系统分析
t 表示计算系统响应的抽样点向量,f 就是系统输入信号向量 sys 就是 LTI 系统模型,借助 tf 函数获得。 ②连续系统冲激响应与阶跃响应的求解 连续时间系统冲激响应可用 impulse 函数直接求出,其调用形式为:
(s 1)(s 2)
试求系统的冲激响应与阶跃响应。
连续和离散系统分析
2、编制程序求解下列两个系统的单位冲激响应与阶跃响应,并绘出其图形。要求
分别用 filter、conv、impz 三种函数完成。给出理论计算结果与程序计算结果
并讨论。 (I) y[n] 0.75y[n 1] 0.125y[n 2] x[n] x[n 1]
ylabel('y(t)') n=0:20; x2=ones(1,21); y1filter=filter(num,den,x2); subplot(122); stem(n,y1filter); title('filter_step'); xlabel('x'); ylabel('y');
连续和离散系统分析