3半导体激光器简介解析PPT课件

合集下载

半导体激光器参数3

半导体激光器参数3

半导体激光器参数3
阵列和单元器件快轴方向上光束质量一致; 阵列慢轴方向上光源区越薄,发散角越大,衍射极限矛盾? 大功率半导体激光器快轴方向N.A.>0.6
半导体激光器参数3
N.A.=nsin
•高数值孔径要求使用高 折射率材料 •难点:非球面微柱透镜 的加工
•光束质量表征光束的可汇聚程度 •光参积是一个不变量
半导体激光器参数3
激光头工作距离 ≥100mm
M2值增大 焦点增大
对光束质量提出要求
半导体激光器参数3
输入光束的光斑半径要小于光纤芯径
din dcore
发散角(全角)要小于光纤数值孔径的反 正弦的2倍
in2arcsNi.nA.() N.A.=0.22 < 25.4°
diode laser
fast- & slow axis
collimation
spatial multiplexing
spatial multiplexing
polarization multiplex.
wavelength multiplex.
wavelength multiplexing
1
2
3
半导体激光器参数3
半导体激光器参数3
缺点:
•介质中光程长,有一定吸收,晶体需要良好冷却
•入射角有一定限制
•晶体占据一定空间
No=1.658,Ne=1.486
半导体激光器参数3
4种波长光束耦合, BPP不变,功率提高4倍, 等效提高光束质量4倍
半导体激光器参数3
polarizat ion mult iplexing
半导体激光器参数3
椭球面方程
半导体激光器参数3

半导体激光器的主要参数ppt课件

半导体激光器的主要参数ppt课件

增益饱和
在低的光子密度时,载流子的空间和能量分布不受干扰, 这时为不饱和增益。在高光子密度时是饱和增益。一个被 鼓励的半导体激光器,辐射遭到放大时,它的能量关系为:
谐振控内的辐射强度不能无限止添加 ,由于在高光子密度时, 导带和价带中的载流子浓度要显著降低。这又呵斥费米能级 漂移,使△EF减小,同样也使满足粒子数反转的形状数减小。
增益谱计算
式中,常数a0(E21)表示绝对零度时的吸收。温度和鼓励程度的 影响包含在(fc—fv)中。假设fc>fv,那么a0(E21)为负,吸收 介量变为增益介质,以受激发射为主。假设fc<fv ,那么 a0(E21)为正,主要发生受激吸收.利用增益的定义义可以写出:
随着鼓励程度添加,能带中载 流子数添加,增益曲线的最大值向 更高的光子能量处挪动 gmax(E) 也添加。同时开场出现增益所对应 的光子能量向高能方向挪动。这是 由于电子是从导带底向上填充 的.注入电子浓度愈大,填充得就 愈高,因此发光的峰值能量添加.
Je和Jh分别是流过异质结势垒的电子和空穴的漏电流 J2为有源区电流密度;ηi为内量子效率; Q2为谐振腔质量要素;
大功率半导体激光器典型构造 --单元器件
大功率半导体激光器典型构造 --阵列器件
大功率半导体激光器典型构造 --阵列器件
大功率半导体激光器典型构造 --阵列器件
The end
空间烧孔和光谱烧孔效应
半导体激光的温漂特性
半导体资料带隙随温度变化; 半导体激光器腔长随温度变化。
Intensity (A.U.)
1.0
0.8
15A
55A
0.6
55A (after 30')
0.4
0.2
0.0

半导体激光器ppt课件

半导体激光器ppt课件
Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能

同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。

半导体激光器的原理及其应用PPT

半导体激光器的原理及其应用PPT
可靠性
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。

半导体激光器工作原理及基本结构PPT课件

半导体激光器工作原理及基本结构PPT课件
• 一定波长的受激光辐射在谐振腔内形成振荡的条件: 腔长=半波长的整数倍 L=m(λ/2n)
第5页/共15页
增益和阈值电流
• 增益:在注入电流的作用下,激活区受激辐射不断增强。 • 损耗:受激辐射在谐振腔中来回反射时的能量损耗。包括载流子吸收、缺
陷散射及端面透射损耗等。 • 阈值电流:增益等于损耗时的注入电流。
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射 光严格在pn结平面内传播,单色性较好,强度也较大,这种 光辐射叫做受激光辐射。
第4页/共15页
法布里-珀罗谐振腔 (形成相干光)
• 垂直于结面的两个平行的晶体解理面形成法布里-珀罗谐振腔 ,两个解理 面是谐振腔的反射镜面。在两个端面上分别镀上高反膜和增透膜,可以提 高激射效率.
2. 有源区工作时产生的热量能通过周围四个方向的无源区传 递而逸散,提高器件的散热性能;
3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
第10页/共15页
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射 率波导条形激光器(掩埋条形、脊形波导)。
第3页/共15页
自发光辐射和受激光辐射
• 自发光辐射(发光二极管)
当给器件加正向偏压时,n区向p区注入电子,p区向n区注 入空穴,在激活区电子和空穴自发地复合形成电子-空穴对, 将多余的能量以光子的形式释放出来,所发射的光子相位和 方向各不相同,这种辐射叫做自发辐射。
• 受激光辐射(半导体激光器)
第13页/共15页
弱折射率波导条形激光器(脊形波导)
特点:在侧向对光波的有一定限制作用,在条形有源区上方腐蚀出一个脊(宽度大约 3~4um),腐蚀深度大概1.5~2um, 腐蚀一部分上限制层。由于腐蚀深度较深,在侧向 形成一定的折射率台阶,对侧向光波有较弱的限制作用。

半导体激光器分析PPT课件

半导体激光器分析PPT课件

.
35
1. 发射波长和光谱特性
峰值波长:在规定输出光功率时,激光器受激 辐射发出的若干发射模式中最大强度的光谱 波长。
中心波长:在激光器发出的光谱中,连接50% 最大幅度值线段的中点所对应的波长。
半导体激光器(Laser Diode 即LD)
6.3.1 半导体激光器工作原理和基本结构 一、半导体激光器的工作原理
受激辐射和粒子数反转分布 PN结的能带和电子分布 激光振荡和光学谐振腔 二、半导体激光器基本结构 6.3.2 半导体激光器的主要特性 一、发射波长和光谱特性 二、激光束的空间分布 三、转换效率和输出光功率特性 四、 频率特性 五、 温度特性 6.3.3 分布反馈激光器 一、 工作原理 二、DFB激光器的优点
.
9
受激吸收和受激辐射的速率分别比例于N1和N2,且比例 系数(吸收和辐射的概率)相等。
如果N1>N2,即受激吸收大于受激辐射。当光通过这种物 质时,光强按指数衰减, 这种物质称为吸收物质。
如果N2>N1,即受激辐射大于受激吸收,当光通过这种物 质时,会产生放大作用,这种物质称为激活物质。
N2>N1的分布,和正常状态(N1>N2)的分布相反,所以称 为粒子(电子)数反转分布。
收) 自发辐射 受激辐射
.
3
E2
初态
E1
E2
hυ=E2-E1
E1
终态
(a) 自发辐射
光子的特点:非相干光
.
4
E2

E1
初态
E2
E1
终态
(b) 受激辐射 光子的特点:相干光
.
5
E2

E1
初态
E2

半导体激光器讲解ppt课件

半导体激光器讲解ppt课件

正反馈(驻波);
fq 谐振频率, q 谐振波长, q 纵模
f q
c
q

q
c 2nL
12
§2.半导体中光的发射和激射原理(续)
频带加宽:增益介质的增益-频率特性;
13
§2.半导体中光的发射和激射原理(续)
横模TEMmn :激光振荡垂直于腔轴方向,平面波 偏离轴向传播时产生的横向电磁场模式。
受激辐射:E2能态的电子处于不稳定状态,向下 进入亚稳态,外来光子会激励电子向下跃迁到基 态E1,受激辐射一个光子(位相相同)。
9
§2.半导体中光的发射和激射原理(续)
粒子数反转(光放大的必要条件):仅当激发态 的电子数大于基态中的电子数时,受激辐射超过 吸收,要利用“泵浦(激励)”方法。
有源区:实现粒子数反转,对光具有放大作用的 区域。
Eg=h
4
§2.半导体中光的发射和激射原理(续)
本征半导体(I型):杂质、缺陷极少的纯净、 完整的半导体。
电子半导体(N型):通过掺杂使电子数目大 大地多于空穴数目的半导体。(GaAs-Te)
空穴半导体(P型):通过掺杂使空穴数目大 大地多于电子数目的半导体。(GaAs-Zn)
在纯净的Ⅲ-Ⅴ族化合物中掺杂Ⅵ族元素(N 型),或掺杂Ⅱ族元素(P型)
掺杂:eVDEg为轻掺杂, eVDEg为重掺杂。
在平衡状态下,P区和N区有统一的Ef。
正电压向V→漂移运动→抵消一部分势垒(V-VD) →破坏平衡→ P区和N区的Ef分离(准费米能级)。
7
§2.半导体中光的发射和激射原理(续)
(Ef)N以下的能级,电子占据的可能性大于1/2, (Ef)P以上的能级,空穴占据的可能性大于1/2。

半导体激光器简介70页PPT

半导体激光器简介70页PPT

1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
半导பைடு நூலகம்激光器简介
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克

半导体激光器 ppt课件

半导体激光器 ppt课件


1
p(E)1expE( Ef )
(3.3)
kT
式中,k为波兹曼常数,T为热力学温度。Ef 称为费米能 级,用来描述半导体中各能级被电子占据的状态。
在费米能级,被电子占据和空穴占据的概率相同。
一般状态下,本征半导体的电子和空穴是成对出现的,用Ef 位于禁带中央来表示,见图3.2(a)。
在本征半导体中掺入施主杂质,称为N型半导体,见图3.2(b)。
半导体激光器(Laser Diode 即LD)
6.3.1 半导体激光器工作原理和基本结构 一、半导体激光器的工作原理
受激辐射和粒子数反转分布 PN结的能带和电子分布 激光振荡和光学谐振腔 二、半导体激光器基本结构 6.3.2 半导体激光器的主要特性 一、发射波长和光谱特性 二、激光束的空间分布 三、转换效率和输出光功率特性 四、 频率特性 五、 6.3.3 分布反馈激光器 一、 工作原理 二、DFB激光器的优点
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
在热平衡状态下(a,) 能量为E的能级(b)被电子占据的概(c率) 为费米分
如果N1>N2,即受激吸收大于受激辐射。当光通过这种物 质时,光强按指数衰减, 这种物质称为吸收物质。

《半导体激光治疗》课件

《半导体激光治疗》课件

1980年代
出现了异质结半导体激光器, 提高了器件的效率和可靠性。
1990年代至今
随着材料和工艺的不断改进, 半导体激光器在性能和可靠性 方面得到显著提升,应用领域
不断扩大。
半导体激光技术的特点
高效率
半导体激光器的效率较高,一般可达 到30%以上,使得它在许多领域中具 有竞争优势。
波长可调谐
通过改变半导体激光器的温度或注入 电流等参数,可以实现波长的调谐, 满足不同应用需求。
激光治疗的基本原理是利用激光 的生物刺激作用,调整机体组织 的功能,促进病变组织的修复和
再生。
半导体激光治疗的理论基础
半导体激光器具有波长可调、 输出功率高、体积小、寿命长 等优点。
半导体激光的波长与组织吸收 峰相匹配,可被组织充分吸收 并转化为热能,对病变组织产 生热效应。
半导体激光治疗的理论基础是 利用激光的热效应,对病变组 织进行照射,从而达到治疗目 的。
口腔溃疡治疗
激光照射能够促进口腔黏 膜的再生和修复,加速口 腔溃疡的愈合。
牙齿美白
通过激光照射,能够减少 牙齿表面的色素沉积,使 牙齿变得更加洁白亮丽。
眼科疾病的治疗
眼底病变治疗
青光眼治疗
半导体激光能够通过光凝等手段,治 疗糖尿病视网膜病变、视网膜静脉阻 塞等眼底病变,防止视力进一步恶化 。
激光虹膜成形术和激光小梁成形术等 半导体激光手术可以开放房角、解除 瞳孔阻滞和降低眼压等作用,治疗青 光眼等眼疾。
半导体激光治疗新技术的应用
总结词
随着技术的不断发展,半导体激光治疗新技术不断涌现,为 患者提供了更加安全、有效的治疗方案。
详细描述
目前,半导体激光治疗新技术包括光动力疗法、光热疗法和 光化学疗法等。这些新技术在肿瘤治疗、皮肤疾病、眼科疾 病等领域展现出巨大的潜力,为患者带来了更好的治疗效果 。

半导体激光器

半导体激光器

决定因素
蓝光DVD半导体激光器半导体光电器件的工作波长是和制作器件所用的半导体材料的种类相关的。半导体材 料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着 一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时,就把光的能量变成了电,而带有电能的电子从导带 跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。材料科学的发展使我 们能采用能带工程对半导体材料的能带进行各种精巧的裁剪,使之能满足我们的各种需要并为我们做更多的事情, 也能使半导体光电器件的工作波长突破材料禁带宽度的限制扩展到更宽的范围。
工作原理
根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带 分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。
一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓) 比间接带隙半导体材料如Si有高得多的辐射跃迁几率,发光效率也高得多。
进入21世纪后,半导体激光器的高效化、超高亮度化、全色化不断发展创新,红、橙半导体激光器光效已达 到100Im/W,绿半导体激光器为50lm/W,单只半导体激光器的光通量也达到数十Im。半导体激光器芯片和封装不 再沿龚传统的设计理念与制造生产模式,在增加芯片的光输出方面,研发不仅仅限于改变材料内杂质数量,晶格 缺陷和位错来提高内部效率,同时,如何改善管芯及封装内部结构,增强半导体激光器内部产生光子出射的几率, 提高光效,解决散热,取光和热沉优化设计,改进光学性能,加速表面贴装化SMD进程更是产业界研发的主流方 向。
损耗关系
激光器的腔体可以有谐振腔和外腔之分。在谐振腔里,激光器的损耗有很多种类,比如偏折损耗,法布里珀 罗谐振腔就有较大偏折损耗,而共焦腔的偏折损耗较小,适合于小功率连续输出激光,还比如反转粒子的无辐射 跃迁损耗(这类损耗可以归为白噪声)等等之类的,都是腔长长损耗大。激光器阈值电流不过就是能让激光器起 振的电流,谐振腔长短的不同可以使得阈值电流有所不同,半导体激光器中,像边发射激光器腔长较长,阈值电 流相对较大,而垂直腔面发射激光器腔长极短,阈值电流就非常低了。这些都不是一两句话可以说的清楚的,它 们各自的速率方程也都不同,不是一两个式子能解释的。另外谐振腔长度不同也可以达到选模的作用,即输出激 光的频率不同。

半导体激光器ppt课件

半导体激光器ppt课件
半导体激光器
目录
半导体激光器简介
半导体激光器工作原理
半导体激光器的分类
半导体激光器的应用
• 半导激光器简介:
• 半导体激光器是以一 定的半导体材料做工 作物质而产生激光的 器件。.
• 半导体激光(Semiconductor laser)在1962年被 成功激发,在1970年实现室温下连续输出。后来 经过改良,开发出双异质接合型激光及条纹型构 造的激光二极管(Laser diode)等,广泛使用于 光纤通信、光盘、激光打印机、激光扫描器、激 光指示器(激光笔),是目前生产量最大的激光 器。
• (7)动态单模激光器
• (9)量子阱激光器
(8)分布反馈激光器
(10)表面发射激光器
• (11)微腔激光器
半导体激光器的应用
•军事领域
•如激光制导跟踪、激光雷 达、激光引信、激光测距、 激光通信电源、激光模拟 武器、激光瞄准告警、激 光通信和激光陀螺等。目 前世界上的发达国家都非 常重视大功率半导体激光 器的研制及其在军事上的 应用。
•印刷业和医学领域
•如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光 盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝 光面发射激光器的应用更广泛蓝绿光半导体激光器用于水下通信、激 光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清 晰度彩色电视机中。
供应平板刻绘机
The end,thank you!
半导体激光雷达 半 导 体 激 光 武 器 模 拟
半导体激光瞄准和告警
半导体激光测距
半导体激光引信
半导体激光制导跟踪
军用光纤陀螺
•光纤通信系统
半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电 路平面工艺组成光电子系统。

半导体激光器原理及应用PPT课件

半导体激光器原理及应用PPT课件

2019/11/4
.
22
半导体激光器的线宽
上面曲线给出了LD线宽与1/P之间的关系、和温度对线宽的影响
2019/11/4
.
23
半导体激光器的动态特性
半导体激光器有别于其它激光器的最重要特点之一在于它有被交变信号直接调 制的能力,这在信息技术中具有重要的意义。
与工作在直流状况的半导体激光器不同,在直接高速调制情况下会出现一些有 害的效应,成为限制半导体激光器调制带宽能力的主要因素。
.
半导体激光器等效电路
29
半导体激光器的热特性
引发机制: 在半导体激光器中,由于不可避免的存在着各种非辐射复合损耗、自由载流子吸 收等损耗机制,使外微分量子效率只能达到20%~30%,意味着相当部分注入的 电功率转换为了热量,引起激光器的升温。这会导致LD的阈值电流增大、发射波 长红移、模式不稳定、增加内部缺陷,严重影响器件的寿命。 解决办法:
(b)受激辐射:受激发射出的光子频率,相位和方向都与入射光子h 相同。
(c)受激吸收:原子接收辐射能 h 从基态能级E1越入受激能级E2。 产生激光的必要条件:受激辐射占主导地位
2019/11/4
.
3
自发辐射的特点
这种过程与外界作用无关。各原子的辐射都是独立地进行。因而所发光子的频 率、初相、偏振态、传播方向等都不同。不同光波列是不相干的。
2019/11/4
半导体激光器横模与侧模
有多侧模的半导体激光器的近场和远场
.
16
纵模谱的影响因素
2019/11/4
可见,若要选频,就要控制温度,要稳定功率输出,
也要选择恒温控制
.
17
半导体激光器的光束发散角

半导体激光器工作原理 ppt课件

半导体激光器工作原理 ppt课件

远红外长波长: InP衬底
InGaAsP/InP 1.3um 1.48um 1.55um
半导体激光器工作原理
8
半导体激光器材料和器件结构
808大功率激光器结构
半导体激光器工作原理
9
半导体激光器材料生长
• 采用MOCVD方法制备外延层,外延层包括缓冲层、限制层、有源 层、顶层、帽层。有源层包括上下波导层和量子阱。
我们的808大功率激光器属于这种结构:把p+重掺杂层 光刻成条形,限制电流从条形部分流入。但是在有源 区的侧向仍是相同的材料,折射率是一样的,对光场 的侧向渗透没有限制作用,造成远场双峰或多峰、光 斑不均匀,同时阈值高、光谱宽、多纵摸工作,有时 会出现扭折问题。
半导体激光器工作原理

折射率波导条形激光器(掩埋条形)
特点:不仅对注入电流的侧向扩展和注入载流子的侧 向扩散有限制作用,而且对光波侧向渗透也有限制作 用。
InP衬底的1310nm 、1480nm激光器属于这种结构, 需要三次外延生长。此结构的优点:条形有源区的侧 向对载流子和光场都有限制,辐射光丝稳定,能够单 膜工作,远场单峰、光斑均匀,光谱窄、阈值低、可 靠性高。
半导体激光器工作原理
7
半导体激光器的分类(材料和波长)
可见光:
GaAs衬底
InGaN/ GaAs 480~490nm 蓝绿光
InGaAlP/GaAs 630~680nm
AlGaAs/GaAs 720~760nm
近红外长波长: GaAs衬底 AlGaAs/GaAs 760~900nm InGaAs/GaAs 980nm
半导体激光器工作原理
11
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激 光器(普通条形)和折射率波导条形激光器(掩埋条形、脊形波导)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
24
.
25
Thank you
.
26
.
22

P
(a )
G a 1 - Ax l x A s
E
(b )


n折(c )射率空穴
P GaA s
N

G a 1 - Ay l y A s
电子
复合 异质势垒
~ 5%
P (d ) 光
图 DH (a) 双异质结构; (b) 能带; (c). 折射率分布; (d) 光功率分布 23
808大功率激光器结构
空 间 电 荷 区
内 建 电 场
阻碍多子扩散 动态平衡
促成少子漂移
PN结
.
16
1.4 PN结的单向导电性
无外加电压时
空间电荷区
1). 外加正向电压
+
--
空间电荷区
E

2). 外加反向电压
+
空间电荷区
E

U0 E内
E 内1
U 0 —U
E 内2
( qVD )
i Is[e
kT .
1]
U 0 +U
17
1.5 半导体器的3个必要条件
导带电子和价带空穴相等是本征半导体的主要特

.
9
本征半导体的导电机理
空穴
+4
+4
+4
+4
.
自由电子
束缚电子
10
掺杂半导体
• N型半导体:往Si中掺入五价元素的杂质
五价元素称为施主杂质
• P型半导体:掺入三价元素的杂质
三价元素称为受主杂质
.
11
要在半导体中实现分布反转,必须使其导带保持 高密度的电子,价带保持高密度的空穴,这种反 常分布需要由外界输入能量来维持,靠外力将电 子不断激发并维持在高能级上的过程被称为“泵 浦”。
• 金属良导体在T=0K时,其全部价电子只能填满能 带的下半部,上半部空着,上下之间没有能量间 隙,电子容易跃迁,易导电。而半导体和绝缘体 相似,空带距离能带之间有一定禁带,需要外界 作用才能导电,因此不易导电。
.
8
1.2 本征半导体和掺杂半导体
本征半导体:在热力学温度T=0K和没有外界影响的
条件下,半导体的价电子均束缚在共价键中,不
AlGaAs/GaAs 720~760nm
• 近红外长波长: GaAs衬底 AlGaAs/GaAs 760~900nm InGaAs/GaAs 980nm

InP衬底
InGaAsP/InP 1.3um 1.48um 1.55um
.
19
1)、同质结(PN结)半导体激光器
最简单的半导体激光器由一个薄有源层(厚度约0.1μm)、 P型和N型限制层构成,如下图所示。
• 晶体中的电子作共有化运动,所以电子不再属于某 一个原子,而是属于整个晶体共有
• 晶体中原子间相互作用,导致能级分裂,由于原子 数目巨大,所以分裂的能级非常密集,认为是准连
续的,即形成能带
• 电子总是先填充低能级,0K时,价带中填满了电子, 而导带中没有电子
.
5
.
6
• 禁带:在绝对零度时,半导体中的能带以一条特 征能隙分界,其下的能带全部被电子占满,其上 的能带全部空着,这条能隙就是禁带
存在自由运动的电子。但当温度升高或受到光线
照射时,某些共价键中的价电子从外界获得足够
的能量,从而挣脱共价键的束缚,离开原子而成
为自由电子,同时,在共价键中留下了相同数量
的空位,这种现象称为本征激发。其中自由电子
和空位称为载流子,半导体是依靠自由电子和空
穴两种载流子导电的物质,把主要依靠本征激发
获得载流子的半导体称为本征半导体。
• (1) 当受外界热和光的作用时,它的导电能力 明显变化。
• (2) 往纯净的半导体中掺入某些杂质,会使它 的导电能力明显改变。
• (3)缺陷在半导体中往往会改变晶体的共价键环 境,改变其导电能力
.
4
1.1 能带理论:
对导体,半导体,绝缘体本质上科学区分的理论
• 电阻率:<10e-4,10e-3--10e9,> 10e9
三、 半导体激光器简介
邓咏丽
.
1
1半导体基础知识 2 半导体激光器的结构
.
2
典型半导体激光器结构图
P-GaAs GaAs
n-GaAs
激光
.
3
1. 半导体的基础知识
定义:在绝对零度时无任何导电能力,但其导电性 随温度升高呈现总体上升趋势,且对光照等外部 条件和材料的纯度与结构完整性(是否有缺陷) 等内部条件十分敏感的物质。
金属接触
电流
100μm
有源层
P型 N型 300μm
200μm 解理面
大面积半导体激光器
.
20
1)、同质结半导体激光器
PN能带 所加的正向偏压必须满足
正向电压V时形成的双简并能带 结构
VEF EF Eg ee
PN结LD的特点:阈值电流高,常温下不能连续工作
.
21
2)、异质结半导体激光器
同质结、异质结结构示意图
半导体激光器一般采用pn结正向注入的方式“泵 浦”电子
.
12
1.3 PN结的形成
两种载流子:电子 空穴
两种运动:扩散运动——由载流子浓度差引 起的运动
漂移运动——在电场作用下的载 流子定向运动
.
13
扩散运动
空间电荷区
E内
浓度差异引起多子的扩散
E内
U0
P区空穴 P区
N区 N区电子
J扩散 随着扩散的进行, 空间电荷区展宽,电场加强
• 价带:紧邻其下的满电子因其中的电子全是价电 子,称为价带
• 导带:紧邻其上的空带因为在在非零温度下出现 少量与金属中的自由电子相似的、可参与导电的 电子,称为导带。
.
7
满带电子不导电
• 只有未被电子填满的能带中的电子才能参与导电, 尽管绝对零度时的半导体和绝缘体中都存在为数 众多的电子,但因其皆处于满带之中,因此对材 料的电导率还没有贡献。
驱动电源
注入式 光子激励
电子束激励
工作物质
PN结(同质结) 异质结 单异质结
双异质结(DH)
谐振腔
解理面 布拉格反馈
分布反馈式DFB 分布布拉格反射式DBR
.
18
2 半导体激光器的结构
• 可见光:
GaAs衬底
InGaN/ GaAs 480~490nm 蓝绿光
InGaAlP/GaAs 630~680nm
扩散过程中电子和空穴不断复合
.
14
漂移运动
内建电场E的出现阻碍了多子的运动,但促 进了少子的漂移运动 ,使内建电场变窄,电场减弱
E内
P
N
当多子扩散和少子的漂移达
到动态平衡,J 漂移=J 扩散
空间电荷区
P区电子 N区空穴 J 漂移
E内
P区空穴 N区电子 J 扩散
U0
E内
.
15
浓 度 差
多 子 扩 散
相关文档
最新文档