热处理

合集下载

四种常见热处理方法

四种常见热处理方法

四种常见热处理方法
热处理是一种通过控制材料的加热和冷却过程来改变其物理和
机械性能的方法。

常见的热处理方法包括退火、正火、淬火和回火。

首先是退火,这是最常见的热处理方法之一。

退火是将材料加
热到一定温度,然后在适当速度下冷却。

这有助于减轻材料内部的
应力和提高塑性,同时改善材料的韧性和韧性。

其次是正火,也称为时效处理。

正火是将材料加热到一个高温,然后在一定时间内保持在该温度下,最后进行适当的冷却。

这种方
法常用于合金钢和铝合金,可以提高材料的硬度和强度。

第三种方法是淬火,这是一种通过迅速冷却来使材料迅速固化
的方法。

通常是将材料加热到临界温度,然后迅速冷却,以产生高
硬度和高强度的组织结构。

淬火常用于制备工具钢和轴承钢等材料。

最后是回火,这是一种在淬火后将材料重新加热到较低的温度,然后保温一段时间后再冷却的方法。

回火有助于减轻淬火过程中产
生的内部应力,同时可以调节材料的硬度和韧性,使其达到最佳的
性能状态。

以上所述的四种常见热处理方法,分别适用于不同类型的材料和工件,能够有效地改善材料的性能和延长其使用寿命。

通过合理选择和控制热处理方法,可以使材料达到最佳的力学性能和组织结构,从而满足不同工程应用的要求。

热处理方法有哪些

热处理方法有哪些

热处理方法有哪些热处理方法有哪些?(上)热处理是指通过加热、保温、冷却等一系列工艺措施,改变材料或零件的组织结构、性能和形状的工艺过程。

热处理方法多种多样,下面将介绍一些常见的热处理方法。

1. 火焰淬火火焰淬火是利用火焰或火腿加热工件到淬火温度,然后通过气流或喷水等介质冷却,使工件表面形成一层淬火组织,具有较高的硬度和强度。

2. 淬火回火淬火回火是指在淬火后,对工件进行回火处理,改变其组织和性能以达到所需的力学性能。

该方法常用用于工具钢、弹簧钢等材料的热处理。

3. 渗碳渗碳是指将具有一定碳含量的低碳钢或铁件,置于含有碳、氧、氮等元素的介质中进行加热,使其表层渗入碳元素,从而提高其表面硬度和耐磨性能。

4. 固溶处理固溶处理是指将有机物质或合金材料加热,使其中的固溶体发生不完全固态反应,使其达到特定的化学成分和组织状态,从而达到提高材料性能的目的。

常用于不锈钢、合金钢等材料的热处理。

5. 淬火调质淬火调质是指先将工件快速加热到淬火温度,然后进行气体或水冷却,使其达到莫氏硬度要求,然后回火,调整其硬度、强度和韧度等性能。

该方法常用于合金钢、冷拔钢丝等材料的热处理。

6. 磷化磷化是利用化学反应原理,将所需的基体材料表面,通过化学作用,在表面一层上生成有机物磷化层,以提高其表面硬度、耐蚀性能。

以上就是一些常见的热处理方法,它们可以提高工件的硬度、强度、耐磨性、耐腐蚀能力等物理和化学性能。

同时,热处理也是材料加工中不可缺少的一种重要工艺。

热处理方法有哪些?(下)热处理是冶金学的重要分支,在现代工业生产中起着举足轻重的作用。

相信大家对热处理方法有一定了解了,接下来将进一步介绍其他热处理方法。

7. 焊后热处理焊后热处理是指在焊接过程完成后,通过加热、保温和冷却等工艺措施,使其焊接部位的材料复原其原有的组织和性能,同时消除焊接时产生的焊接应力问题。

8. 焙烧焙烧是指通过加热材料,使其表面或内部氧化或还原,从而改变其化学性质和物理性能的过程。

热处理的方法

热处理的方法

热处理的方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的方法。

在工业生产中,热处理被广泛应用于各种金属制品的生产加工过程中,以提高其硬度、强度、耐磨性和耐腐蚀性能。

下面将介绍几种常见的热处理方法。

1. 淬火。

淬火是指将金属材料加热至临界温度以上,然后迅速冷却至室温以下的一种热处理方法。

通过淬火处理,可以使金属材料获得高硬度和强度。

淬火的方法包括水淬、油淬和盐水淬等,不同的淬火介质会对材料的性能产生不同的影响。

2. 回火。

回火是指在淬火后,将金属材料重新加热至较低的温度,然后保温一段时间后再冷却的一种热处理方法。

回火可以消除淬火过程中产生的内部应力,提高材料的韧性和塑性,同时降低其硬度和脆性。

3. 淬火回火。

淬火回火是将淬火和回火两种热处理方法结合起来进行的一种复合热处理工艺。

通过淬火回火处理,可以在保证金属材料硬度和强度的同时,提高其韧性和塑性,以满足不同工件的使用要求。

4. 固溶处理。

固溶处理是将合金加热至固溶温度以上,然后在一定温度下保温一段时间,最后迅速冷却的一种热处理方法。

固溶处理可以溶解合金中的固溶体,改善合金的塑性和加工性能,同时提高其耐腐蚀性能。

5. 淬火回火处理。

淬火回火处理是将淬火和回火两种热处理方法结合起来进行的一种复合热处理工艺。

通过淬火回火处理,可以在保证金属材料硬度和强度的同时,提高其韧性和塑性,以满足不同工件的使用要求。

总结。

热处理是一种重要的金属材料加工工艺,通过改变金属的组织结构和性能,可以使材料达到理想的使用要求。

不同的热处理方法可以使金属材料获得不同的性能,因此在实际生产中,需要根据具体工件的要求选择合适的热处理工艺,以确保产品质量和性能。

通过本文的介绍,相信大家对热处理的方法有了更深入的了解,希望能够在实际生产中加以应用,为提高产品质量和性能提供有力支持。

热处理的基本知识

热处理的基本知识

过烧与欠烧的预防与控制
总结词
过烧和欠烧是热处理中常见的问题,它们会 影响材料的性能和热处理的可靠性。
详细描述
过烧是指加热温度过高或保温时间过长,导 致材料内部晶粒长大、氧化或融化。欠烧则 是加热温度或保温时间不足,导致材料未完 全奥氏体化或淬火不完全。为了预防和控制 过烧和欠烧,需要精确控制加热温度和时间 ,以及选择适当的加热和冷却速度。
气氛
热处理过程中所选择的气氛(如空 气、保护气体等)会影响金属的氧 化、脱碳等化学变化。
03
CATALOGUE
热处理工艺分类
退火
退火是将金属加热到适当温度,保持一定时 间,然后缓慢冷却的过程。其目的是消除内 应力、降低硬度、提高塑性和韧性。
退火工艺可分为完全退火、等温退火和球化 退火等。完全退火是将金属加热到临界点以 上,使组织完全奥氏体化,然后随炉缓慢冷 却;等温退火是将金属加热到临界点以上某 一温度,保持一定时间后快速冷却至室温; 球化退火则是将金属加热到略低于临界点温
05
CATALOGUE
热处理中的问题与解决方案
裂纹的产生与预防
总结词
裂纹是热处理中常见的问题,其产生与 多种因素有关,如冷却速度、加热温度 等。
VS
详细描述
裂纹的产生通常是由于热处理过程中材料 内部应力的集中和超过材料的断裂强度所 引起的。为了预防裂纹的产生,需要控制 加热和冷却速度,选择适当的加热温度和 时间,以及采用适当的热处理工艺。
THANKS
感谢观看
04
CATALOGUE
热处理的应用
钢铁工业
01
钢铁是热处理应用最广泛的材料 之一,通过不同的热处理工艺, 可以改变钢铁的内部结构和性能 ,以满足各种不同的需求。

常用的热处理工艺及目的

常用的热处理工艺及目的

常用的热处理工艺及目的
一、常用热处理工艺:
1、回火:通过加热和慢速冷却,以改善金属材料机械性能和提高组
织稳定性。

2、正火:用于改善金属材料的组织结构,改善其界面性能。

3、退火:通过加热和慢速冷却,以减软、增韧和提高可塑性的目的
而进行热处理。

4、淬火:通过加热和快速冷却的热处理,使金属材料具有高的强度、韧性和良好的耐磨性。

5、硬质化处理:使金属材料具有超强的硬度和韧性,提高耐磨性和
热强度。

6、马氏体稳定化处理:针对一些特定材料,利用恒定温度和时间,
使马氏体组织达到稳定。

7、球化处理:通过加热和冷却,使金属材料表面组织形成球状结晶,从而改善表面性能。

8、脆化处理:通过调节温度和时间,使金属材料变得脆性,以便后
期的热处理。

二、常用热处理的目的:
1、为了改善金属材料的机械性能,提高其强度、韧性和硬度等。

2、为了改善金属材料的抗磨性,耐腐蚀性和热强度等。

3、为了改变材料组织结构,改善显微组织形貌,改变金属材料的晶粒大小。

4、为了改善金属材料的界面性能,使其变为球状结晶,从而改善了其可塑性和抗锈腐性。

热处理工艺方法600种

热处理工艺方法600种

热处理工艺方法600种1.完全退火2.亚共析钢钢锭的完全退火3.亚共析钢锻轧钢材的完全退火4.冷拉钢材料坯的完全退火5.不完全退火6.过共析钢及莱氏体钢钢锭的不完全退火7.过共析钢锻轧钢材的不完全退火8.亚共析钢冷拉坯料的不完全退火9.均匀化退火(扩散退火)10.低温退火11.钢锭的低温退火12.热锻轧钢材的低温退火13.中间退火(软化退火)14.冷变形加工时的中间退火15.热锻轧钢材的中间退火16.再结晶退火17.低碳钢的再结晶退火18.不锈钢的再结晶退火19.去应力退火.20.热锻轧材及工件的去应力退火21.冷变形钢材的去应力退火22.奥氏体不锈钢的去应力退火23.铸铁的去应力退火24.软磁材料的去应力退火25.非铁金属及耐热合金的去应力退火26.预防白点退火(去氢退火)(消除白点退火)27.碳钢及低合金钢的去氢退火28.中合金钢的去氢退火29.高合金钢的去氢退火30.晶粒粗化退火31.等温退火32.球化退火33.低温球化退火34.一次球化退火35.等温球化退火36.来去球化退火37.正火球化退火38.高速钢快速球化退火39.钠燃烧无氧化光亮退火40.快速连续光亮退火41.盐浴退火42.装箱退火43.普通真空退火44.真空-保护气体退火45.部分退火46.两次处置惩罚快速退火47.高速钢的循环退火48.石墨钢的石墨化退火49.脱碳退火50.可锻化退火51.快速可锻化退火52.球墨铸铁的低温石墨化退火53.球墨铸铁的高温石墨化退火54.球墨铸铁的高-高温石墨化退火55.球状石墨化退火56.高温石墨化退火57.余热退火58.普通正火59.亚温正火60.等温正火61.水冷正火62.风冷正火63.喷雾正火64.多次正火65.球墨铸铁完全奥氏体化正火66.球墨铸铁不完整奥氏体化正火67.球墨铸铁快速正火68.球墨铸铁的余热正火第二章团体热处置惩罚——淬火69.完全淬火70.不完全淬火71.中碳钢的亚温淬火72.低碳钢双相区淬火73.低碳钢双相区二次淬火74.灰铸铁的淬火75.球墨铸铁的淬火76.高速钢部分淬火77.高速钢高温淬火78.余热淬火(直接淬火)79.二次(从头)加热淬火80.两次淬火81.正火-淬火82.高温回火-淬火83.预热淬火(门路式加热淬火)84.延时淬火(降温淬火、提早淬火)85.部分淬火86.薄层淬火87.短时加热淬火88.“零”保温淬火89.快速加热淬火90.可控气氛加热淬火91.氮基氛围干净淬火92.滴注式保护氛围光明淬火93.涂层淬火94.包装淬火95.硼酸防护光明淬火96.真空淬火97.真空高压气体淬火98.轮回加热淬火99.淬火-抛光-淬火(Q-P-Q)处理100.流态炉加热淬火101.石墨流态炉加热淬火102.流态炉淬火冷却103.脉冲加热淬火104.感到穿透加热淬火105.通电加热淬火106.盐浴加热淬火107.盐浴静止加热淬火108.单液淬火109.压缩空气淬火(空淬及风淬) 110.动液淬火222.喷液淬火112.双液淬火(双介质淬火) 113.大型锻模水-气夹杂物淬火114.大锻件水-气夹杂物淬火115.单槽双液淬火116.三液淬火117.悬浮液淬火118.间断淬火119.磁场冷却淬火120.超声波淬火121.浅冷淬火122.超低温淬火(液氮淬火)123.冰冷处理124.液氮气体深冷处理125.模具钢的深冷处理126.高速钢刀具的深冷处理127.马氏体分级淬火128.马氏体等温淬火129.等温分级淬火130.贝氏体等温淬火131.灰铸铁的贝氏体等温淬火132.球墨铸铁的贝氏体等温淬火133.球墨铸铁亚温加热贝氏体等温淬火134.分级等温淬火135.二次贝氏体等温淬火136.珠光体等温淬火137.预冷等温淬火138.预淬等温淬火139.微变形淬火140.无变形淬火141.碳化物微细化淬火142.碳化物微细化四步处理143.晶粒超细化淬火144.晶粒超细化轮回淬火145.晶粒超细化的高温形变淬火146.晶粒超细化的室温形变处置惩罚147.GCr15钢双细化淬火148.低碳钢激烈淬火149.中碳钢高温淬火150.中碳钢过热淬火151.过共析钢高温淬火152.渗碳件四步处理法153.渗碳冷处理154.自回火淬火155.马氏体等温-马氏体分级淬火复合处理156.反淬火157.预应力淬火158.修复淬火159.固溶化淬火(固溶处理)160.水韧处置惩罚161.锻造余热水韧处置惩罚162.进步初始硬度的水韧163.水韧-时效处置惩罚164.细化晶粒水韧实时效处置惩罚第三章整体热处理——回火与时效165.低温回火166.中温回火167.高温回火168.调质处置惩罚169.盘条的调质处理170.球墨铸铁的调质处理171.调质球化172.冷挤压用钢的调质球化173.高速钢的低高温回火174.修复回火175.带温回火176.振动回火177.通电加热回火178.快速回火179.渗碳二次硬化处理180.多次回火181.淬回火182.自回火183.感应回火184.去氢回火185.去应力回火186.压力回火187.局部回火188.自然时效189.回归处理190.人工时效191.分级时效192.分区时效193.两次时效194.振动时效195.磁致伸缩消除刀具残余应力处理196.铸铁稳定化处理197.合金钢稳定化时效(残余奥氏体稳定化处理)198.奥氏体稳定化处理199.奥氏体调治处置惩罚第四章表面淬火200.感应加热表面淬火201.高频加热外表淬火202.高频预正火淬火203.高频无氧化淬火204.渗碳感应表面淬火205.渗氮感应表面淬火206.高频加热浴炉处置惩罚207.中频加热表面淬火208.工频加热外表淬火209.感应表面淬火时的加热方法210.喷液及浸液表面淬火211.埋油外表淬火212.埋水表面淬火213.大功率脉冲感应淬火214.超音频感应加热淬火215.双频感应淬火216.混合加热表面淬火217.火焰加热外表淬火218.电接触加热表面淬火219.电解液加热外表淬火220.盐浴加热表面淬火221.高速钢的激光加热表面淬火222.布局钢的激光外表淬火223.有色金属的激光表面淬火224.激光表面淬火代替局部渗碳225.电子束外表淬火226.空气电子束重熔淬火227.电子束表面合金化228.电火花表面强化及合金化229.强白光源表面淬火第五章化学热处理230.渗碳231.固体渗碳232.分段固体渗碳233.无箱固体渗碳234.固体气体渗碳235.气体固体渗碳236.粉末放电渗碳237.膏剂渗碳238.高频加热膏剂渗碳239.盐浴渗碳240.通俗(含氰)盐浴渗碳241.低氰盐浴渗碳242.原料无氰盐浴渗碳243.无毒盐浴渗碳244.通气盐浴渗碳245.超声波盐浴渗碳246.高温盐浴渗碳247.盐浴电解渗碳248.高频加热液体渗碳249.液体放电渗碳250.铸铁浴渗碳251.间接通电液体渗碳252.气体渗碳253.滴注式气体渗碳254.通气式气体渗碳255.分段气体渗碳256.高压气体渗碳257.感应加热气体渗碳258.火焰渗碳259.部分渗碳260.不均匀奥氏体渗碳261.碳化物弥散渗碳262.二重渗碳263.真空渗碳264.一段式真空渗碳265.脉冲式真空渗碳266.摆动式真空渗碳267.真空离子渗碳268.高温离子渗碳269.流态炉渗碳270.流态炉高温渗碳271.稀土催化渗碳272.稀土低温渗碳273.高含量渗碳274.离子轰击过饱和渗碳275.过分渗碳276.等离子渗碳277.修复渗碳278.深层渗碳279.穿透渗碳280.相变超塑性渗碳281.中碳及高碳钢的渗碳282.高速钢的低温渗碳283.渗碳后硼-稀土共渗复合处置惩罚284.渗氮285.气体等温渗氮286.气体二段渗氮287.气体三段渗氮288.短时渗氮289.不锈钢渗氮290.铸铁渗氮291.局部渗氮292.退氮处置惩罚293.抗蚀渗氮294.纯氨渗氮295.氨氮夹杂气体渗氮296.液氨滴注渗氮297.流态炉渗氮298.压力渗氮299.包装渗氮300.盐浴渗氮301.无毒盐浴渗氮302.压力盐浴渗氮303.渗氮亚温淬火复合处理304.离子渗氮305.高温离子渗氮306.氨气预处置惩罚离子渗氮307.快速深层离子渗氮308.热循环离子渗氮309.离子束渗氮310.真空渗氮311.离子渗氮及淬火两重处置惩罚312.化学催化渗氮313.稀土催化渗氮314.钛催化渗氮315.电解气相催化渗氮316.高频加热气体渗氮317.磁场中渗氮318.激光渗氮319.激光预处置惩罚及渗氮320.碳氮共渗321.高温分段气体碳氮共渗322.高温厚层气体碳氮共渗323.高频加热气体碳氮共渗324.高频加热膏剂碳氮共渗325.石墨粒子流态炉高温碳氮共渗326.中温碳氮共渗327.通气式中温气体碳氮共渗328.滴注通气式中温气体碳氮共渗329.滴注式中温气体碳氮共渗330.分阶段式中温气体碳氮共渗331.高含量(浓度)中温气体碳氮共渗332.真空中温碳氮共渗333.中温液体碳氮共渗(盐浴氰化)334.无毒盐浴碳氮共渗335.高频加热盐浴碳氮共渗336.高频加热液体碳氮共渗337.双浴液体碳氮共渗338.中温固体碳氮共渗339.中温膏剂碳氮共渗340.低中温碳氮共渗341.高温碳氮共渗(软氮化)342.高温气体碳氮共渗343.氮基氛围高温碳氮共渗344.稀土低温碳氮共渗345.铸铁的低温气体碳氮共渗346.高温碳氮共渗后淬火复合处置惩罚347.高温碳氮共渗渗碳复合处置惩罚348.低温液体碳氮共渗349.低温固体碳氮共渗350.低温无毒固体碳氮共渗351.快速低温固体碳氮共渗352.辉光离子低温碳氮共渗353.加氧高温碳氮共渗354.真空加氧高温碳氮共渗355.低温短时碳氮共渗356.低温薄层碳氮共渗357.稀土离子低温碳氮共渗358.分级淬火-低温碳氮共渗359.低温碳氮共渗-重新加热淬火360.中低温碳氮共渗复合处理361.碳氮共渗-镍磷镀复合处理362.氧氮处置惩罚363.渗硼364.低温固体渗硼365.固体渗硼-等温淬火复合处理366.粉末渗硼367.膏剂渗硼368.辉光放电膏剂渗硼369.深层膏剂渗硼370.自保护膏剂渗硼371.盐浴渗硼372.盐浴电解渗硼373.铸铁渗硼374.气体渗硼375.辉光放电气体渗硼376.硼锆共渗377.渗碳渗硼378.渗氮渗硼379.液体稀土钒硼共渗380.膏剂硼铝共渗381.超厚渗层硼铝共渗382.硼钛共渗383.镀镍渗硼384.硼碳氮三元共渗385.渗硼复合处理386.渗硼感应加热复合处理387.感应加热渗硼388.激光加热渗硼389.稀土渗硼390.不锈钢硼氮共渗391.渗硫392.离子渗硫393.气相渗硫394.铸铁渗硫395.硫氮共渗396.离子硫氮共渗397.离子氧氮硫三元共渗398.高温硫氮碳三元共渗399.硫氮碳三元共渗400.离子硫氮碳共渗401.高温电解硫钼复合渗镀402.蒸汽处理403.渗氮蒸汽处置惩罚404.硫氮共渗蒸汽处置惩罚405.氧化处置惩罚406.氧氮共渗407.氧碳氮三元共渗408.磷化409.粉末渗铝410.低温粉末渗铝411.熔铝热浸渗铝412.高频感应加热渗铝413.气体渗铝414.喷镀散布渗铝415.熔盐电解渗铝416.直接通电加热粉末渗铝417.铝稀土共渗418.渗铬419.散布渗铬420.辉光离子渗铬421.双层辉光离子渗铬422.真空渗铬423.稀土硅镁-三氧化二铬-硼砂盐浴渗铬424.铬稀土共渗425.渗铬后渗碳或渗氮426.铬铝共渗427.铬硅共渗428.铸铁的固-气法硅铬共渗429.铬铝硅三元共渗430.渗钛431.固体渗钛432.盐浴渗钛433.气体渗钛434.双层辉光离子渗钛435.钛铝共渗436.硼砂浴渗钒437.中性盐浴渗钒438.硼钒连续渗439.铬钒共渗440.渗钒真空淬火441.渗硅442.熔盐电解渗硅443.离子渗硅444.硼硅共渗445.激光硼硅共渗446.钼合金渗硅-离子渗氮复合处置惩罚447.渗锌448.渗锰449.渗锡450.离子钨钼共渗451.铸渗合金452.热循环化学热处理453.离子注入454.氮离子注入455.硼砂浴覆层(TD)法第六章形变热处理456.高温形变淬火457.锻热淬火458.锻热预冷淬火459.辊锻余热淬火460.锻后余热浅冷淬火自回火461.轧热淬火462.轧后余热控冷处理463.罗纹钢筋轧后余热处置惩罚464.挤压余热淬火465.高温形变正火466.高温形变等温淬火467.亚温形变淬火468.低温形变淬火469.珠光体区等温形变淬火470.低温形变等温淬火471.连续冷却形变处理472.珠光体温形变473.珠光体冷形变474.引发马氏体的形变时效475.马氏体室温形变时效476.回火马氏体室温形变时效477.贝氏体室温形变时效478.马氏体及铁素体双相构造室温形变强化479.过饱和固溶体形变时效480.屡次形变时效481.形变分级时效482.外表冷形变强化483.外表高温形变淬火484.使用形变强化结果遗传性的形变热处置惩罚485.预先形变热处置惩罚486.多边化强化处理487.复合形变淬火488.超塑形变处理489.9SiCr钢超塑形变处理490.低温形变淬火与马氏体形变时效相结合的形变热处理491.高温形变淬火与马氏体形变时效相结合的形变热处理492.奥氏体钢的热形变处理493.冷形变渗碳494.冷形变渗氮495.冷形变碳氮共渗496.冷形变渗硼497.形变渗钛498.低温形变淬火渗硫499.锻热渗碳淬火500.锻热淬火渗氮501.渗碳表面形变时效502.高温形变淬火高温碳氮共渗503.预冷形变外表形变热处置惩罚504.外表形变时效505.化学热处置惩罚后的冷外表形变强化506.化学热处置惩罚后外表高温形变淬火507.多边化处置惩罚后的化学热处置惩罚508.表面纳米化后的化学热处理509.晶粒超细化处理第七章非铁金属的热处置惩罚510.铝合金的形变热处理511.铜合金的形变热处理512.变形铝合金的去应力退火513.变形铝合金的再结晶退火514.变形铝合金的匀称化退火515.变形铝合金的时效516.变形铝合金的形变热处理517.变形铝合金的稳定化处理518.铸造铝合金的退火519.锻造铝合金的固溶处置惩罚实时效520.工业纯铜的热处理521.黄铜的热处理522.锡青铜的热处理523.铝青铜的热处理524.铍青铜的固溶处理525.铍青铜的时效处置惩罚526.铍青铜的去应力退火处理527.弹性青铜的热处理528.硅青铜的热处置惩罚529.铬青铜、锆青铜的热处理530.白铜的热处理531.钛合金的去应力退火532.钛合金的完整退火533.钛合金的等温退火和双重退火534.钛合金的固溶处置惩罚535.钛合金的时效536.钛合金的形变热处置惩罚537.镁合金的退火处理538.镁合金的固溶淬火处置惩罚539.镁合金的时效处置惩罚540.镁合金的固溶淬火及野生时效处置惩罚541.镍和镍合金的热处置惩罚542.钨合金的热处置惩罚543.钼合金的热处理544.直生式渗碳545.高温渗碳546.稀土催渗化学热处置惩罚547.高压气淬真空热处置惩罚548.低压渗碳技术549.燃气真空热处理技术550.铁基粉末冶金件的淬火与回火处置惩罚551.铁基粉末冶金资料的时效处置惩罚552.铁基粉末冶金材料的渗碳和碳氮共渗553.铁基粉末冶金材料的气体渗氮和气体氮碳共渗554.铁基粉末冶金材料的蒸汽处理(氧化处理)555.铁基粉末冶金材料的渗硫处理556.铁基粉末冶金资料的渗锌处置惩罚557.铁基粉末冶金资料的渗铬处置惩罚558.铁基粉末冶金资料的渗硼处置惩罚559.钢结硬质合金的退火560.钢结硬质合金的淬火561.钢结硬质合金的回火562.钢结硬质合金的时效硬化563.钢结硬质合金的沉积硬化合物层564.粉末高速钢的热处理565.硬质合金的退火566.硬质合金的淬火567.硬质合金的时效硬化568.电工用纯铁的野生时效569.电工用纯铁的高温净化退火570.电工用纯铁的去应力退火571.热轧硅钢片的热处置惩罚572.冷轧无取向硅钢片的热处置惩罚573.冷轧取向硅钢片的热处理574.铁镍合金的中央退火575.铁镍合金的高温退火576.铁镍合金的磁场退火577.低收缩合金(因瓦合金)坯料的热加工和热处置惩罚578.低收缩合金(因瓦合金)的制品热处置惩罚579.高温用因瓦合金的热处置惩罚580.热双金属的热处理581.高弹性合金的淬火、回火处置惩罚582.高弹性合金的形变热处置惩罚583.镍基高弹性合金的热处置惩罚584.钴基高弹性合金的热处理585.铜基高弹性合金的热处置惩罚586.恒弹性合金的热处理587.TiNi合金单程形状记忆热处理588.TiNi合金双程形状记忆热处理589.锻造镁合金基复合资料强化热处置惩罚590.变形镁合金基复合资料强化热处置惩罚591.钛合金的热处置惩罚592.高温化学气相沉积技术(简称HT-CVD)593.中温化学气相沉积(MT-CVD)技术594.低温化学气相沉积技术595.活性回响反映离子镀手艺596.空心阴极离子镀手艺(HCD)597.热丝阴极离子镀技术598.电弧离子镀技术599.磁控溅射手艺600.化学气相沉积复合超硬涂层技术601.物理气相沉积复合超硬涂层技术仅供小我用于进修、研讨;不得用于贸易用处。

热处理知识介绍

热处理知识介绍

球化退火应用
球化退火主要适用于共析钢和过共析钢,如碳 素工具钢、合金工具钢、轴承钢等。这些钢经 轧制、锻造后空冷,所得组织是片层状珠光体 与网状渗碳体,这种组织硬而脆,不仅难以切 削加工,且在以后淬火过程中也容易变形和开 裂。
球化退火应用
而经球化退火得到的是球状珠光体组织,其中 的渗碳体呈球状颗粒,弥散分布在铁素体基体 上,和片状珠光体相比,不但硬度低,便于切 削加工,而且在淬火加热时,奥氏体晶粒不易 长大,冷却时工件变形和开裂倾向小。另外对 于一些需要改善冷塑性变形(如冲压、冷镦等) 的亚共析钢有时也可采用球化退火。
热处理分类——回火
钢的回火是将淬火钢加热至A1以下的某一温 度,保温一段时间,然后冷却到室温的一种热 处理工艺。
消除钢淬火时产生的亚稳定组织。
二、退火热处理
退火热处理是将金属或合金加热到适当的温度, 保持一定的时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体; 共析钢或过共析钢则是粒状珠光体。总之退火 组织是接近平衡状态的组织。
Fe+H2O→FeO+H2 FeC+CO2→Fe+2CO 还原: FeO+H2→Fe+H2O
FeO+CO→Fe+CO2
对策
所以我们必须做到: 1.减少盘圆料自身带的FeO(盘圆料的酸洗可 以减少FeO); 2.降低炉内的CO、H2在适当的比值和线材来 减少O2、H2O脱碳性气体(加氮气降低炉内 CO、H2的体积百分比),加瓦斯,丙烯可以分 解成甲烷与炉内的H2O、O2反应成CO作为保 护气氛。
CH3OH
CO+2H2
中性气体
氮气在高温加热时和钢铁不发生任何作用,即 不氧化。不脱碳、也无还原和增碳作用,故为 中性气体。
氧化案例

热处理三步

热处理三步

热处理三步
热处理是利用金属材料的结构和性质在高温下进行调整,以获得更好的力学性能和耐久性。

一般而言,热处理包括共三个步骤,分别是加热,保温和冷却。

第一步:加热
加热是指将金属材料加热到特定的温度。

这一步的目的是改变材料的晶粒结构,使其更加均匀,从而使其机械性能更好。

加热的温度取决于材料的类型和所需的性能。

一般来说,低碳钢需要加热到600-700℃,高碳钢需要加热到750-800℃,而不锈钢需要高达1000℃以上的高温。

第二步:保温
保温是指将材料在加热温度下保持一段时间。

这一步的目的是使晶粒完全均匀,并使金属材料中的降解物质(如氧、硫等)得以释放。

保温时间的长短取决于加热的温度、材料的类型和厚度。

通常保温时间至少要达到30分钟。

第三步:冷却
冷却是指将热处理后的金属材料迅速降温到室温,以保持其特殊的晶体结构。

这一步的目的是使晶体结构稳定,并生成更坚硬、更耐用的材料。

冷却速度也很重要。

过慢的冷却,可能会导致材料的性能和硬度下降,而过快的冷却则可能导致材料受到损坏。

一般而言,快速冷却需要使用水、油或其他冷却介质。

总之,通过经过以上几个步骤的热处理,可以使金属材料的性能得到改善,从而延长其使用寿命,并提高其机械性能,使其更适用于各种工业领域。

热处理介绍

热处理介绍
热处理介绍
质量部
热处理简介
三阶段:加热、保温、冷却; 五要素:介质、V加、T、t、V冷
热处理是指金属材料在固态下,通过加热、保温和冷却手段,以获得预期组 织和性能的一种金属热加工工艺。
热处理工艺分类
退火
整体热处 理
正火
淬火
回火
热处理
表面热处 理
火焰淬火
感应加热 热处理
渗碳
化学热处 理
渗氮
碳氮共渗
➢ 降低硬度,提高塑 性,改善切削加工 与压力加工性能;
➢ 细化晶粒,改善力 学性能,为下一步 工序做准备;
➢ 消除冷、热加工所 产生的内应力。
适用于合金结构钢、 碳素工具钢、合金 工具钢、高速钢的 锻件、焊接件以及 供应状态不合格的 原材料;
一般在毛坯状态进 行退火 。
整体热处理
正火
方法
目的
不仅可以作为各种较为重 要结构的最后热处理,而 且还可以作为某些紧密零 件,如丝杠等的预先热处 理,以减小变形。
整体热处理
淬火+低温回火=时效
方法
目的
应用
将 钢 件 加 热 到 80~200 ℃ , 保 温5~20h或更长时间,然后随 炉取出在空气中冷却(空 冷)。
稳定钢件淬火后的组织, 减小存放或使用期间的变 形;
整体热处理
对比
类别
退火
正火 淬火 回火 调质 时效
温度
Ac3+30~50℃ Ac1+30~50℃
Ac1以下 ≥Ac3 ≥Acm ≥Ac3 ≥Ac1
Ac1以下
冷却速度
缓慢冷却(炉冷)
硬度

>退火冷却速度(空冷)

快速冷却

常用热处理方法有哪些

常用热处理方法有哪些

常用热处理方法有哪些常用的热处理方法主要包括退火、正火、淬火、淬火+回火和表面改性等。

以下将详细介绍这些常用的热处理方法。

1. 退火(Annealing):退火是通过加热材料到一定温度,然后缓慢冷却的热处理方法。

退火可以改善材料的机械性能和物理性质,消除内应力,提高材料的塑性和韧性。

退火分为全退火、完全退火、球化退火等,常用于金属的冷变形加工后,或者是为了减小材料内的残余应力。

2. 正火(Normalizing):正火是将材料加热到适当温度,然后空气冷却的热处理方法。

正火可以提高材料的强度和硬度,改善材料的韧性,使晶粒细化。

正火适用于对材料进行均匀加热处理,特别适用于低碳钢。

3. 淬火(Quenching):淬火是将材料加热到适当温度,然后迅速冷却的热处理方法。

淬火可以使材料达到高硬度和高强度,但同时也会使材料变脆。

常见的淬火介质有水、油、盐水等。

淬火适用于需要高硬度、高强度和较低韧性的材料,如工具钢、轴承钢等。

4. 淬火+回火(Quenching and Tempering):淬火+回火是将材料先进行淬火处理,然后在适当温度下保温一段时间,最后进行空气冷却的热处理方法。

淬火+回火可以同时提高材料的硬度和韧性,使材料达到一种较好的强度和韧性平衡。

淬火+回火适用于需要兼具硬度、强度和韧性的材料。

5. 表面改性(Surface Modification):表面改性是通过改变材料表面的物理、化学特性,以提高材料的耐磨性、耐腐蚀性等性能的方法。

常见的表面改性方法有氮化、硬质合金涂层、渗碳等。

表面改性可以延长材料的使用寿命、提高性能,并且不改变材料的基本组织和性能。

总结来说,常用的热处理方法包括退火、正火、淬火、淬火+回火和表面改性等。

不同的热处理方法可以根据不同的材料和要求来选择,以提高材料的性能、延长使用寿命。

常用的热处理方式

常用的热处理方式

常用的热处理方式热处理是一种通过改变材料的晶体结构和性能来达到预定目标的方法。

常见的热处理方式包括退火、正火、淬火、回火和表面处理等。

下面将对这些常用的热处理方式进行详细介绍。

1. 退火退火是一种通过加热和慢速冷却的方式来改善材料的性能的热处理方法。

退火可以消除材料中的应力、提高材料的韧性和塑性,并调整晶体的结构和组织。

在退火过程中,材料通常会被加热到高于临界温度,然后慢慢冷却到室温。

2. 正火正火是一种通过加热材料到适当温度并保持一段时间后,快速冷却的热处理方法。

正火能够提高材料的硬度和强度,并调整材料的组织结构。

在正火过程中,材料的加热温度和保温时间是关键因素,需要根据具体材料的特性和要求来确定。

3. 淬火淬火是一种通过将材料迅速冷却到室温以下来改变其结构和性能的热处理方法。

淬火可以使材料达到高硬度和高强度,但也容易产生脆性。

在淬火过程中,材料通常会被迅速浸入冷却介质中,如水、油或盐水,以快速冷却材料。

4. 回火回火是一种通过加热已经淬火的材料到适当温度并保持一段时间后,再经过适当冷却的热处理方法。

回火可以减轻淬火带来的脆性,提高材料的韧性和塑性。

在回火过程中,材料的回火温度和保温时间需要根据具体材料的要求来确定。

5. 表面处理表面处理是一种通过改变材料表面的化学和物理性质来改善材料的表面质量和性能的方法。

常见的表面处理方式包括镀层、氮化、渗碳、氧化和喷丸等。

表面处理可以提高材料的耐腐蚀性、耐磨性和耐热性,同时也可以改善材料的外观和光洁度。

总结起来,退火、正火、淬火、回火和表面处理是常见的热处理方式。

它们通过改变材料的结构和性能,可以满足不同材料在不同应用场景下的要求。

在进行热处理时,需要根据具体材料的特性和要求,选择合适的热处理方式,并确保热处理过程的控制和操作准确无误,以获得期望的材料性能。

热处理的基础知识

热处理的基础知识

热处理的基础知识热处理,顾名思义,就是在高温下对材料进行处理。

它是工业生产和加工的一个重要部分,广泛应用于机械、汽车、航空、建筑等领域。

热处理可以改变材料的机械性能、物理性质和化学性质,从而提高其使用寿命、强度和韧性。

本文将介绍热处理的基础知识,包括热处理的目的、热处理方法、热处理的影响因素和热处理的注意事项。

一、热处理的目的热处理的目的是调整材料的组织结构和性能,在不改变其化学成分的前提下,使其达到特定的物理和机械性能。

具体来说,热处理的主要目的包括以下几个方面:1.改善材料的硬度:提高材料的硬度可以使其更加耐磨损,从而延长其使用寿命。

常用的方法是淬火和弹性调质。

2.提高材料的均匀性:在热处理过程中,能使材料内部的性质更加均匀,消除缺陷和应力。

常用的方法是退火和正火。

3.增加材料的韧性:提高材料的韧性可以使其更加耐冲击和抗震动,避免在使用过程中出现裂纹和断裂。

常用的方法是调质和回火。

二、热处理方法热处理的方法主要有四种,分别是淬火、退火、正火和调质。

下面分别进行介绍。

1.淬火淬火是将高温下加热后的金属材料迅速冷却,使其达到极高的硬度和脆性。

其原理是通过迅速冷却将铁素体转变为马氏体,从而在材料内部形成高强度的结晶体。

淬火过程中的冷却介质通常是水、油、盐水或其他淬火介质。

2.退火退火是将材料加热到一定温度下,然后缓慢冷却至室温,使材料内部的应力和缺陷得以消除,同时使其性能变得更加均匀。

退火过程中的冷却速度很慢,通常是将材料装入炉内,然后让它们自然冷却至室温。

3.正火正火是介于淬火和退火之间的一种处理方法。

它将材料加热到一定温度后,再迅速冷却,以消除材料内部的应力和缺陷,并使其硬度和强度达到一定的程度。

4.调质调质是将材料加热到一定的温度后,再通过退火或淬火来使其达到特定的硬度和韧性。

调质通常采用两步法,第一步是淬火,第二步是回火。

回火是指将淬火后的材料加热到一定温度后,然后迅速冷却,使其恢复韧性。

热处理知识及工艺介绍

热处理知识及工艺介绍
热处理的相关名词介绍
1. 正火normalizing:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2. 退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺 3. 淬火quenching:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺 4. 回火tempering:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺
相区
(1)单相区 简化的Fe- Fe3C相图中有F、A、L和Fe3C 四个单相区。 (2)两相区 简化的Fe- Fe3C相图中有五个两相区,即 L+A两相区、L+Fe3C两相区、A+Fe3C两相区、A+F两相 区和F+ Fe3C两相区。 每个两相区都与相应的两个单相区相邻;两条三相共存线, 即共晶线ECF,L、A和Fe3C三相共存,共析线PSK,A、F 和Fe3C三相共存。
4)合金工具钢
(1)低合金刃具钢 车、铣、铰刀等 性能要求: 回火稳定性 a) 硬度和耐磨性;b)强度和韧性;c)红硬性 ;d)工艺性 (2)高速钢 淬透性好,红硬性高,小截面刀具空气中能淬透 典型牌号: W18Cr4V (3)模具钢 a)冷作模具钢 b)热作模具钢 P70性能 (4)量具钢 多选用碳素工具钢、低合金工具钢(9SiCr、CrMn)、轴承钢(GCr15)制作
3、奥氏体的形成速度
43
(1)温度:加热温度越高,晶粒越大; (2)合金成分: ① 碳含量增高,晶粒长大倾向增大,残余渗碳体增加,则倾向减小; ② 形成碳化物、氮化物、氧化物的元素增加,则阻碍晶粒长大; ③ 锰、磷元素增加,晶粒增大。

热处理名词解释

热处理名词解释

热处理名词解释热处理是通过在材料加热和保温过程中进行控制冷却,以改变材料的组织和性能的一种工艺。

热处理可以通过改变材料的晶粒大小、相组成、组织结构和力学性能来满足具体的工程需求。

以下是几种常见的热处理方法和相关名词的解释。

1. 退火(Annealing):将材料加热到恒定温度,然后进行恒温保温,最后缓慢冷却到室温。

退火能够去除材料中的应力和杂质,并改善其塑性和韧性。

2. 淬火(Quenching):将材料加热到临界温度,并迅速冷却,通常是通过浸入冷却介质(如油、水或气体)中实现。

淬火能够使材料快速固化,生成非常硬的组织,提高材料的硬度和强度。

3. 回火(Tempering):在淬火处理后,将材料再次加热到低于临界温度的温度,并进行恒温保温,然后冷却到室温。

回火可以减轻淬火引起的脆性,并在保持一定硬度的同时提高韧性和韧性。

4. 沉淀硬化(Precipitation hardening):通过在固溶体中加入适量的溶质元素,并进行适当的热处理,使其发生沉淀析出而提高材料的硬度和强度。

沉淀硬化常用于铝合金和不锈钢等金属材料。

5. 组织(Microstructure):材料的组织是指其晶粒大小、晶型和相组成等微观结构特征。

通过适当的热处理工艺,可以改变和控制材料的组织,从而达到所需的性能要求。

6. 形变(Deformation):在热处理过程中,材料可能经历形变,即改变其形状或尺寸。

形变可以通过加热和冷却来实现,例如冷加工和热挤压等工艺。

7. 晶界(Grain boundary):晶界是相邻晶粒之间的界面区域,是材料中的缺陷,对材料的性能和行为具有重要影响。

晶界可以通过热处理来调控,如晶界固溶和晶界扩散等机制。

总之,热处理是一种重要的材料加工工艺,通过控制材料的加热和冷却过程,改变材料的组织和性能。

不同的热处理方法可以使材料具有不同的硬度、强度、塑性和韧性等性能,以满足不同工程应用的需求。

热处理方法

热处理方法

热处理方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的工艺。

在工业生产中,热处理被广泛应用于各种金属材料的加工过程中,以提高其硬度、强度、耐磨性和耐腐蚀性能。

下面将介绍几种常见的热处理方法及其特点。

1. 淬火。

淬火是一种常见的热处理方法,其主要目的是通过快速冷却来增加金属的硬度。

在淬火过程中,首先将金属加热至临界温度以上,然后迅速放入冷却介质中进行冷却。

常用的冷却介质包括水、油和气体。

淬火后的金属表面会形成马氏体组织,从而提高其硬度和强度。

2. 回火。

回火是一种通过加热和冷却来调节金属的硬度和韧性的热处理方法。

在淬火后,金属的硬度会变得过高,为了降低其脆性,需要进行回火处理。

回火的温度和时间会影响金属的硬度和韧性,通常分为低温回火和高温回火两种。

低温回火可以提高金属的强韧性,而高温回火则可以降低金属的硬度。

3. 热处理。

热处理是一种通过加热和保温来改变金属的组织和性能的方法。

在热处理过程中,金属会被加热至一定温度并保持一段时间,然后进行冷却。

热处理可以消除金属的残余应力,改善其塑性和韧性,同时提高其耐磨性和耐腐蚀性能。

4. 固溶处理。

固溶处理是一种针对固溶体金属的热处理方法,其主要目的是溶解金属中的固溶体,并通过快速冷却来形成均匀的固溶体组织。

固溶处理通常应用于铝合金、镁合金等金属材料的加工过程中,以提高其强度和塑性。

总结。

热处理是一种重要的金属加工工艺,通过改变金属的组织和性能,可以满足不同工程材料的要求。

不同的热处理方法对金属材料的性能影响不同,因此在实际生产中需要根据具体材料和要求选择合适的热处理工艺。

同时,对于热处理过程中的温度、时间、冷却速度等参数也需要严格控制,以确保金属材料达到预期的性能指标。

四种常见热处理方法

四种常见热处理方法

四种常见热处理方法
首先是退火,退火是指将金属材料加热至一定温度,保持一定时间后,再以适
当速度冷却到室温的热处理工艺。

退火可以消除金属材料中的应力,改善塑性和韧性,降低硬度,提高加工性能。

退火分为全退火、球化退火、等温退火等不同类型,适用于不同的金属材料和工艺要求。

其次是正火,正火是指将金属材料加热至一定温度,保温一段时间后,再以适
当速度冷却到室温的热处理工艺。

正火可以使金属材料的组织变细,提高硬度和强度,改善耐磨性和耐磨损性能。

正火常用于碳钢、合金钢等材料的热处理中。

接下来是淬火,淬火是指将金属材料加热至临界温度以上,保温一定时间后,
迅速冷却到室温的热处理工艺。

淬火可以使金属材料的组织变质,提高硬度和强度,但同时会降低韧性。

淬火常用于高碳钢、合金钢等材料的热处理中。

最后是回火,回火是指将经过淬火处理的金属材料加热至一定温度,保温一定
时间后,再以适当速度冷却到室温的热处理工艺。

回火可以消除淬火时产生的内应力,改善金属材料的韧性和塑性,同时保持一定的硬度和强度。

回火常用于淬火处理后的金属材料,以提高其综合性能。

总的来说,不同的热处理方法适用于不同的金属材料和工艺要求,可以通过合
理选择和控制热处理工艺参数,达到预期的组织和性能调控效果。

因此,在工程实践中,对于不同的金属材料,要根据具体情况选择合适的热处理方法,以提高材料的使用性能和延长使用寿命。

热处理简介

热处理简介

高温形变热处理
高温形变热处理:高温形变热处理是将钢 加热至Ac3以上,在稳定的奥氏体温度范 围内进行变形,然后进行淬火,使之发生 马氏体转变并回火至需要的性能。由于形 变温度远高于钢的再结晶温度,故应严格 控制变形后至淬火前(900 ℃ )的停留 时间,形变后要立即进行淬火冷却。
低温形变热处理
低温形变热处理:低温形变热处理是将钢 加热至奥氏体状态,迅速冷却至Ac1点以 下,Ms点以上过冷奥氏体亚稳定温度范围 内进行大量塑性变形,然后立即淬火并回 火至所需要的性能。低温形变热处理比高 温形变热处理具有更高的强化效果,而塑 性并不降低。
高温回火:回火温度约为500~650 ℃ , 回火组织为回火索氏体,淬火和随后的 高温回火叫调质处理。经过调质处理后, 钢具有优良的综合机械性能。
热处理工艺方法---表面淬火
表面淬火:将工件快速加热到淬火温度,然 后迅速冷却,仅使表面层获得淬火组织的 热处理方法。
表面淬火分类:根据工件表面加热热源的 不同,表面淬火分为感应加热,火焰加 热,电接触加热,电解液加热以及激光 加热等。
/MachineBase/heattreat/technics/t0101.asp?a=2#时间
化学热处理分类:根据渗入元素的不同, 可分为渗碳,渗氮,碳氮共渗,多元共 渗,渗硼,渗金属等等。 化学热处理作用:化学热处理后的钢件表 面可以获得比表面淬火所具有的更高的 硬度,耐磨性和疲劳强度,心部在具有 良好的塑性和韧性的同时,还可获得较 高的强度。
热处理工艺方法---形变热处理
形变热处理:形变热处理是将塑性变形和 热处理有机结合在一起的一种复合工艺。 形变热处理分类:形变热处理种类很多, 常用的主要有高温形变热处理和低温形变 热处理。
热处理工艺方法---回火

热处理基础知识

热处理基础知识

热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。

一、热处理1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

2、退火:将亚共析钢工件加热至AC3以上210度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。

3、固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。

4、时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5、固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。

6、时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。

7、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。

8、回火:将经过淬火的工件加热到临界点ACI以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。

9、钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。

习惯上碳氮共渗又称为富化,以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。

中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。

低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

10、调质处理(quenchingandtempering):一般习惯将淬火加高温回火相结合的热处理称为调质处理。

调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。

调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。

它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据合金本性和用途确定采用何种时效方法。高温下工作的铝合金适宜用人工时效,室温下工作的铝合金有些采用自然时效,有些必须人工时效。
从合金强化相上来分析,含有S相和CuAl2等相的合金,一般采用自然时效,而需要在高温下使用或为了提高合金的屈服强度时,就需要采用人工时效来 强化。比如LY11和LY12,40度以下自然时效可以得到高的强度和耐蚀性,对于150度以上工作的LY12和125-250度工作的LY6铆钉用合金则需要人时效。含 有主要强化相为MgSi,MgZn2的T相的合金,只有采用人工时效强化,才能达到它的最高强度。
4.碳素工具钢及合金工具钢制模具 例如T7A~T10A,CrWMn,9SiCr等钢的工艺路线为:下料→锻成模坯→球化退火→机械粗加工→去应力退火→机械半精加工→机械精加工→淬火、回火→ 5.预硬钢制模具 例如5NiSiCa,3Cr2Mo(P20)等钢。对于直接使用棒料加工的,因供货状态已进行了预硬化处理,可直接加工成形后抛光、装配。对于要改锻成坯料后 再加工成形的,其工艺路线为:下料→改锻→球化退火→刨或铣六面→预硬处理(34~42HRC)→机械粗加工→去应力退火→机械精加工→抛光→装配。 二、塑料模具的热处理特点 (一)渗碳钢塑料模的热处理特点 1.对于有高硬度、高耐磨性和高韧性要求的塑料模具,要选用渗碳钢来制造,并把渗碳、淬火和低温回火作为最终热处理。 2.对渗碳层的要求,一般渗碳层的厚度为0.8~1.5mm,当压制含硬质填料的塑料时模具渗碳层厚度要求为1.3~1.5mm,压制软性塑料时渗碳层厚度为0.8 ~1.2mm。渗碳层的含碳量为0.7%~1.0%为佳。若采用碳、氮共渗,则耐磨性、耐腐蚀性、抗氧化、防粘性就更好。 3.渗碳温度一般在900~920℃,复杂型腔的小型模具可取840~860℃中温碳氮共渗。渗碳保温时间为5~10h,具体应根据对渗层厚度的要求来选择。渗 碳工艺以采用分级渗碳工艺为宜,即高温阶段(900~920℃)以快速将碳渗入零件表层为主;中温阶段(820~840℃)以增加渗碳层厚度为主,这样在 4.渗碳后的淬火工艺按钢种不同,渗碳后可分别采用:重新加热淬火;分级渗碳后直接淬火(如合金渗碳钢);中温碳氮共渗后直接淬火(如用工业纯 铁或低碳钢冷挤压成形的小型精密模具);渗碳后空冷淬火(如高合金渗碳钢制造的大、中型模具)。 (二)淬硬钢塑料模的热处理 1.形状比较复杂的模具,在粗加工以后即进行热处理,然后进行精加工,才能保证热处理时变形最小,对于精密模具,变形应小于0.05%。 2.塑料模型腔表面要求十分严格,因此在淬火加热过程中要确保型腔表面不氧化、不脱碳、不侵蚀、不过热等。应在保护气氛炉中或在严格脱氧后的盐 浴炉中加热,若采用普通箱式电阻炉加热,应在模腔面上涂保护剂,同时要控制加热速度,冷却时应选择比较缓和的冷却介质,控制冷却速度,以避免 在淬火过程中产生变形、开裂而报废。一般以热浴淬火为佳,也可采用预冷淬火的方式。 3.淬火后应及时回火,回火温度要高于模具的工作温度,回火时间应充分,长短视模具材料和断面尺寸而定,但至少要在40~60min以上。 (三)预硬钢塑料模的热处理 1.预硬钢是以预硬态供货的,一般不需热处理,但有时需进行改锻,改锻后的模坯必须进行热处理。 2.预硬钢的预先热处理通常采用球化退火,目的是消除锻造应力,获得均匀的球状珠光体组织,降低硬度,提高塑性,改善模坯的切削加工性能或冷挤 3.预硬钢的预硬处理工艺简单,多数采用调质处理,调质后获得回火索氏体组织。高温回火的温度范围很宽能够满足模具的各种工作硬度要求。由于这 类钢淬透性良好,淬火时可采用油冷、空冷或硝盐分级淬火。表3-27为部分预硬钢的预硬处理工艺,供参考。 表3-27 部分预硬钢的预硬处理工艺 钢 号 加热温度/℃ 冷却方式 回火温度/℃ 预硬硬度HRC 3Cr2Mo 830~840 油冷或160~180℃硝盐分级 580~650 28~36 5NiSCa 880~930 油冷 550~680 30~45 8Cr2MnWMoVS 860~900 油或空冷 550~620 42~48 P4410 830~860 油冷或硝盐分级 550~650 35~41 SM1 830~850 油冷 620~660 36~42
一、塑料模具的制造工艺路线 1.低碳钢及低碳合金钢制模具 例如,20,20Cr,20CrMnTi等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→冷挤压成形→再结晶退火→机械精加工→渗碳→淬火、回火→研 2.高合金渗碳钢制模具 例如12CrNi3A,12CrNi4A钢的工艺路线为:下料→锻造模坯→正火并高温回火→机械粗加工→高温回火→精加工→渗碳→淬火、回火→研磨抛光→装配 3.调质钢制模具 例如,45,40Cr等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→调质→机械精加工→修整、抛光→装配。
对于一般铝合金,自然时效时,屈服强度稍低而耐蚀性较好,采用人时效时,合金屈服强度较高而伸长率和耐蚀性都降低。对于铝-锌-镁-铜系合金 入LC4则相反,当采用人工时效时,合金耐蚀性比自然时效好。 选用不同品种钢材作塑料模具,其化学成分和力学性能各不相同,因此制造工艺路线不同;同样,不同类型塑料模具钢采用的热处理工艺也是不同的。 本节主要介绍塑料模具的制造工艺路线和热处理工艺的特点。
请问什么是固溶处理,时效处理? 固溶热处理: 将合金加热至高温单相区恒温保持,使过剩相充
分溶速冷却,以得到过饱和固溶体的热处理工艺
时效处理可分为自然时效和人工时效两种自然人工时效是将铸 件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底.
(四)时效硬化钢塑料模的热处理
1.时效硬化钢的热处理工艺分两步基本工序。首先进行固溶处理,即把钢加热到高温,使各种合金元素溶入奥氏体中,完成奥氏体后淬火获得马氏体组 织。第二步进行时效处理,利用时效强化达到最后要求的力学性能。 2.固溶处理加热一般在盐浴炉、箱式炉中进行,加热时间分别可取:1min/mm、2~2.5min/mm,淬火采用油冷,淬透性好的钢种也可空冷。如果锻造模坯 时能准确控制终锻温度,锻造后可直接进行固溶淬火。 3.时效处理最好在真空炉中进行,若在箱式炉中进行,为防模腔表面氧化,炉内须通入保护气氛,或者用氧化铝粉、石墨粉、铸铁屑,在装箱保护条件 下进行时效。装箱保护加热要适当延长保温时间,否则难以达到时效效果。部分时效硬化型塑料模具钢的热处理规范可参照表3-28。 表3-28 部分时效硬化钢的热处理规范 钢 号 固溶处理工艺 时效处理工艺 时效硬度HRC 06Ni6CrMoVTiAl 800~850℃油冷 510~530℃×(6~8)h 43~48 PMS 800~850℃空冷 510~530℃×(3~5)h 41~43 25CrNi3MoAl 880℃水淬或空冷 520~540℃×(6~8)h 39~42 SM2 900℃×2h油冷+700℃×2h 510℃×10h 39~40 PCR 1050℃固溶空冷 460~480℃×4h 42~44 三、塑料模的表面处理 为了提高塑料模表面耐磨性和耐蚀性,常对其进行适当的表面处理。 1.塑料模镀铬是一种应用最多的表面处理方法,镀铬层在大气中具有强烈的钝化能力,能长久保持金属光泽,在多种酸性介质中均不发生化学反应。镀 层硬度达1000HV,因而具有优良的耐磨性。镀铬层还具有较高的耐热性,在空气中加热到500℃时其外观和硬度仍无明显变化。 2.渗氮具有处理温度低(一般为550~570℃),模具变形甚微和渗层硬度高(可达1000~1200HV)等优点,因而也非常适合塑料模的表面处理。含有铬 、钼、铝、钒和钛等合金元素的钢种比碳钢有更好的渗氮性能,用作塑料模时进行渗氮处理可大大提高耐磨性。 适于塑料模的表面处理方法还有:氮碳共渗、化学镀镍、离子镀氮化钛、碳化钛或碳氮化钛,PVD、CVD法沉积硬质膜或超硬膜等
相关文档
最新文档