通信原理第7章二进制调制原理
通信原理精品课-第七章m序列(伪随机序列)
04
m序列在扩频通信中的应用
扩频通信的基本原理和特点
扩频通信的基本原理
扩频通信是一种利用信息信号对一个很宽频带的载波进行调制,以扩展信号频谱 的技术。通过扩频,信号的频谱被扩展,从而提高了信号的抗干扰能力和隐蔽性 。
扩频通信的特点
扩频通信具有抗干扰能力强、抗多径干扰能力强、抗截获能力强、可实现码分多 址等优点。同时,扩频通信也存在一些缺点,如信号的隐蔽性和保密性可能受到 影响,信号的带宽较宽,对信道的要求较高。
在无线通信中,由于信号传播路径的不同,接收端可能接收到多个不同路径的信号,形成多径干 扰。
抗多径干扰
m序列具有良好的自相关和互相关特性,可以用于抗多径干扰。通过在发射端加入m序列,可以 在接收端利用相关器检测出原始信号,抑制多径干扰的影响。
扩频通信
m序列可以用于扩频通信中,将信息信号扩展到更宽的频带中,提高信号的抗干扰能力和隐蔽性 。
离散性
m序列是一种周期性信号,其 功率谱具有离散性,即只在某 些特定的频率分量上有能量分 布。
带宽有限
m序列的功率谱具有有限的带 宽,其带宽与序列的长度和多 项式的系数有关。
旁瓣抑制
m序列的功率谱具有较好的旁 瓣抑制特性,即除了主瓣外的 其他频率分量的能量较小。
m序列在多径干扰抑制中的应用
多径干扰
抗截获能力
m序列扩频通信系统具有较强 的抗截获能力。由于信号的频 谱被扩展,敌方难以检测和识 别信号,从而提高了通信的保 密性。
码分多址能力
m序列扩频通信系统具有较强 的码分多址能力。不同的用户 可以使用不同的扩频码进行通 信,从而实现多用户共享同一 通信信道。
05
m序列的未来发展与研究方向
m序列与其他通信技术的融合应用
信号调制的基本原理
信号调制的基本原理
信号调制是一种将信息从原始信号转换为适合传输的形式的技术。
它的基本原理可以概括为以下几个步骤:
1. 信息编码:将要传输的信息转换为二进制数字序列,例如 ASCII 码或 Unicode 码。
2. 调制信号生成:使用二进制数字序列生成一个调制信号,该信号可以是模拟信号或数字信号。
3. 信号传输:将调制信号通过传输介质(如电缆、无线电波或光纤)发送到接收端。
4. 信号解调:在接收端,使用解调技术将调制信号转换回原始信息。
在调制过程中,调制信号的特性(如频率、相位或幅度)会根据二进制数字序列的变化而改变。
这种变化可以用来表示信息的不同状态,例如 0 和 1。
在解调过程中,接收端会使用相应的解调技术来识别这些状态,并将其转换回原始信息。
调制技术的选择取决于许多因素,例如传输介质的特性、所需的传输速率、误码率要求等。
常见的调制技术包括幅度调制(AM)、频率调制(FM)、相位调制(PM)和数字调制(例如 QPSK、16-QAM 等)。
总之,信号调制是一种将信息从原始信号转换为适合传输的形式的技术,它涉及信息编码、调制信号生成、信号传输和信号解调等步骤。
调制技术的选择取决于传输介质的特性和所需的传输速率等因素。
《通信原理》各章节重点知识考点
第一章1、通信系统的模型(了解 图1-1 1-4 1-5)2、数字通信的特点(掌握)①抗干扰能力强,且噪声不积累②传输差错可控③便于用现代数字信号处理技术对数字信息进行处理、变换、存储④易于集成,使通信设备微型化,重量轻⑤易于加密处理,且保密性好⑥需要较大的传输带宽 3、平均信息量的简单计算(选、填)221log log ()()()I P x bit P x ==- 21()()log ()(/ni i i H x P x P x bit ==-∑符号)当信息源的每个符号等概率出现时,信息源具有最大熵:2()log n(/H x bit =符号)4、码长、码元速率、信息速率、频带利用率定义、单位、计算码元速率RB :每秒传输码元的数目,单位B 二进制与N 进制码元速率转换关系:RB2=RBNlog2N(B) 信息速率:每秒钟传递的信息量,单位bit/s 在N 进制下Rb=RBNlog2N(bit/s)第二章1、随机过程的概念、分布函数、概率密度函数的定义(理解 P36-37) 均值:1[()](,)()E t xf x t dx a t ∞-∞ξ==⎰方差:2222[()]{()()}[()][()]()D t E t a t E t a t t σξ=ξ-=ξ-=自相关函数:1212(,)[()()]R t t E t t =ξξ 协方差函数:121122(,){[()()][{()()]}B t t E t a t E t a t =ξ-ξ- 2、高斯过程的一维概率密度函数(掌握 P46-47)22()f ())2x a x -=-σ 误差函数:2()2)1xz erf x e dz ϕ-==- 互补误差函数:2()1()22)z xerfc x erf x e dz ϕ∞-=-==-3、高斯白噪声及带限噪声的定义、平均功率的计算(掌握 P57-60) 白噪声:0()()(/z)2n n P f f W H =-∞<<∞ 自相关函数:0()()2nR ξτ=δτ 低通白噪声:020()H n f f n P f ||≤={其他自相关函数:0sin 2()=n 2H HH f R f f ππτττ带通白噪声:0f f 2220()c c n B Bf n P f -≤ ||≤ +={其他自相关函数:0sin ()=n cos 2c B R Bf B πππττττ平均功率:N= 0n B4、噪声的功率谱密度与相关函数的关系 线性系统输出/输入功率谱密度的关系计算(掌握 P42-44 P48-49) 平稳过程的功率谱密度()P f ξ与其自身相关函数()R τ是一对傅里叶变换关系,即()()j P f R e d ∞-ωτξ-∞=ττ⎰()=()j R P f e df ∞ωτξ-∞τ⎰或()()j P R e d ∞-ωτξ-∞ω=ττ⎰ 1()=()2j R P e d π∞ωτξ-∞τωω⎰平稳过程的总功率:(0)=()R P f df ∞ξ-∞⎰输出过程0()t ξ的均值:0()]()(0)t a h d H ∞-∞E[ξ=⋅ττ=α⋅⎰输出过程0()t ξ的自相关函数:0120()()R t t R ,+τ=τ输出过程0()t ξ的功率谱密度:2()()o i P f f P f =⎪H()⎪ 输出过程0()t ξ的概率分布:0()()()i t h t d ∞-∞ξ=τξ-ττ⎰第四章1、恒参、随参信道的定义及特点(填选 P72)2、频率选择性衰落的原因(简答 P75-76)第五章1、调制解调的概念(了解 P86),调制的目的(掌握 P86)①提高天线通信时的天线辐射效率②实现信道的多路复用,提高信道利用率③扩展信号带宽,提高系统抗干扰、抗衰落能力,还可实现传输带宽与信噪比之间的互换2、双/单边带调制系统的带宽、抗噪性能的分析、计算(掌握 P98-101)双边带:()()cos DSB c s t m t t =ω 带宽:2DSB H B f = H f 为调制信号的带宽 o n 为单边功率谱密度经低通后输出信号为:1()()2o m t m t =所以解调器输出的有用信号功率为:221()()4o o S m t m t == 经低通后,解调器最终的输出噪声为:1()()2o c n t n t =所以输出噪声功率为:22111()()444o o i i o N n t n t N n B ====解调器输入信号平均功率:221()()2i m S s t m t == ⇒解调器输入信噪比:21()2i i o m t S N n B = 输出信噪比:221()()414o o o i m t S m t N n B N ==⇒制度增益:/2/o o DSB i i S N G S N ==单边带:11()()cos ()sin 22SSB c c s t m t t m t t ∧=ω+ω 带宽:SSB H B f = H f 为调制信号的带宽经低通后输出信号为:1()()4o m t m t =所以解调器输出的有用信号功率为:221()()16o o S m t m t ==1144o i o N N n B == ⇒输出信噪比: 221()()16144o o o o m t S m t N n B n B ==输入信号平均功率:221()()4i m S s t m t == ⇒ 221()()44i i o o m t S m t N n B n B == ⇒ 制度增益:/1/oo SSB i i S N G S N == 3、卡森公式(P110)、门限的概念(P104)(了解 选填)用相干解调解调各种线性调制信号时不存在门限 AM 包络检波小信噪比时会出现门限效应 FM 小信噪比时也会出现门限效应调频波的有效带宽为:2(1)2()FM f m m B m f f f =+=∆+ m f 时调制信号的最高频率,f m 是最大频偏f ∆与m f 的比值4、FM 优于AM 的原因(P118-119)在大信噪比情况下,AM 包络检波的输出信噪比为:2()o o o S m t N n B=设AM 信号100%调制,且m(t)为单频余弦波,则22()2A m t =因而2/22o o o m S A N n f = FM :2232o f o o mS A m N n f =所以2(/)3(/)o o FM f i i AM S N m S N = 宽带调频(WBFM )信号的传输带宽FM B 与AM 信号的传输带宽AM B 之间关系为:2(1)(1)FM f m f AM B m f m B =+=+ ⇒2(/)3()(/)o o FM FM i i AM AMS N BS N B =在大信噪比情况下,调频系统的抗噪声性能将比调幅系统优越,且其优越程度将随传输带宽的增加而提高5、频分复用的目的(了解 P123)为了充分利用信道的频带或时间资源,提高信道的利用率 6、AM 包络检波的性能222()()22o i mA m t S s t ==+ 2()i i o N n t n B == ⇒ 22()2i o i o S A m t N n B+=大信噪比时:2()o S m t = 2()o i o N n t n B == ⇒2()o o o S m t N n B = ⇒ 222/2()/()o o AM i i o S N m t G S N A m t ==+ 7、FM 非相干解调性能()cos[()]FM c f s t A t K m d =ω+ττ⎰22i A S =i o FMN n B =22i i o FMS A N n B =大信噪比:222()()()o od f S m t K K m t == 223283d o mo K n f N Aπ= ⇒ 23(1)FM f f G m m =+ 第六章1、基带信号的波形及其功率谱(了解 P133-138) s(t)=u(t)+v(t)22u 1212()()()(1))))(1))]()s v s s s s s m P f P f P f f P P f f f mf P mf f mf ∞=-∞=+=-⎪(-(⎪+⎪(+-(⎪δ-∑G G [PG G平均功率:1()()2s s S P d P f df π∞∞-∞-∞=ωω=⎰⎰单极性基带信号功率谱密度为22()(1))(1))]()s s sssm P f f P P f f P mf f mf ∞=-∞=-⎪(⎪+⎪-(⎪δ-∑G G双极性基带信号功率谱密度为22()4(1))(21))]()s s sssm P f f P P f f P mf f mf ∞=-∞=-⎪(⎪+⎪-(⎪δ-∑G G2、码间串扰的概念、传码率与系统带宽(掌握 P146)由于系统传输总特性不理想,导致前后码元的波形畸变、展宽,并使前面波形出现很长的拖尾,蔓延到当前码元的抽样时刻上,从而对当前码元的判决造成干扰。
通信原理第7章(樊昌信第七版)
整理知识 梳理关系 剖析难点 强化重点
归纳结论 引导主线 解惑疑点 点击考点
曹丽娜
樊昌信
编著
国防工业出版社
谢谢!
3 QPSK 解调
原理:分解为两路2PSK信号的相干解调。
x 带通 输入 滤波器 低通 x1 (t ) 滤波器 位定时 低通 滤波器 抽样 判决 抽样 判决
a
并/串 变换 输出
y (t ) cos c t
sin c t
x 载波 恢复
x2 (t )
b
存在问题:存在900的相位模糊(0, 90, 180, 270) 解决方案:采用四相相对相位调制,即QDPSK。
QPSK 特点:
01
Q 11
相位跳变:0°,± 90°,± 180° 跳变周期 2Tb 带宽 B=Rb
0
I
误码性能与BPSK相同
00
10
最大相位跳变:180°
发生在0011或0110交替时,
即双比特ab同时跳变时,信号点沿对角线移动。
21
QPSK 缺点:
最大相位跳变180°,使限带的QPSK信号包络起
744多进制差分相移键控mdpsk1基本原理?qdpsk与qpsk的关系如同2dpsk与2psk关系?4dpsk也称qdpsk?qdpsk的矢量图与qpsk的矢量图相似只是参考相位是前一码元的载波相位n??双比特码元ab载波相位naba方式b方式0?111110?10?10?1111109018027022531545135参考相位a?矢量图aba前一码元载波相位t?波形t参考相位atc?cos?也有法正交调相法和相位选择法?仅需在qpsk调制器基础上增添差分编码码变换2qdpsk调制tc?sin2??差分编码将绝对码ab
《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版)第七章
《通信原理》习题参考答案第七章7-7. 设输入抽样器的信号为门函数)(t G τ,宽度ms 20=τ,若忽略其频谱第10个零点以外的频率分量,试求最小抽样速率。
解:ff f Sa f G t G πτπτπτττsin )()()(==⇔ 在第十个零点处有:10=τf 即最高频率为:Hz f m 500102010103=⨯==-τ根据抽样定理可知:最小抽样频率要大于m f 2,即最小抽样频率为1000KHz7-8. 设信号t A t m ωcos 9)(+=,其中A ≤10V 。
若m(t)被均匀量化为40个电平,试确定所需的二进制码组的位数N 和量化间隔υ∆。
解: 402≥N ,所以N =6时满足条件信号m(t)的最大电压为V max =19V ,最小电压为V min =-1V即信号m(t)的电压差ΔV =20V∴V V 5.0402040==∆=∆υ7-10. 采用13折线A 律编码电路,设最小量化间隔为1个单位,已知抽样脉冲值为+653单位: (1) 试求此时编码器输出码组,并计算量化误差; (2) 写出对应于该7位码(不包括极性码)的均匀量化11位码。
(采用自然二进制码。
) 解:(1)极性码为正,即C 7=1即段落码C 6C 5C 4=110抽样脉冲值在段内的位置为:653-512=123个量化单位 由于段内采用均匀量化,第7段内量化间隔为:32251210244=- 而32×3≤123≤32×4,所以可以确定抽样脉冲值在段内的位置在第3段,即C 3C 2C 1C 0=0011所以编码器输出码组为:C 7C 6C 5C 4C 3C 2C 1C 0=11100011 量化误差:11)232332512(635=+⨯+- (2)635对应的量化值为:624232332512=+⨯+ 对应的11位自然二进制码元为:010********7-11. 采用13折线A 律编码电路,设接收端收到的码组为“01010011”、最小量化间隔为1个量化单位,并已知段内码改用折叠二进制码:(1)试问译码器输出为多少量化单位;(2)写出对应于该7位码(不包括极性码)的均匀量化11位自然二进码。
通信原理第7章
以概率P 发送“”时 1 以概率1 P 发送“0”时
1
载波
t
2ASK
t
4
第7章数字带通传输系统
2ASK信号的一般表达式 e2ASK (t ) st cosc t
其中
s(t ) an g (t nTs )
n
Ts - 码元持续时间; g(t) - 持续时间为Ts的基带脉冲波形,通常假设是高
10
第7章数字带通传输系统
P2 ASK 1 2 2 f s P (1 P ) G ( f f c ) G ( f f c ) 4
1 2 2 f s (1 P ) 2 G (0) ( f f c ) ( f f c ) 4
G( f ) TS Sa( f TS )
13
第7章数字带通传输系统
7.1.2 二进制频移键控(2FSK)
基本原理
表达式:在2FSK中,载波的频率随二进制基带信号在f1
和f2两个频率点间变化。故其表达式为
A cos(1t n ), e2FSK (t ) A cos( 2 t n ), 发送“”时 1 发送“ ”时 0
概率为 P 1, an 1, 概率为 1 P
即发送二进制符号“0‖时(an取+1),e2PSK(t)取0相位;发送
二进制符号“1‖时( an取 -1), e2PSK(t)取相位。这种以载
波的不同相位直接去表示相应二进制数字信号的调制方式, 称为二进制绝对相移方式。
26
第7章数字带通传输系统
键控法
开关电路
cos ct
e2 ASK (t )
通信原理第7版第7章PPT课件(樊昌信版)
实验二:数字调制与解调实验
实验目的
掌握数字调制与解调的基本原理和实现方法。
实验内容
设计并实现一个数字调制与解调系统,包括调制器、解调器和信道等部分。
实验二:数字调制与解调实验
01
实验步骤
02
1. 选择合适的数字调制方式,如2ASK、2FSK、2PSK等。
03
2. 设计并实现调制器,将数字基带信号转换为已调信号。
循环码
编码原理
01
循环码是一种具有循环特性的线性分组码,其任意码字的循环
移位仍然是该码的码字。
生成多项式与校验多项式
02
生成多项式用于描述循环码的编码规则,而校验多项式则用于
检测接收码字中的错误。
编码效率与纠错能力
03
循环码的编码效率与线性分组码相当,但纠错能力更强,可以
纠正多个错误。
卷积码
编码原理
06
同步原理与技术
载波同步技术
载波同步的定义
在通信系统中,使本地产生的载波频率和相位与接收到的信号载波保持一致的过程。
载波同步的方法
包括直接法、插入导频法和同步法。直接法利用接收信号中的载波分量进行同步;插入导频法在发送端插入一个导频 信号,接收端利用导频信号进行同步;同步法则是通过特定的同步信号或同步头来实现同步。
归零码(RZ)
在码元间隔内电平回归到零,有利于时钟提取。
差分码(Differential Cod…
利用相邻码元电平的相对变化来表示信息,抗干扰能力强。
眼图与误码率分析
眼图概念
通过示波器观察到的数字基带信号的一种图形表示,可以 直观地反映信号的质量和传输性能。
眼图参数
包括眼睛张开度、眼睛高度、眼睛宽度和交叉点位置等, 用于评估信号的定时误差、幅度失真和噪声影响等。
樊昌信《通信原理》(第7版)章节题库(数字带通传输系统)【圣才出品】
第7章 数字带通传输系统一、选择题1.在抗加性高斯白噪声方面,性能最好的调制制度是( )。
A .2FSK B .2ASK C .2PSK D .2DPSK 【答案】C【解析】对于相同的解调方式,抗加性高斯白噪声性能从优到劣的排列顺序是:2PSK 、2DPSK 、2FSK 、2ASK 。
2.相同传码率条件下,下面四种方式中,( )的频带利用率最低。
A .2ASK B .2PSK C .2FSK D .2DPSK 【答案】C【解析】在相同传码率的条件下,2222ASK PSK DPSK B B B B T ===,2212FSK BB f f T =-+,传输带宽越宽,频带利用率越低,所以2FSK 的频带利用率最低。
3.在数字调制系统中,采用8PSK 调制方式传输,无码间干扰时能达到的最高频带利用率是( )。
A .1Baud /HzB .2Baud /HzC .3Baud /HzD .4Baud /Hz 【答案】A【解析】对所有的调制信号,最大频带利用率均为ηB =1Baud/Hz 。
二、填空题1.2DPSK 、2ASK 、2PSK 和2FSK 采用相干解调时,抗信道加性高斯白噪声性能的优劣顺序为______。
【答案】2PSK 、2DPSK 、2FSK 、2ASK【解析】数字调制系统的抗噪声性能通过系统在信道噪声干扰下的总误码率表征。
2DPSK 在相干解调下的误码率为e P erfc=;2ASK 在相干解调下的误码率为12e P erfc =;2PSK 在相干解调下的误码率为12e P erfc =;2FSK 在相干解调下误码率为12e P erfc =; 故采用相干解调方式时,抗加性高斯白噪声性能从优到劣的排列顺序是:2PSK 、2DPSK 、2FSK 、2ASK 。
2.BPSK 采用相干解调时可能出现“反向工作”现象的原因是______;解决方案是______。
【答案】接收端提供的本地载波有180o 相位模糊;采用2DPSK【解析】在2PSK 信号的载波恢复过程中存在着180°的相位模糊,称为2PSK 方式的“倒π”现象或“反相工作”。
通信原理(陈启兴版) 第7章作业和思考题参考答案
Ms( f )
400
-300
f
0
300
(a)
f
-400 -200
0 200 400
(b)
7-2. 对模拟信号 m(t) = sin(200πt)/(200t)进行抽样。试问:(1)无失真恢复所要求的最小抽样频率 为多少?(2)在用最小抽样频率抽样时,1 分钟有多少个抽样值?
解: (1) 信号的最高频率为 fH=200Hz,抽样定理要求无失真恢复所要求的最小抽样频率为
Ms f
1
M f*
T
n
f nfs
当抽样速率 fs =1 T =300Hz 时
fs M f nfs
Ms f 300 M f 300n
其频谱如图 7-18 (a)所示。
(2) 当抽样速率 fs 1 T
400 Hz 时
Ms f 400 M f 400n
其频谱如图 9-18 (b)所示。
Ms( f )
300
解 (1) 由抽样频率 fs 8 kHz,可知抽样间隔
11
T
(s)
fs 8000
对抽样后信号 8 级量化,故需要 3 位二进制码编码,每位码元占用时间为
T
1
Tb 3 3 8000
又因占空比为 1,所以每位码元的矩形脉冲宽度
1
(s)
24000
τ Tb
1
(s)
24000
故 PCM 基带信号频谱的第一零点频率
B 1 24 (kHz) τ
(2) 若抽样后信号按 128 级量化,故需要 7 位二进制码编码,每位码元的矩形脉冲宽度为
T
1
1
τ Tb
7
7 8000
2DPSK
1
0°初相
0
1
1
0
0
1
绝对码an
180°初相
1
1
0
1
1
1
0
相对码bn
《 通信原理》第七章 数字带通传输系统
7-5-11
第5节 二进制数字调制原理-2DPSK
7.5 二进制数字调制原理-2DPSK
2DPSK 信号的表示、时间波形
2DPSK信号的功率谱密度
2DPSK 信号的调制原理
2DPSK 信号的解调
为了解决PSK信号解调过程的反向工作问题,提出了差分相移键控 DPSK-Differential Phase Shift Keying,在实际中采用的是DPSK。
《 通信原理》第七章 数字带通传输系统 7-5-3
第5节 二进制数字调制原理-2DPSK
2DPSK信号的定义
用前后相邻码元的载波相对相位变化来表示数字信息。 假设前后相邻码元的载波相位差为Δφ ,可定义一种数字信息与 Δφ 之间的关系为: 载波A cos(w t )
bn = an ⊕bn-1
an + bn
an= bn ⊕bn-1
bn + an
bn- 1
延迟Tb (a )
延迟Tb (b )
bn- 1
码变换器
码反变换器
《 通信原理》第七章 数字带通传输系统
7-5-8
第5节 二进制数字调制原理-2DPSK
2DPSK信号的表示 2DPSK信号的表达式与2PSK的形式应完全相同, 所不同的只是s(t) 信号表示的是差分码数字序列bn。
(“0”和“1”符号等概时)
《 通信原理》第七章 数字带通传输系统
7-5-13
教学部—通信原理—第七章
时分复用
多 路 复 用 频分复用 时分复用 码分复用
与频分复用相比,时分复用具有以下的主要优点: 与频分复用相比,时分复用具有以下的主要优点: (1)TDM多路信号的合路和分路都是数字电路, 比FDM的模拟滤波器分路简单、可靠。 (2)信道的非线性会在FDM系统中产生交调失真 和多次谐波,引起路间干扰,因此FDM对信道的 FDM 非线性失真要求很高。而TDM系统的非线性失真 要求可降低。
时分复用
多 路 复 用 频分复用 时分复用 码分复用
上述概念可以推广到n路信号进行时分复 路信号进行时分复 用。多路复用信号可以直接送入信道进行基 带传输,也可以加至调制器后再送入信道进 行频带传输。 在接收端,合成的时分复用信号由旋转开 关(分路开关,又称选通门)依次送入各路 相应的低通滤波器,重建或恢复出原来的模 拟信号。需要指明的是,TDM中发送端的抽 样开关和接收端的分路开关必须保持同步。
频分复用
多 路 复 用 频分复用 时分复用 码分复用
频分复用信号原则上可以直接在信道中传 输。 但在某些应用中, 但在某些应用中,还需要对合并后的 复用信号再进行一次调制。 复用信号再进行一次调制。第一次对多路信 号调制所用的载波称为副载波, 号调制所用的载波称为副载波,第二次调制 所用的载波称为主载波。 所用的载波称为主载波。 原则上, 原则上,两次调制可以是任意 方式的调制方式。 方式的调制方式。如果第一次调制采用单边 带调制,第二次调制采用调频方式,一般记 带调制,第二次调制采用调频方式, 为SSB/FM。 。
频分复用
多 路 复 用 频分复用 时分复用 码分复用
解:信道中频分复用信号的总频带宽度为: 信道中频分复用信号的总频带宽度为
Bn = nf H + ( n − 1) f g = ( n − 1) f s + f H = 11400(Hz)
二进制数字调制原理《通信原理》
二进制数字调制原理数字带通传输系统:包括数字调制和数字解调过程的数字传输系统。
数字调制:利用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程。
数字解调:通过解调器把带通信号还原成数字基带信号的过程。
二进制数字调制:调制信号是二进制数字基带信号的调制,其载波的幅度、频率和相位只有两种变化状态。
1.二进制振幅键控(1)2ASK的表达式2ASK信号的一般表达式其中若取则相应的2ASK信号就是OOK信号,其表达式为(2)2ASK的波形图7-1 2ASK/OOK信号时间波形(3)2ASK的产生方法①模拟调制法(相乘器法)图7-2 模拟调制法原理框图②键控法图7-3 键控法原理框图(4)2ASK的解调方法①非相干解调(包络检波法)图7-4 非相干解调法原理框图非相干解调过程的波形分析图7-5 非相干解调过程的时间波形②相干解调(同步检测法)图7-6 相干解调法原理框图(5)2ASK的功率谱密度①表达式②示意图图7-7 2ASK信号的功率谱密度示意图③特性a.2ASK信号的功率谱由连续谱和离散谱两部分组成;连续谱取决于g(t)经线性调制后的双边带谱,而离散谱由载波分量确定。
b.2ASK信号的带宽B2ASK是基带信号带宽的2倍,即其中,(码元速率)。
2.二进制频移键控(1)2FSK的表达式2FSK信号的一般表达式为式中,和分别是第n个信号码元的初始相位,在频移键控中,和不携带信息,通常令和均为0。
所以可简化为(2)2FSK的波形图7-8 2FSK信号的时间波形(3)2FSK的产生方法①模拟调频法产生的2FSK信号在相邻码元之间的相位是连续变化的,称为连续相位FSK(CPFSK)。
②键控法图7-9 键控法产生2FSK信号的原理图产生的2FSK信号相邻码元之间的相位不一定连续。
(4)2FSK的解调方法①非相干解调图7-10 非相干解调法原理框图②相干解调图7-11 相干解调法原理框图(5)2FSK的功率谱密度①表达式②示意图图7-12 相位不连续2FSK信号的功率谱示意图③特性a.相位不连续2FSK信号的功率谱由连续谱和离散谱组成;连续谱由两个中心位于f1和f2处的双边谱叠加,离散谱位于两个载频f1和f2处。
通信原理(陈启兴版) 第7章作业和思考题参考答案
(2) 自然抽样的无失真抽样条件只要满足抽样定理即可,带宽满足 fH B fs fH 这个条件的
低通滤波器即可恢复 m(t)。 7-4. 设信号 m(t) = 9 + Acos(ωt),其中 A ≤ 10V。若 m(t)被均匀量化为 40 个电平,试确定所需的
二进制码组的位数 N 和量化间隔 Δ。 解 因为25<40<26,所以所需的二进制码组的位数 N=6位。 量化级间隔
它位于第7段序号为3的量化级,因此输出码组为
a0a1a2a3a4a5a6a7 =11100011
量化误差为27。 (2) 对应的11位均匀量化码位 01001100000 7-6. 在 A 律 PCM 系统中,当归一化输入信号抽样值为 0.12、0.3 与-0.7 时,编码器输出码组是
多少?
解 0.12 0.12 1 246 2048
B 1 24 (kHz) τ
(2) 若抽样后信号按 128 级量化,故需要 7 位二进制码编码,每位码元的矩形脉冲宽度为
T
1
1
τ Tb
7
7 8000
(s)
56000
故 PCM 基带信号频谱的第一零点频率
B 1 56 (kHz) τ
7-9. 已知话音信号的最高频率 fm = 3400Hz,今用 PCM 系统传输,要求信号量化噪声比 S0/Nq 不低于 30dB。试求此 PCM 系统所需的奈奎斯特基带频宽。
(b)
7-2. 对模拟信号 m(t) = sin(200πt)/(200t)进行抽样。试问:(1)无失真恢复所要求的最小抽样频率 为多少?(2)在用最小抽样频率抽样时,1 分钟有多少个抽样值?
解: (1) 信号的最高频率为 fH=200Hz,抽样定理要求无失真恢复所要求的最小抽样频率为
通信原理七
由于 I s I w ,所以 C 5 0。
C6:用于进一步确定输入信号处于 0~3还是4~7量化间隔, 标准电流选择
I w 段落起始电平 4 量化间隔 1024 4 64 1280
正极性部分
负极性部分
0000 0001 0010 0011 0100 0101 0110 0111
三种码的比较
自然二进码编码简单,易记,且译码也可逐比特独立进行, 但上下两部分无任何规律。
折叠二进码是一种符号码,左边第1位表示信号极性,信 号为正用1表示,信号为负用0表示;第2位到最后一位表示信号 幅度。由于正负绝对值相同时,其上半部分与下半部分呈倒影 关系 —— 折叠关系,故名折叠码。其幅度码从小到大按自然二 进码编排。 格雷二进码的特点是任何相邻电平的码组,只有一位码 位发生变化,即相邻码字的距离恒为 1。译码时,若传输或判决 有误,则量化电平的误差小。同时,该码除极性外,当正负绝 对值相等时,其幅度相同,故又称为反射二进码。但这种码不 是可加的,不能逐比特进行,需先转换为二进码后再译码。
原理框图如图7.17所示。输入的模拟信号 m t 经抽样、量 化、编码后变为数字信号,经信道传输至接收端,先由译码 器恢复出抽样值序列,再经低通滤波器滤出模拟信号 m ˆ t 。
7
量化电平数
5 3
1 0 2.22
4.38
5.24 2.91
抽样间隔
精确抽样值 量化值 PCM码组 单极性传输
7.5 脉冲编码调制(PCM)
7.5.1 脉冲编码调制原理 ♣ 概念 脉冲编码调制(PCM):简称脉码调制,是一种用一组 二进制数字代码来代替连续信号的抽样值,从而实现通信的 一种方式。即将模拟信号的抽样量化值转换成二进制码组的 过程。 图7.16给出了脉冲编码调制的一个示意图。
现代通信原理指导书第七章信源编码习题详解
现代通信原理指导书第七章信源编码习题详解第七章信源编码7-1已知某地天⽓预报状态分为六种:晴天、多云、阴天、⼩⾬、中⾬、⼤⾬。
①若六种状态等概出现,求每种消息的平均信息量及等长⼆进制编码的码长N 。
②若六种状态出现的概率为:晴天—;多云—;阴天—;⼩⾬—;中⾬—;⼤⾬—。
试计算消息的平均信息量,若按Huffman 码进⾏最佳编码,试求各状态编码及平均码长N 。
解: ①每种状态出现的概率为6,...,1,61==i P i因此消息的平均信息量为∑=-===6122/58.26log 1log i ii bit P P I 消息等长⼆进制编码的码长N =[][]316log 1log 22=+=+L 。
②各种状态出现的概率如题所给,则消息的平均信息量为6212222221log 0.6log 0.60.22log 0.220.1log 0.10.06log 0.060.013log 0.0130.007log 0.0071.63/i i iI P P bit -== = ------ ≈ ∑消息Huffman 编码树如下图所⽰:由此可以得到各状态编码为:晴—0,多云—10,阴天—110,⼩⾬—1110,中⾬—11110,⼤⾬—11111。
平均码长为:6110.620.2230.140.0650.01350.0071.68i ii N n P == =?+?+?+?+?+? =∑—7-2某⼀离散⽆记忆信源(DMS )由8个字母(1,2,,8)i X i =组成,设每个字母出现的概率分别为:,,,,,,,。
试求:① Huffman 编码时产⽣的8个不等长码字;②平均⼆进制编码长度N ;③信源的熵,并与N ⽐较。
解:①采⽤冒泡法画出Huffman 编码树如下图所⽰可以得到按概率从⼤到⼩8个不等长码字依次为:0100,0101,1110,1111,011,100,00,1087654321========X X X X X X X X②平均⼆进制编码长度为8120.2520.2030.1530.1240.140.0840.0540.052.83i ii N n P == =?+?+?+?+?+?+?+? =∑ ③信源的熵∑=≈-=81279.2log)(i i i P P x H 。
现代通信原理与技术第07章模拟信号的数字传输
频谱图
M(ω)
δT(ω)
200 320
Hz
Ms(ω)
500
Hz
M' (ω)
180 300
Hz
Hz
例7.2-4 以fs=800Hz进行理想采样的频谱图
M(ω)
200 320
Hz
Ms(ω)
480 600
Hz
M'(ω)
200 320
Hz
7.3 脉冲振幅调制(PAM)
以脉冲序列作为载波的调制方式称为脉冲调制。
2) 均匀分布信号
1 此信号的概率密度函数为 p(x)= 2a
信号功率为 a 令D=a/V,量化信噪比: SNRq=(20lgD+6N) dB 当D=1时量化信噪比最大 [SNRq]max=6N dB
So
a
x 2 p( x)
1 2 a 3
三、非均匀量化
非均匀量化的特点:
£fs £fL
£fs £«fL £fH £fL
O
(c)
fL fH fs £fL
fs £«fL
f
图 6-6
带通信号的抽样频谱(fs=2fH)
带通信号m(t)其频谱限制在(fL,fH),带宽
B=fH-fL,且B<<fH,抽样频率fs应满足: fs=2fH/m = 2B(1+k/n)
式中,k=fH/B-n,0<K<1,m、n为不超过fH/B
n
;
Sa( H t )
TH
3、结 论: 只要 s 2 H ,M ( s ) 周期性地重复而不重叠,
M ( s ) 相邻周期内的频谱相互重叠, 若 s 2 H,
《通信原理》教学课件 张力军 第7章
24
第7章 信源与信源编码
7.5 模拟信源的编码技术
1. 脉冲编码调制(PCM)
PCM解决问题思路:对信号压扩处理,令大信号大量阶
小信号小量阶,保持相对的信噪比不变。
具体做法:数学表达A率(中、欧)或律(美、日)
y Ax 0x1
1lnA
A
y1lnAx 1x1 1lnA A
(7.5-1)
量化:十三折线 缺点:PCM是标量量化,语音信号的相关性没有被充分
利用,因此,更先进的ADPCM和参数编码逐渐盛行 25
y
PCM十三折线
1
A律()
7/8
A1律3折量线化 ⑦
⑧
6/8
⑥
5/8 ⑤
线性量化
4/8 ④
3/8 ③
2/8 ②
x1 0.4
x2 0.2
x3 0.2
x4 x5
0.1 0 0.1 1
x1 0.4
x2 0.2
x3 0.2 0 x4 x5 0.2 1
x4 x5
0x3 1
0 1 x2
0 1 x1
0 1
第3步排序 符号 概率
x1 x3x4x5
x2
0.4
0.4 0 0.2 1
第4步排序 符号 概率
x2x3x4x5 0.6 0 x1 0.4 1
1.0
编出的霍夫曼码
符号 码字 码长
x1 1 x2 01 2 x3 000 3 x4 0010 4 x5 0011 4
1
16
第7章 信源与信源编码
7.3 离散信源编码
7.3.2 平稳离散信源的编码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eo(t)
7.1 二进制调制原理
2ASK信号时间波形:
1
0
0
s t
Ts
载波
2ASK
1 t t
t
7.1 二进制调制原理
一般表达式: e2ASK(t)stcosct
其中: s(t) ang(t-nTs) n
Ts - 码元持续时间;
g(t) - 持续时间为Ts的基带脉冲波形,通常假
设是高度为1,宽度等于Ts的矩形脉冲;
fc
fc fs
f
P 2 P S K (f)1 4 P s(ffc) P s(ffc)
占用带宽和2ASK一致
7.1 二进制调制原理
2PSK的解调
由于功率谱密度中没有离散的载波分量所以需要采用平方 环法或者科斯塔斯环法提取载波(第13章知识)。
e2PSK(t)
带通 滤波器
a 相乘器
cosct b
c 低通
滤波器
dቤተ መጻሕፍቲ ባይዱ抽样 e
判决器 输出
定时 脉冲
思考:2PSK信号能否采用包络检波解调?
P s f f s P ( 1 P ) G ( f) 2 f s 2 ( 1 P ) 2 G ( 0 ) 2( f)
ps(f)
P2ASK(f)
-fs 0 fs
-fc
0
fc
2ASK信号的传输带宽是码元速率的2倍: B2ASK2fs
7.1 二进制调制原理
2、二进制频移键控(2FSK)
信号表达式:
an
- 第n个符号的电平取值。
1, 概率P an 0,概率1-P
7.1 二进制调制原理
2ASK解调方法:
非相干解调: e2ASK(t) 带通 a 全波 b 低通 c 抽样 d
滤波器
整流器
滤波器
判决器 输出
1
0
0
1
定时 脉冲
波形: a
t
b t
c t
d
1
0
0
1
t
7.1 二进制调制原理
相干解调:
e2ASK(t) 带通
相位连续:
相位连续的情况下旁瓣衰减更快。
7.1 二进制调制原理
相位不连续的2FSK的功率谱密度
2FSK可以看成2个2ASK信号之和,所以:
e 2 F( S t) K s 1 (t)co 1 t s 2 (t)co 2 ts
因此功率谱密度表达式为:
P 2 F ( f S ) K 1 4 P s 1 ( f f 1 ) P s 1 ( f f 1 ) 1 4 P s 2 ( f f 2 ) P s 2 ( f f 2 )
第7章 数字带通传输系统
引言
数字调制:把数字基带信号变换为数字带通信号(已调 信号)的过程。
数字带通传输系统:通常把包括调制和解调过程的数字 传输系统称为数字带通传输系统。
数字调制技术有两种方法: 利用模拟调制的方法去实现数字式调制; 通过开关键控载波,通常称为键控法。
引言
三种基本键控方式
2. 连续谱的形状随着两个载频之差的大小而变化,若| f1 – f2 | < fs,连续谱在 fc 处出现单峰;若| f1 – f2 | > fs ,则出 现双峰;
3. 若以功率谱第一个零点之间的频率间隔计算2FSK信号的 带宽,则其带宽近似为
B 2FS Kf2f12fs
7.1 二进制调制原理
2FSK的解调方法
波形:e2FS (t)K A A cco o s2 1 stt ((n n)),,
发送 1”“ 时 发送 0”“ 时
1
0
1
0
(a)2FSK信号 t
(b) s1 t cos 1t
t
(c) s2 t cos 2t
可以看成两个2ASK信号的合成。
1
t
7.1 二进制调制原理
2FSK的产生
相位不连续:
1. 非相干解调法 e2FSK(t)
2. 相干解调法
e2FSK (t)
带通 滤波器
1
包络 检波器
定时脉冲
抽样 判决器
输出
带通 滤波器
2
包络 检波器
带通 滤波器
1
带通 滤波器
2
相乘器
cos1t cos2t
相乘器
低通 滤波器
定时脉冲
抽样 判决器
输出
低通 滤波器
7.1 二进制调制原理
(3)二进制相移键控2PSK(BPSK)
7.1 二进制调制原理
1、二进制振幅键控(2ASK)
信号表达式:eOO (t)K A 0 , c cto,s以 以概 1概 P发 P发 率 率 1 送 ” 0 送 ” “ 时 “ 时
模拟法
产生框图:
m(t) NRZ
键控法 cosct
eo (t) m(t)cosct cos c t
电子开关 m(t)
信号表达式: e2P S K (t)A cos(ctn)
其中: n 0, , 发 发送 送0“ 1“ ” ”时 时
因此可改写为: e2PS(tK ) A Accoo sscctt,,
概率 P为 概率 1为 P
1
0
0
1
1
t Ts
7.1 二进制调制原理
2PSK的产生方式
模拟产生法:
s(t)
双 极 性 不 归 零
滤波器
相乘器
低通 滤波器
输出 抽样 判决器
cosct
定时 脉冲
2ASK信号的特点:
产生方法简单,易于学习; 受噪声影响大,可靠性不高,实际应用较少。
7.1 二进制调制原理
2ASK功率谱密度
e2A SK(t)stcosct
P 2A (fS ) K 1 4P s(ffc) P s(ffc)
由第6章,已知NRZ矩形波形脉冲序列的Ps(f)为:
当p(1)=p(0)时,Ps1=Ps2
7.1 二进制调制原理
相位不连续的2FSK的功率谱密度
|fc1fc2|2fs
fc2 fc2+fs
fc1 fc1+fs
|fc1fc2|2fs
或
fc2 fc1
fc2 fc1
7.1 二进制调制原理
2FSK的功率谱密度
1. 相位不连续2FSK信号的功率谱由连续谱和离散谱组成。 其中,连续谱由两个中心位于f1和f2处的双边谱叠加而成, 离散谱位于两个载频f1和f2处;
e2PS (t)K
码 型 变 换
乘 法 器
键控产生法:
co cts
co cts
开 关 电 路
0
e 2PS (t) K
18 0移 0 相
s(t)
7.1 二进制调制原理
2PSK的功率谱密度
与2ASK的功率谱密度表达式相同,区别仅在于一个 是单极性码,一个是双极性码。
P2PSK f
fc
fc fs
1. 振幅键控 2. 频移键控 3. 相移键控
1
0
1
1
0
1
1
0
1
t
t
t
振幅键控
频移键控
相移键控
数字调制可分为二进制调制和多进制调制。
章节内容
❖ 7.1 二进制数字调制原理 ❖ 7.2 二进制数字调制系统的抗噪声性能 ❖ 7.3 二进制数字调制系统的性能比较 ❖ 7.4 多进制数字调制原理 ❖ 7.5 多进制数字调制系统的抗噪声性能