华师版《分式》单元测试题

合集下载

华师大版八年级数学下《第16章分式》单元测试卷含答案

华师大版八年级数学下《第16章分式》单元测试卷含答案

第16章分式单元测试卷一、选择题(每题2分,共20分)1.在式子-x,,x+y,,+,中,是分式的有( )A.1个B.2个C.3个D.4个2.下列各式中,正确的是( )A.=-1B.=-1C.=a-bD.-=3.要使分式有意义,则x的取值应满足( )A.x≠2B.x≠-1C.x=2D.x=-14.下面是四位同学解方程+=1过程中去分母的一步,其中正确的是( )A.2+x=x-1B.2-x=1C.2+x=1-xD.2-x=x-15.若关于x的方程+=3的解为正数,则m的取值范围是( )A.m<B.m<且m≠C.m>-D.m>-且m≠-6.纳米是非常小的长度单位,1纳米=10-9米,某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( )A.5×10-10米B.5×10-9米C.5×10-8米D.5×10-7米7.若关于x的分式方程+=无解,则m的值为( )A.-6B.-10C.0或-6D.-6或-108.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划平均每亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为( )A.-=20B.-=20C.-=20D.+=209.下列运算正确的是( )A.=-B.3-1+(a2+1)0=-2C.÷m·m÷=1D.(m2n)-3=10.轮船顺流航行40 km由A地到达B地,然后又返回A地,已知水流速度为每小时2 km,设轮船在静水中的速度为每小时x km,则轮船往返共用的时间为( )A.hB.hC.hD.h二、填空题(每题3分,共24分)11.已知x+=4,则代数式x2+的值为___________.12.计算的结果是___________.13.若整数m使为正整数,则m的值为___________.14.不改变分式的值,把分式中分子、分母各项系数化成整数为___________.15.使代数式÷有意义的x的取值范围是___________.16.甲、乙两地相距s千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达,若每小时多行驶a千米,则汽车可提前___________小时到达.17.若分式方程-=2有增根,则这个增根是___________.18.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是___________km/h.三、解答题(19题4分,24,25题每题10分,其余每题8分,共56分)19.计算:(π-5)0+-|-3|.20.化简:(1)÷;(2)÷21.解方程:(1)=-.(2)1-=.22.先化简,再求值:÷,其中x=2.23.先化简,再求值:·+,其中x是从-1、0、1、2中选取的一个合适的数.24. 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4 厚型纸单面打印,总质量为400 克,将其全部改成双面打印,用纸将减少一半;如果用A4 薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8 克,求A4薄型纸每页的质量.(墨的质量忽略不计)25.某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.参考答案一、1.【答案】B解:分母中含有字母是分式的根本特征,注意π是常数,所以只有,是分式.2.【答案】B3.【答案】A4.【答案】D5.【答案】B6.【答案】C7.【答案】D解:去分母得:x+2+x+m=3x-6,∴x=m+8,∵原方程无解,∴m+8=2或m+8=-2,∴m=-6或-10.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】1412.【答案】1-2a13.【答案】0,1,2,5解:由题意可得1+m是6的因数,所以当1+m=1时,m=0;当1+m=6时,m=5;当1+m=2时,m=1;当1+m=3时,m=2.14.【答案】15.【答案】x≠±3且x≠-416.【答案】解:-=-=(小时).17.【答案】118.【答案】80解:设这辆汽车原来的速度是x km/h,由题意列方程得-0.4=,解得x=80.经检验,x=80是原方程的解,且符合题意,所以这辆汽车原来的速度是80 km/h.三、19.解:原式=1+2-3=0.20.解:(1)原式=÷=×=;(2)原式=×=×=×=-.21.解:(1)方程两边同时乘以2(2x-1),得2=2x-1-3.化简,得2x=6.解得x=3.检验:当x=3时,2(2x-1)=2×(2×3-1)≠0, 所以,x=3是原方程的解.(2)去分母,得x-3-2=1,解这个方程,得x=6.检验:当x=6时,x-3=6-3≠0,∴x=6是原方程的解.22.解:÷=÷=×=.当x=2时,原式==1.23.解:原式=·+=+=+=.当x=0时,原式=-.24.解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.25.解:(1)设原计划每天生产零件x个,由题意得,=, 解得x=2 400,经检验,x=2 400是原方程的根,且符合题意.∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400个,规定的天数是10天.(2)设原计划安排的工人人数为y人,由题意得,[5×20×(1+20%)×+2400]×(10-2)=24 000,解得y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.。

华东师大版 第16章分式 单元测试题

华东师大版 第16章分式 单元测试题

八年级(下)数学16章单元检测题一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πx D .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .am a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( ) A .54 B. 47 C.1 D.45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x 10.一项工程,甲单独做a 小时完成,乙单独做b 小时完成,甲乙两人一起完成这项工程所需的时间为( )(A )11()a b +小时 (B )()a b +小时(C )a b ab +小时 (D )ab a b+小时 二、填空题(每小题3分,共18分)11.计算2323()a b a b --÷= .12.用科学记数法表示—0.000 000 0314= . 13.计算22142a a a -=-- . 14.方程3470x x=-的解是 . 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132L L 中得到巴尔末公式,从而打开了光谱奥秘的大门。

分式单元测试卷华师大版-初中三年级数学试题练习、期中期末试卷-初中数学试卷

分式单元测试卷华师大版-初中三年级数学试题练习、期中期末试卷-初中数学试卷

分式单元测试卷华师大版-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载分式单元测试一、填空题(每题2分,共30分)1.=________(m、n是整数) .2.当=________时,分式没有意义.3.=________,=________.4.=________,=________.5.=________.6.一种电子计算机每秒可做10次运算,它工作1小时可做________次运算.7.不改变分式的值,把分式的分子与分母中的各项系数化为整数,则=________.8.已知时,分式的值等于零,则________.9.若不改变分式的值,使分式的分子、分母的第一项不含“—”号,则=________.10.若=16,则=________.11.=________.12.=________.13.将的结果化成只含有正整指数幂的形式为________.14.如果某商品降价%后的售价为元,那么该商品的原价为________.15.当________时,分式有意义.二、选择题(每题3分,共33分)16.下列式子:,,,,其中正确的有().(A)1个(B)2个(C)3个(D)4个17.分式、与的最简公分母是().(A)(B)(C)(D)18.使分式的值是负数的的取值范围是().(A)&lt;(B)&gt;(C)&lt;0(D)不能确定19.下列各式中,是分式的是().(A)(B)(C)(D)20.要使分式的值为0,则的值是().(A)3(B)-3(C)-5(D)-5或-321.如果分式中和都扩大10倍,那么分式值().(A)不变(B)扩大10倍(C)缩小10倍(D)缩小1000倍22.若有人天完成某项工程,则这样的()人完成这项工程需要的天数为().(A)(B)(C)(D)23.若分式不论取何实数总有意义,则的取值范围是().(A)(B)&gt;1(C)(D)&lt;1 24.若有意义,则的取值范围是().(A)&gt;3(B)&lt;2(C)3或2(D)3且2 25.等于().(A)(B)(C)(D)其他结果26.计算的结果是().(A)1(B)-1(C)(D)三、计算题(每题3分,共12分)27..28..29..30..四、解答题31.当=tan30时,求代数式的值.(4分)32.为何值时,关于的方程会产生增根?(4分)33.小明带了15元钱去商店买笔记本若干本.如果买一种软皮本,15元钱正好用完.但售货员建议他买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此他只能少买1本笔记本,这种软皮本与硬皮本的价格各是多少?(5分)34.请你阅读下列计算过程,再回答所提出的问题:(4分)(A)=(B)=(C)=(D)(1)在上述计算过程中,从__________开始出现错误;(2)从B到C___________(填“正确”或“不正确”),若不正确,错误的原因是________.(3)正确答案是_________.35.先阅读下列材料,再解答后面的问题.(8分)因为,,,…,,所以(1)在和式…中,第五项为________,第项为________;(2)上述求和的思想是通过逆用________法则,将和式中的各分数转化为两实数之差,使得除首末两项外的中间各项可以_______,从而达到了求和的目的;(3)计算.欢迎下载使用,分享让人快乐。

华师大版八年级数学下册 第十六章《分式》整章水平测试

华师大版八年级数学下册  第十六章《分式》整章水平测试

八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 . 设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ).(A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x yx y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M>N (B )M=N (C )M<N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b+,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分)1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b aba b a b a b a b+--÷-+-+,然后请选择一组你喜欢的,a b的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-.。

华师大版八年级数学下册《分式》单元试卷检测练习及答案解析

华师大版八年级数学下册《分式》单元试卷检测练习及答案解析

华师大版八年级数学下册《分式》单元试卷检测练习及答案解析一、选择题1、在中,分式有A.1个B.2个C.3个D.4个2、下列等式成立的是()A.B.C.D.3、若分式的值为0,则()A.B.C.D.4、已知是正整数,下列各式中,错误的是()A.B.C.D.5、下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数6、化简:的结果是()A.B.C.D.7、下列计算正确的是()A.B.C.D.8、化简的结果是()A.B.C.D.9、把分式方程=转化为一元一次方程时,方程两边同乘以 ( )A.x B.2x C.x+4 D.x(x+4)10、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/时,依据题意列方程正确的是 ( )A.=B.=C.=D.=二、填空题11、= ____________.12、计算=________13、当x_____时,分式的值为正数.14、观察下列分式:,,,,,…,猜想第n个分式是______.15、比较大小:________.(填“>”“=”或“<”)16、计算:()﹣2+()0=_____.17、计算:=___________.18、若=2,,则的值为___________.19、方程的解是__________.20、若分式方程2+=有增根,则k=________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:22、解下列分式方程(1(2)23、解方程四、解答题24、先化简,再求值:,其中.25、先化简,然后从0,1,2中选择一个适当的数作为x的值带入求值。

26、已知关于x的分式方程.(1)若方程的增根为x=2,求a的值;(2)若方程有增根,求a的值;(3)若方程无解,求a的值.27、已知关于x的分式方程与分式方程的解相同,求m2-2m的值.28、煤气公司一工人检修一条长540米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.5倍,结果提前3小时完成任务,求该工人原计划每小时检修煤气管道多少米?29、列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?参考答案1、B2、C3、B4、C5、D6、A7、D8、A9、D10、C11、2;12、13、x>-114、.15、>16、517、218、19、20、121、(1)-1 (2)22、(1)x=15 (2)方程无解23、24、2-25、x+1,326、(1)-2;(2)-2;(3)3或-227、-28、该工人原计划每小时检修煤气管道60米.29、汽车和自行车的速度分别是75千米/时、15千米/时.答案详细解析【解析】1、【详解】中分式有两个,其它代数式分母都不含有字母,故都不是分式. 故选B.2、A选项:,故是错误的;B选项:,故是错误的;C选项:,故是正确的;D选项:,故是错误的;故选C.3、【分析】分式的值为0,则分子等于0,且分母不等于0.即,且.【详解】因为的值为0,所以,且,即x=±1,且x≠-1.所以x=1.故正确选项为B.【点睛】此题考核知识点是:分式的基本性质和定义.分析分式的值既要看分子又要注意分母是否为0,这也是解题的关键.4、试题解析:所以选项A正确所以选项B正确所以选项D正确故选C.5、A选项:当x=2时,该分式的分母x-2=0,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义. 显然,x=0满足x≠3. 由此可见,当x≠3时,该分式不一定有意义. 故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0;该分式的分子3>0. 由此可知,无论x为何值,该分式的值总为正数. 故D选项正确.故本题应选D.点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.6、===m+n,故选:A.7、A、==,所以A选项错误;B、==,所以B选项错误;C、=,所以C选项错误;D、,所以D选项正确.故选:D.8、试题分析:原式利用除法法则变形,约分即可得到结果.解:原式=•=.故选A.点评:此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.9、最简公分母是x(x+4),∴两边同乘以x(x+4)10、甲行30千米用的时间=乙行40千米用的时间,故选C.11、分析:根据复制数次幂的计算法则进行计算即可得出答案.详解:原式=.点睛:本题主要考查的是复制数次幂的计算法则,属于基础题型.解答这个问题的关键就是明确计算法则.12、=[2×(−)]2010×(−)=−故答案为:−13、试题解析:由题意可知:x+1>0,∴x>﹣1.故答案为:x>﹣1.14、解:分析题干中的式子的分母为:x2,x3,x4,x5,x6则第n项的分母应为x n+1,分子根号内的数为:12+1,22+1,32+1,则第n项的分子应为:,第n个分式是.故答案为:.点睛:本题考查了分式的定义,对于找规律的题应该观察有哪些部分在变化,总结各部分的变化规律从而得到整个式子的变化规律.15、试题解析:故答案为:16、原式=4+1=5.故答案为:5.17、===2,故答案为:2.18、∵,∴当时,.19、方程两边同时乘以x(2-x),得2-x-2x=0,解得x=,检验:当x=时,x(2-x)≠0,所以原方程的解是x=.20、方程两边同乘以(x-2),得2(x-2)+1-kx=-1因原方程的增根只能是x=2,将x=2代入上式,得1-2k=-1,k=1.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、试题分析:对于解分式方程,首先将分母去掉转化成整式方程,然后求出未知数的值,最后对方程的根进行验根.试题解析:(1)解:方程两边同乘x(x-5)得:2x=3(x-5) 2x=3x-15 解得:x=15检验:当x=15时x(x-5)≠0 ∴ x=15是原分式方程的解。

华师大版数学八下第16章《分式》单元测试卷及答案

华师大版数学八下第16章《分式》单元测试卷及答案

新人教八年级(下)第16章《分式》一、填空题(每小题3分,共24分)1.下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( ) A .1个 B .2个 C .3个 D .4个2.下列计算正确的是( )A .m m m x x x 2=+B .22=-n n x xC .3332x x x =⋅D .264x x x -÷=3.下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .y x 23B .223y xC .y x 232D .2323yx 5.计算xx -++1111的正确结果是( ) A .0 B .212x x - C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米 D .无法确定 7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x+48720─548720= B .x +=+48720548720 C .572048720=-x D .-48720x +48720=5 8.若0≠-=y x xy ,则分式=-xy 11( ) A .xy1 B .x y - C .1 D .-1 二、填空题(每小题3分,共30分)9.分式12x ,212y ,15xy -的最简公分母为 .10.约分:(1)=b a ab2205__________,(2)=+--96922x x x __________.11.方程x x 527=-的解是 .12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a(2)() 1422=-+a a13.分式方程1111112-=+--x x x 去分母时,两边都乘以 .14.要使2415--x x 与的值相等,则x =__________.15.计算:=+-+3932a a a __________.16.若关于x 的分式方程3232-=--x m x x无解,则m 的值为__________.17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18.已知2242141x y y x y y +-=-+-,则的24y y x ++值为______.三、解答题:(共56分)19.(4分)计算:(1)11123x x x ++ (2)3xy 2÷x y 2620.(4分)计算: ()3322232n m n m --⋅ 21.(4分)计算(1)168422+--x x xx(2)m n nn m m m n nm -+-+--222.(6分)先化简,后求值:222222()()12a a a a a b a ab b a b a b-÷-+--++-,其中2,33a b ==-23.(6分)解下列分式方程.(1)xx 3121=- (2)1412112-=-++x x x24.(6分)计算: 1111-÷⎪⎭⎫ ⎝⎛--x x x25.(6分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.28.(8分)问题探索:(1)已知一个正分数mn (m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数mn (m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.。

八年级数学下册第16章分式单元综合测试5新版华东师大版

八年级数学下册第16章分式单元综合测试5新版华东师大版

12.一个工人生产一批零件,计划 30 天完成,若每天多生产 5 个,则在 26 天内完成且多生
产 10 个.这个工人原计划每天生产__________个零件.
13.化简: x3 2x2 y ____________. x2 y 2xy2
14.若方程 x 5 x2 21 ,则增根 x _________. x4 x4
(A) 1 2
(B) 1 或-1 2
(C) 1 或-3 2
(D)-1
4.已知 n
1,M
n
n 1

N
n 1 , P n
n
n
1
,则
M
、N
、P
的大小关系是(

(A) M N P (B) M P N (C) P M N (D) P N M
5.若关于 x 的方程 x 2 m 有增根,则 m 的值及增根的值分别是( ) x2 x2
x2 y2
1
(C)
(D)
x2 xy y2
x2 2xy y2
x2 y2
xy
8.若方程 3 2 的根为正数,则 k 的取值范围是( ) x3 xk
(A) k 2
(B) 3 k 2 (C) k 3 (D) k 3
9.若 a 、 b 0 且 a b 1,则 (1 1 )(1 1) 的最小值是( ) ab
1
;(2)
2 x2
x
3 x2
x
4 x2
1
0
.
四、解决问题(每小题 10 分,共 30 分)
27.某人距离射击目标 1670m,瞄准开枪后,过了 7s 听见击中目标的声音;另有一观察者,
距射击者 1000m,距目标 2002m,在听见枪声后 5s 听见击中目标的声音,求子弹的速度和声

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。

华师大版八年级数学下册第16章 分式 单元测试卷.docx

华师大版八年级数学下册第16章 分式 单元测试卷.docx

第16章 分式 单元测试卷一、选择题(每题2分,共20分)1.在式子-32x,4x−y ,x+y,x 2+2π,x 7+y 8,10x 中,是分式的有( )A.1个B.2个C.3个D.4个2.下列各式中,正确的是( )A.-a -b a−b =-1B.-a -b a+b =-1C.a 2-b 2a−b =a-bD.1a -1b =a−b ab 3.要使分式x+1x−2有意义,则x 的取值应满足( )A.x ≠2B.x ≠-1C.x=2D.x=-14.下面是四位同学解方程2x−1+x 1−x =1过程中去分母的一步,其中正确的是( )A.2+x=x-1B.2-x=1C.2+x=1-xD.2-x=x-15.若关于x 的方程x+m x−3+3m 3−x =3的解为正数,则m 的取值范围是( ) A.m<92 B.m<92且m ≠32 C.m>-94 D.m>-94且m ≠-346.纳米是非常小的长度单位,1纳米=10-9米,某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( )A.5×10-10米B.5×10-9米C.5×10-8米D.5×10-7米7.若关于x 的分式方程1x−2+x+m x 2-4=3x+2无解,则m 的值为( )A.-6B.-10C.0或-6D.-6或-108.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划平均每亩产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A.36x -36+91.5x=20 B.36x -361.5x =20 C.36+91.5x -36x =20 D.36x +36+91.5x=20 9.下列运算正确的是( )A.(-n m )-2=-n 2mB.3-1+(a 2+1)0=-2C.1m ÷m ·m ÷1m =1D.(m 2n)-3=1mn 210.轮船顺流航行40 km 由A 地到达B 地,然后又返回A 地,已知水流速度为每小时2 km,设轮船在静水中的速度为每小时x km,则轮船往返共用的时间为( )A.80x hB.80x -2 hC.80x -4 h D.80xx -4 h二、填空题(每题3分,共24分)11.已知x+1x =4,则代数式x 2+1x 2的值为___________. 12.计算1−4a 22a+1的结果是___________.13.若整数m 使61+m 为正整数,则m 的值为___________.14.不改变分式的值,把分式0.4x+20.5x−1中分子、分母各项系数化成整数为___________.15.使代数式x+3x−3÷x 2-9x+4有意义的x 的取值范围是___________.16.甲、乙两地相距s 千米,汽车从甲地到乙地按每小时v 千米的速度行驶,可按时到达,若每小时多行驶a 千米,则汽车可提前___________小时到达.17.若分式方程x x−1-m 1−x =2有增根,则这个增根是___________.18.已知A,B 两地相距160 km,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,这辆汽车原来的速度是___________km/h.三、解答题(19题4分,24,25题每题10分,其余每题8分,共56分)19.计算:(π-5)0+√4-|-3|.20.化简:(1)(1+1m+1)÷m 2-4m +m ; (2)(x+8x -4-2x−2)÷x−4x -4x+421.解方程:(1)12x−1=12-34x−2. (2)1-2x−3=1x−3.22.先化简,再求值:x x -2x+1÷(x+1x -1+1),其中x=2. 23.先化简,再求值:x−2x 2-1·x+1x 2-4x+4+1x−1,其中x 是从-1、0、1、2中选取的一个合适的数. 24. 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4 厚型纸单面打印,总质量为400 克,将其全部改成双面打印,用纸将减少一半;如果用A4 薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8 克,求A4薄型纸每页的质量.(墨的质量忽略不计)25.某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.参考答案一、1.【答案】B解:分母中含有字母是分式的根本特征,注意π是常数,所以只有4x−y ,10x是分式.2.【答案】B3.【答案】A4.【答案】D5.【答案】B6.【答案】C7.【答案】D解:去分母得:x+2+x+m=3x-6,∴x=m+8,∵原方程无解,∴m+8=2或m+8=-2,∴m=-6或-10.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】1412.【答案】1-2a13.【答案】0,1,2,5解:由题意可得1+m是6的因数,所以当1+m=1时,m=0;当1+m=6时,m=5;当1+m=2时,m=1;当1+m=3时,m=2.14.【答案】4x+205x−1015.【答案】x≠±3且x≠-416.【答案】sav(v+a)解:sv -sv+a=s(v+a)v(v+a)-svv(v+a)=sav(v+a)(小时).17.【答案】118.【答案】80解:设这辆汽车原来的速度是x km/h,由题意列方程得160x -0.4=160(1+25%)x ,解得x=80.经检验,x=80是原方程的解,且符合题意,所以这辆汽车原来的速度是80 km/h.三、19.解:原式=1+2-3=0.20.解:(1)原式=m+2m+1÷(m+2)(m -2)m(m+1) =m+2m+1×m(m+1)(m+2)(m -2)=m m−2; (2)原式=[x+8(x+2)(x -2)-2(x+2)(x+2)(x -2)]×(x -2)2x−4 =x+8−2x−4(x+2)(x -2)×(x -2)2x−4=4−x (x+2)(x -2)×(x -2)2x−4=-x−2x+2.21.解:(1)方程两边同时乘以2(2x-1),得2=2x-1-3.化简,得2x=6.解得x=3.检验:当x=3时,2(2x-1)=2×(2×3-1)≠0,所以,x=3是原方程的解.(2)去分母,得x-3-2=1,解这个方程,得x=6.检验:当x=6时,x-3=6-3≠0,∴x=6是原方程的解.22.解:x x -2x+1÷(x+1x -1+1)= x(x -1)2÷x+1+x 2-1x 2-1=x(x -1)2×(x+1)(x -1)x(x+1)=1x−1. 当x=2时,原式=12−1=1.23.解:原式=x−2(x+1)(x -1)·x+1(x -2)2+1x−1 =1(x -1)(x -2)+1x−1 =1(x -1)(x -2)+x−2(x -1)(x -2) =1x−2.当x=0时,原式=-12.24.解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克.根据题意,得400x+0.8×12=160x .解得x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.25.解:(1)设原计划每天生产零件x 个,由题意得,24 000x =24 000+300x+30, 解得x=2 400,经检验,x=2 400是原方程的根,且符合题意.∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400个,规定的天数是10天.(2)设原计划安排的工人人数为y 人,由题意得,[5×20×(1+20%)×2 400y +2400]×(10-2)=24 000,解得y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.初中数学试卷桑水出品。

2020—2021年华东师大版八年级数学下册《分式》单元测试题及答案.docx

2020—2021年华东师大版八年级数学下册《分式》单元测试题及答案.docx

(新课标)华东师大版八年级下册16章分式单元测试题姓名:;成绩:;一、选择题(每小题4分,共48分)1、代数式11,,3,,652a b x y b c m x yπ+-+-+中,是分式的有( )个。

A 、1 B 、2 C 、3 D 、42、分式21x x +-有意义的条件是( )A 、x=-2B 、x ≠-2C 、x =1D 、x ≠13、分式13x x -+无意义的条件是( ) A 、x=-3 B 、x ≠-3 C 、x =1 D 、x ≠14、分式55x x -+的值为零的条件是( ) A 、x=5 B 、x =-5 C 、x =±5 D 、x ≠-55、把分式xy x y +中的x 、y 都扩大3倍,则分式的值( )A 、不变B 、扩大3倍C 、扩大9倍D 、扩大6倍6、分式方程23x a x -=+产生的增根是( )A 、x=2B 、x =-2C 、x =3D 、x =-37、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=8、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2D.﹣=29、小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.B.C.D.10、若分式,则分式的值等于()A .﹣B .C .﹣D .11、设实数a ,b ,c 满足a+b+c=3,a 2+b 2+c 2=4,则++=( )A .9B .6C .3D .012、如果关于x 的分式方程﹣3=有负分数解,且关于x 的不等式组的解集为x <﹣2,那么符合条件的所有整数a 的积是( )A .﹣3B .0C .3D .9 二、填空题(每小题4分,共24分)13、把分式20.150.32x x -+中字母的系数化为整数为; 14、把分式中212x x ---+的分子、分母中字母系数中的“-”去掉后为;15、分式21x x +-的值是正数,则x 的取值范围是;16、若a 2+5ab ﹣b 2=0,则的值为. 17、计算:+()﹣2+(π﹣1)0=.18、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.三、解答题(每小题7分,共14分)19、|﹣3|+(﹣1)2011×(π﹣3)0﹣+.20、解方程:解方程:=1﹣.四、解答题(每小题10分,共40分)21、先化简,再求值:,其中x满足x2﹣x﹣1=0.22、绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?23、观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)证明你猜想的结论;(3)求和:+++…+.24、阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==x2 +2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.[来^&%源:中教网@~]五、解答题(每小题12分,共24分)25、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?26、对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?华师大版八年级下册16章分式单元测试题答案一、选择题BDAAB DBCDB CD二、填空题13、41320x x -+14、212x x +-15、x>1或x<-216、517、818、<m <三、解答题19、解:原式=3+(﹣1)×1﹣3+4=320、解:=1﹣方程两边同乘以x ﹣2,得1﹣x=x ﹣2﹣3解得,x=3,检验:当x=3时,x ﹣2≠0,故原分式方程的解是x=3.四、解答题21、解:原式=×,=×=,∵x2﹣x﹣1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.22、解:(1)设乙种牛奶的进价为每件x元,则甲种牛奶的进价为每件(x﹣5)元,由题意得,=,解得x=50.经检验,x=50是原分式方程的解,且符合实际意义.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,由题意得,解得23<y≤25.∵y为整数,∴y=24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.23、解:(1)由=﹣;=﹣;=﹣,…则:=;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.24、解:(1)由分母为﹣x2+1,可设﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b则﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=7,b=1,∴===x2 +7+这样,分式被拆分成了一个整式x2+7与一个分式的和.(2)由=x2+7+知,对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,即的最小值为8.五、解答题25、解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y 元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y最大=30000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大26、解:(1)①根据题意得:T(1,﹣1)==﹣2,即a ﹣b=﹣2;T=(4,2)==1,即2a+b=5,解得:a=1,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有3个整数解,即m=0,1,2,∴2≤<3,解得:﹣2≤p<﹣;(2)由T(x,y)=T(y,x),得到=,整理得:(x2﹣y2)(2b﹣a)=0,∵T(x,y)=T(y,x)对任意实数x,y都成立,∴2b﹣a=0,即a=2b.。

2020—2021年华东师大版八年级数学下册《分式》单元测试题1及答案.docx

2020—2021年华东师大版八年级数学下册《分式》单元测试题1及答案.docx

(新课标)华东师大版八年级下册16章分式单元测试题姓名:;成绩:;一、选择题(每小题4分,共48分)1、代数式11,,3,,652a b x y b c m x yπ+-+-+中,是分式的有( )个。

A 、1 B 、2 C 、3 D 、42、分式21x x +-有意义的条件是( )A 、x=-2B 、x ≠-2C 、x =1D 、x ≠13、分式13x x -+无意义的条件是( )A 、x=-3B 、x ≠-3C 、x =1D 、x ≠14、分式55x x -+的值为零的条件是( ) A 、x=5 B 、x =-5 C 、x =±5D 、x ≠-55、把分式xy x y +中的x 、y 都扩大3倍,则分式的值( )A 、不变B 、扩大3倍C 、扩大9倍D 、扩大6倍6、分式方程23x a x -=+产生的增根是( )A、x=2B、x=-2C、x=3D、x =-37、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=8、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=29、小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.B.C.D.10、若分式,则分式的值等于()A.﹣B.C.﹣D.11、设实数a,b,c满足a+b+c=3,a2+b2+c2=4,则++=()A.9 B.6 C.3 D.012、如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A .﹣3B .0C .3D .9二、填空题(每小题4分,共24分) 13、把分式20.150.32x x -+中字母的系数化为整数为; 14、把分式中212x x ---+的分子、分母中字母系数中的“-”去掉后为;15、分式21x x +-的值是正数,则x 的取值范围是;16、若a 2+5ab ﹣b 2=0,则的值为.17、计算:+()﹣2+(π﹣1)0=.18、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.三、解答题(每小题7分,共14分)19、|﹣3|+(﹣1)2011×(π﹣3)0﹣+.20、解方程:解方程:=1﹣.四、解答题(每小题10分,共40分)21、先化简,再求值:,其中x满足x2﹣x﹣1=0.22、绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?23、观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)证明你猜想的结论;(3)求和:+++…+.24、阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b 则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==x2+2 +这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.[来^&%源:中教网@~]五、解答题(每小题12分,共24分)25、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?26、对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T (x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?16章分式单元测试题答案一、选择题 BDAAB DBCDB CD 二、填空题 13、41320x x -+14、212x x +-15、x>1或x<-2 16、5 17、818、<m<三、解答题19、解:原式=3+(﹣1)×1﹣3+4=320、解:=1﹣方程两边同乘以x﹣2,得1﹣x=x﹣2﹣3解得,x=3,检验:当x=3时,x﹣2≠0,故原分式方程的解是x=3.四、解答题21、解:原式=×,=×=,∵x2﹣x﹣1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.22、解:(1)设乙种牛奶的进价为每件x元,则甲种牛奶的进价为每件(x﹣5)元,由题意得,=,解得x=50.经检验,x=50是原分式方程的解,且符合实际意义.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,由题意得,解得23<y≤25.∵y为整数,∴y=24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.23、解:(1)由=﹣;=﹣;=﹣,…则:=;(2)﹣=﹣= =;(3)+++…+=1﹣+﹣+﹣+…+﹣。

华师版八下《分式》单元试卷[1]

华师版八下《分式》单元试卷[1]

八年级下数学第17章《分式》单元试卷班级 姓名 号数 成绩一、填空题:(6题*2=12分)1 、当x________时,分式有意义2、计算:(—2)0= ,(31)— 2 = 3、2003年4月16日世界卫生组织宣布:冠状病毒的一个变种是引起非典型脑炎的病原体,某种冠状病毒的直径约为0.00000012m ,这种冠状病毒的直径用科学记数法表示为 m.4、约分:(1)2582x x = (2)22)()(a b b a -- = 5、不改变分式的值.将分式b a b a 23121-+分子、分母中各项系数化为整数.则结果为 .6、请你写一个只含有字母x 的分式,(其中的数字不限)。

要求:(1)x 取任何有理数时,分式有意义;(2)此分式的值恒为负,你写的分式是二、选择题:(5题*3=15分)7、下列方程是分式方程的是( )A 、2513x x =+-B 、315226y y -+=- C 、212302x x +-= D 、81257x x +-= 8、如果把分式yx x +中x 、y 都扩大为原来的2倍,那么分式的值( ) A. 扩大2倍 B. 扩大4倍 C. 缩小2倍D. 不变 9、 分式11a b+计算的结果是( ) A 、b a + B 、1a b + C 、2a b+ D 、a b ab+ 10、下列计算正确的是( ) 41--x xA 、11123x x x +=B 、111x y x y-=- C 、1111x x x +=++ D 、212x xy y xy--= 11、 分式22212121x x x x x x x +---++,,的最简公分母是( ) A.2()(1)x x x -+B.22(1)(1)x x -+ C.2(1)(1)x x x -+D.2(1)x x +三、分式的计算: 12、2223362c ab b c b a ÷ (6分) 13、 2396422--•+--x x x x x (6分)14、 96312---m m (6分) 15、(6分)16、请你先化简:111121x x x x -++⎛⎝ ⎫⎭⎪÷-,再选取一个使原式有意义,而你又喜欢的数代入求值。

[精品]华师大版数学八下第16章《分式》综合水平测试题

[精品]华师大版数学八下第16章《分式》综合水平测试题

八年级数学下册《分式》单元测试姓名 得分一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母B .当B =0时,分式B A无意义 C .当A =0时,分式BA的值为0(A 、B 为整式)D .分数一定是分式3.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .am an m n --=4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++ D .()222y x y x +- 5.化简2293m mm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm -3 6.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x8.已知230.5x y z==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( )A .2B .2±C .2D .2± 二、填空题:(每小题3分,共24分)11.分式392--x x 当x _________时分式的值为零,当x ________时,分式xx 2121-+有意义.12.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =__________. 15.计算:=+-+3932a a a __________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)3xy 2÷x y 2620. 计算: ()3322232n mn m --⋅21. 计算(1)168422+--x x x x (2)mn nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程. (1)xx 3121=- (2)1412112-=-++x x x24. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111xx x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A 11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a -16..-1<x <23 18.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.19.(1)原式=632666x x x ++=116x (2)原式=2236x xy y g =212x20.原式=243343m n m n -g =1712m n -21.(1)原式=2(4)(4)x x x --=4x x - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n--22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+--=2a a b-当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解. 24.(1)原式=1111x x x -⎛⎫+ ⎪-⎝⎭g =1111x x x x -+--g =11x x x x--g =1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数, ∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m 27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.28.设甲速为xkm/h ,乙速为3xkm/h ,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8km/h ,乙速为24km/h.。

达标测试华东师大版八年级数学下册第十六章分式章节测试试卷(精选含答案)

达标测试华东师大版八年级数学下册第十六章分式章节测试试卷(精选含答案)

华东师大版八年级数学下册第十六章分式章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x 的一元一次不等式组()213221x x x a ⎧-≤-⎪⎨->⎪⎩的解集为5x ≥,且关于y 的分式方程2322y a y y+=---有非负整数解,则符合条件的所有整数a 的和为( ) A .1- B .2- C .3- D .4-2、下列计算正确的是( )A .x 2•x 4=x 6B .a 0=1C .(2a )3=6a 3D .m 6÷m 2=m 3 3、如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变4、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x +3x =60B .1603x x -= C .6013x x -= D .x =3(60-x )5、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .22a a b b =D .22a a b b= 6、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 7、当x =﹣2时,下列分式没有意义的是( )A .22x x -+B .2x x -C .22x x +D .22x x-- 8、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯9、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6-10、若关于x 的不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩有且仅有3个整数解,且关于y 的方程2135a y a y --=+的解为负整数,则符合条件的整数a 的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、腊味食品是川渝人民的最爱,去年12月份,某销售商出售腊肠、腊舌、腊肉的数量之比为3:5:3,腊肠、腊舌、腊肉的单价之比为3:3:2.今年1月份,该销售商将腊肠单价上调20%,腊舌、腊肉的单价不变,并加大了宣传力度,预计今年1月份的营业额将会增加,其中腊肉增加的营业额占总增加营业额的14,今年1月份腊肉的营业额将达到今年1月份总营业额的730.若腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,则今年1月份出售腊肠与腊肉的数量之比是__________.2、(1)(﹣2020)0=_____;(2)(x 3y )2=_____;(3)3a 2•2a 4=_____.3、方程12131x x =-+的解为___. 4、若分式99x x--的值为0,则x 的值为__________. 5、若()0211x -=,则x ≠______.6、计算:(232x y-)3=___;(9x 2y ﹣6xy 2+3xy )÷3xy =_____. 7、若230x x +-=,则代数式211x x x x ⎛⎫-⋅ ⎪-⎝⎭的值是______.8、计算:201(2π-⎛⎫-= ⎪⎝⎭__________. 9、如果分式(1)x x x+的值为零,那么x 的值是________. 10、若关于x 的分式方程133x a x x +=---有增根,则a=________. 三、解答题(5小题,每小题6分,共计30分)1、化简: (1)2236932a a a a a a +++⋅+ (2)111(1)m m m +++ 2、计算:(1)(2a ﹣b )2﹣b (2a +b );(2)(2a a 1-﹣a ﹣1)÷221-a a .3、化简分式2344(1)11x x x x x ,并从1、2、3这三个数中取一个合适的数作为x 的值代入求值.4、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地.(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?(2)已知甲的速度为12/km h,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到2km,判断乙能否在途中超过甲,请说明理由.5、观察下列等式:①1111212--=-⨯;②1111 23434--=-⨯;③1111 35656--=-⨯;④1111 47878--=-⨯;……根据上述规律回答下列问题:(1)第⑤个等式是;(2)第n个等式是(用含n的式子表示,n为正整数).-参考答案-一、单选题1、D【解析】【分析】由一元一次不等式组的解集可知a <3,由y 的分式方程知a =-3,a =-1时满足方程有非负整数解,故符合条件的所有整数a 的和为4-.【详解】()213221x x x a ⎧-≤-⎪⎨->⎪⎩ 化简21362x x x a -≤-⎧⎨->⎩ 解得25ax x >+≥⎧⎨⎩ 故2+a <5即a <32322y a y y+=--- 通分得2322y a y y -=--- 合并得232y a y -=-- 两边同乘y -2得236y a y -=-+ 移向得32y a =+ 32y a =+若有非负整数解且y ≠2, 则a =-3时,y =0,符合题意,a =-1时y =1,符合题意,a =1时y =2,舍去,a =3时y =3,但a <3,不符合题意,故舍去,其余a 的取值同理均舍去.综上所述a=-1,a=-3满足条件,故符合条件的所有整数a的和为-4.故选:D.【点睛】本题考查了一元一次不等式组的解集,分式方程的性质,非负整数集的定义,一元一次不等式组的解集取两个式子解集的公共部分,分式方程的分母不能为0,否则方程无意义,非负整数指的是0和正整数.熟练掌握这些性质是解题的关键.2、A【解析】【分析】根据零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则求解即可.【详解】解:A、x2•x4=x6,故选项正确,符合题意;a 时,0a无意义,故选项错误,不符合题意;B、当0C、(2a)3=8a3,故选项错误,不符合题意;D、m6÷m2=m4,故选项错误,不符合题意.故选:A.【点睛】此题考查了零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则,解题的关键是熟练掌握零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则.3、A【解析】【分析】将x,y用3x,3y代入化简,与原式比较即可.解:将x,y用3x,3y代入得233y3233x xyx y x y⨯⨯⨯=++,故值扩大到3倍.故选A.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.4、A【解析】【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)①故D正确;将①两边同时除以3得:60-x=13x,则B正确;将①两边同时除以3x得:60xx-=13,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.5、C【解析】【分析】由a b ,令3a =,4b =再逐一通过计算判断各选项,从而可得答案.【详解】解:当3a =,4b =时,34a b =,2526a b +=+,故A 不符合题意; 2122a b -=-,故B 不符合题意; 而2,2a a b b = 故C 符合题意; 22916a b =.故D 不符合题意 故选:C .【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.6、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A .方程分母中不含未知数,故不是分式方程,不符合题意;B .方程分母中不含未知数,故不是分式方程,不符合题意;C .方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D .方程分母中含未知数x ,故是分式方程,符合题意.故选:D .【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).7、A【解析】【分析】根据分式的分母为0时,分式无意义即可解答.【详解】解:A .分式22x x -+没有意义时,x =-2,故A 符合题意; B .分式2x x -没有意义时,x =2,故B 不符合题意; C .分式22x x +没有意义时,x =0,故C 不符合题意; D .分式22x x--没有意义时,x =0,故D 不符合题意; 故选:A .【点睛】本题考查了分式无意义的条件,熟练掌握分式的分母为0时,分式无意义是解题的关键.8、C【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.9、B【解析】【分析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.10、C【解析】【分析】 解不等式组得到227x a x <⎧⎪+⎨≥⎪⎩,利用不等式组有且仅有3个整数解得到169a -<≤-,再解分式方程得到152a y +=-,根据解为负整数,得到a 的取值,再取共同部分即可. 【详解】 解:解不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩得:227x a x <⎧⎪+⎨≥⎪⎩,∵不等式组有且仅有3个整数解, ∴2217a +-<≤-, 解得:169a -<≤-, 解方程2135a y a y --=+得:152a y +=-, ∵方程的解为负整数, ∴1502a +-<, ∴15a >-,∴a 的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a 为:-13,-11,-9,共3个,故选C .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.二、填空题1、20:21【解析】【分析】设去年12月份腊肠的单价为3x ,则去年12月份腊舌,腊肉的单价分别为3x ,2x ,今年1月份腊肠的单价为3.6x ,去年12月份腊肠的销售数量为3y ,则腊舌,腊肉的销售数量分别为5y 、3y ,1月份腊肉增加的营业额为z ,则总增加营业额为4z ;先求出去年12月份的销售额为30xy ,1月份腊肉的销售额为6xy z +,从而得到今年1月份的总销售额为304xy z +,再由今年1月份腊肉的营业额将达到今年1月份总营业额的730,推出15z xy =,即可求出今年1月份的总销售额为90xy ,腊肉的销售额21xy ,则腊肠今年1月份的营业额为90332136xy xy xy xy --=,设今年1月份出售腊肠与腊肉的数量分别为a 和b ,可以得到 3.636221ax xy bx xy=⎧⎨=⎩,由此求解即可. 【详解】解:设去年12月份腊肠的单价为3x ,则去年12月份腊舌,腊肉的单价分别为3x ,2x ,今年1月份腊肠的单价为3.6x ,去年12月份腊肠的销售数量为3y ,则腊舌,腊肉的销售数量分别为5y 、3y ,1月份腊肉增加的营业额为z ,则总增加营业额为4z ,∴去年12月份的销售额为33532330x y x y x y xy ⋅+⋅+⋅=,1月份腊肉的销售额为236x y z xy z ⋅+=+, ∴今年1月份的总销售额为304xy z +,∵今年1月份腊肉的营业额将达到今年1月份总营业额的730, ∴6730430xy z xy z +=+, ∴15z xy =(经检验,符合分式方程有意义的条件),∴今年1月份的总销售额为90xy ,腊肉的销售额21xy∵腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,∴腊舌今年1月份增加的营业额为18xy ,∴腊舌今年1月份的营业额为351833x y xy xy ⋅+=,∴腊肠今年1月份的营业额为90332136xy xy xy xy --=,设今年1月份出售腊肠与腊肉的数量分别为a 和b ,∴ 3.636221ax xy bx xy=⎧⎨=⎩, ∴3.636221a b =, ∴2021a b =, 故答案为:20:21.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够根据题意设出相应的未知量,然后推导出对应的关系式.2、 1 x6y2 6a6【解析】【分析】(1)根据非零数的零次幂等于1求解;(2)根据积的乘方法则计算;(3)根据单项式与单项式的乘法法则计算;【详解】解:(1)(﹣2020)0=1;(2)(x3y)2=x6y2;(3)3a2•2a4=6a6.故答案为:(1)1;(2)x6y2;(3)6a6.【点睛】本题考查了零次幂的意义、积的乘方计算、以及单项式与单项式的乘法计算,单项式与单项式的乘法法则是,把它们的系数相乘,字母部分的同底数的幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.3、x=-3【解析】【分析】先去分母,然后再求解方程即可.【详解】解:12131x x =-+ 去分母得:()3121x x +=-,去括号得:3122x x +=-,移项、合并同类项得:3x =-,经检验:3x =-是原方程的解,故答案为3x =-.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.4、-9【解析】【分析】分式值为0的条件:分式的分子为0且分母不为0,据此求解即可得.【详解】解:由题意得:9090⎧-=⎨-≠⎩x x , 解得:9x =-,故答案为:9-【点睛】本题考查了分式值为0,解题的关键是熟练掌握分式值为0的条件.5、12##0.5【解析】【分析】直接利用零指数幂的底数不为0可得出答案.【详解】解:∵(2x ﹣1)0=1,∴2x ﹣1≠0,解得:x ≠12. 故答案为:12.【点睛】此题主要考查了零指数幂,正确掌握零指数幂的底数不为0是解题关键.6、 36278x y - 3x ﹣2y +1 【解析】【分析】根据分式的乘方法则和分式的约分方法计算即可.【详解】解:(232x y -)3=323(3)(2)x y -=36278x y -=﹣36278x y; (9x 2y ﹣6xy 2+3xy )÷3xy =229633x y xy xy xy-+ =()33213xy x y xy -+=3x ﹣2y +1;故答案为:﹣36278x y;3x ﹣2y +1. 【点睛】本题考查了分式的乘方和分式的约分,分式的乘方是把分子、分母分别乘方,分式的约分是把分式分子、分母中除1以外的公因式约去.7、3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 2+x =3整体代入计算即可求出值.【详解】解:∵x 2+x -3=0,∴x 2+x =3, ∴211x x x x ⎛⎫-⋅ ⎪-⎝⎭ 2211x x x x -=⋅- 2(1)(1)1x x x x x +-=⋅- (1)x x =+=x 2+x=3,故答案为:3.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.8、3【解析】【分析】根据实数的运算法则即可求出答案.【详解】解:原式41=-3=.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.9、1-【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:(1)0x x +=且0x ≠,解得1x =-.故答案为:1-.【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10、3【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a 的值即可.【详解】 解:133x a x x+=---, 去分母得: x −a =3-x ,由分式方程有增根,得到x −3=0,即x =3,代入整式方程得:3−a =3-3,解得:a =3.故答案为:3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题1、 (1)12 (2)1m 【解析】【分析】(1)根据分式的乘法计算法则化简即可;(2)根据异分母分式的加法计算法则化简即可.(1) 解:2236932a a a a a a +++⋅+ ()()23323a a a a a =⋅+++12=; (2) 解:111(1)m m m +++ ()11(1)m m m m m =+++ ()11m m m +=+ 1m=. 【点睛】本题主要考查了分式的化简,熟知相关计算法则是解题的关键.2、 (1)4a 2-6ab (2)12a a+- 【解析】【分析】(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;(2)先将小括号内的式子进行通分计算,然后再算括号外面的.【小题1】解:原式=4a 2-4ab +b 2-2ab -b 2=4a 2-6ab ;【小题2】原式=()()()()21111112a a a a a a a a +-+-⎡⎤-⋅⎢⎥--⎣⎦=()()2211112a a a a a a-+--+⋅- =12a a+- 【点睛】本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.3、22x x +-,当x =3时,5. 【解析】【分析】先将分子分母因式分解,再进行计算,即可求解.【详解】 解:原式=(21311x x x ----)÷2(2)1x x -- =2(2)(2)11(2)x x x x x +--⨯-- x 2x 2+=-, ∵x ≠1且x ≠2,∴当x =3时,原式=3232+-=5. 【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.4、 (1)甲的速度是12.5千米/时,乙的速度是50千米/时;(2)乙能在途中超过甲.理由见解析【解析】(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到2km,列不等式组求得乙的速度范围,进步计算即可判断.(1)解:设甲的速度是x千米/时,乙的速度是4x千米/时,由题意,得25251.54x x-=,解得x=12.5,经检验x=12.5是分式方程的解,12.5×4=50.答:甲的速度是12.5千米/时,乙的速度是50千米/时;(2)解:乙能在途中超过甲.理由如下:设乙的速度是y千米/时,由题意,得0.52120 2120.52yy-⨯<⎧⎨⨯-<⎩,解得:44<y<48,甲走完全程花时间:2512小时,则乙的时间为:2571.51212-=小时,∴乙712小时走的路程s为:712×44<s<712×48,即2523<s<28,∴乙能在途中超过甲.本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组.5、 (1)1111 5910910 --=-⨯(2)11112122(21) n n n n n--=---【解析】【分析】(1)观察前4个等式可以得出等式左边第1 个减数的分母是被减数的2倍减1,第2个减数的分母是被减数分母的2倍,右边的分母是等式左边第1个减数与第2个减数的分母乘积,且结果为负数,由此可得结论;(2)由(1)可得结论.(1)第⑤个等式是:1111 5910910--=-⨯,故答案为:1111 5910910--=-⨯;(2)由(1)以及所给等式可以得出,第n个等式为:11112122(21)n n n n n--=---,故答案为:11112122(21) n n n n n--=---【点睛】本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.学生很容易发现各部分的变化规律.。

华师大版八年级数学下《第16章分式》单元测试卷有答案

华师大版八年级数学下《第16章分式》单元测试卷有答案

第16章分式单元测试卷一、选择题(每题2分,共20分)1.在式子-x,,x+y,,+,中,是分式的有( )A.1个B.2个C.3个D.4个2.下列各式中,正确的是( )A.=-1B.=-1C.=a-bD.-=3.要使分式有意义,则x的取值应满足( )A.x≠2B.x≠-1C.x=2D.x=-14.下面是四位同学解方程+=1过程中去分母的一步,其中正确的是( )A.2+x=x-1B.2-x=1C.2+x=1-xD.2-x=x-15.若关于x的方程+=3的解为正数,则m的取值范围是( )A.m<B.m<且m≠C.m>-D.m>-且m≠-6.纳米是非常小的长度单位,1纳米=10-9米,某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( )A.5×10-10米B.5×10-9米C.5×10-8米D.5×10-7米7.若关于x的分式方程+=无解,则m的值为( )A.-6B.-10C.0或-6D.-6或-108.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划平均每亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为( )A.-=20B.-=20C.-=20D.+=209.下列运算正确的是( )A.=-B.3-1+(a2+1)0=-2C.÷m·m÷=1D.(m2n)-3=10.轮船顺流航行40 km由A地到达B地,然后又返回A地,已知水流速度为每小时 2 km,设轮船在静水中的速度为每小时x km,则轮船往返共用的时间为( )A. hB. hC. hD. h二、填空题(每题3分,共24分)11.已知x+=4,则代数式x2+的值为___________.12.计算的结果是___________.13.若整数m使为正整数,则m的值为___________.14.不改变分式的值,把分式中分子、分母各项系数化成整数为___________.15.使代数式÷有意义的x的取值范围是___________.16.甲、乙两地相距s千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达,若每小时多行驶a千米,则汽车可提前___________小时到达.17.若分式方程-=2有增根,则这个增根是___________.18.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是___________km/h.三、解答题(19题4分,24,25题每题10分,其余每题8分,共56分)19.计算:(π-5)0+-|-3|.20.化简:(1)÷;(2)÷21.解方程:(1)=-.(2)1-=.22.先化简,再求值:÷,其中x=2.23.先化简,再求值:·+,其中x是从-1、0、1、2中选取的一个合适的数.24. 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4 厚型纸单面打印,总质量为400 克,将其全部改成双面打印,用纸将减少一半;如果用A4 薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8 克,求A4薄型纸每页的质量.(墨的质量忽略不计)25.某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.参考答案一、1.【答案】B解:分母中含有字母是分式的根本特征,注意π是常数,所以只有,是分式.2.【答案】B3.【答案】A4.【答案】D5.【答案】B6.【答案】C7.【答案】D解:去分母得:x+2+x+m=3x-6,∴x=m+8,∵原方程无解,∴m+8=2或m+8=-2,∴m=-6或-10.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】1412.【答案】1-2a13.【答案】0,1,2,5解:由题意可得1+m是6的因数,所以当1+m=1时,m=0;当1+m=6时,m=5;当1+m=2时,m=1;当1+m=3时,m=2.14.【答案】15.【答案】x≠±3且x≠-416.【答案】解:-=-=(小时).17.【答案】118.【答案】80解:设这辆汽车原来的速度是x km/h,由题意列方程得-0.4=,解得x=80.经检验,x=80是原方程的解,且符合题意,所以这辆汽车原来的速度是80 km/h.三、19.解:原式=1+2-3=0.20.解:(1)原式=÷=×=;(2)原式=×=×=×=-.21.解:(1)方程两边同时乘以2(2x-1),得2=2x-1-3.化简,得2x=6.解得x=3.检验:当x=3时,2(2x-1)=2×(2×3-1)≠0,所以,x=3是原方程的解.(2)去分母,得x-3-2=1,解这个方程,得x=6.检验:当x=6时,x-3=6-3≠0,∴x=6是原方程的解.22.解:÷=÷=×=.当x=2时,原式==1.23.解:原式=·+=+=+=.当x=0时,原式=-.24.解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.25.解:(1)设原计划每天生产零件x个,由题意得,=,解得x=2 400,经检验,x=2 400是原方程的根,且符合题意.∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400个,规定的天数是10天.(2)设原计划安排的工人人数为y人,由题意得,[5×20×(1+20%)×+2400]×(10-2)=24 000,解得y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.。

(新课标)华东师大版八年级数学下册《分式》单元测试卷1及答案

(新课标)华东师大版八年级数学下册《分式》单元测试卷1及答案

(新课标)2017-2018学年华东师大版八年级下册《分式》单元测试题姓名: 班级: 学号: 分数: 一.选择题(每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案1.下列各式中,分式的个数为:( )3x y -,21a x -,1x π+,3ab -,12x y+,12x y +,2123x x =-+; A 、5个; B 、4个; C 、3个; D 、2个;2、下列约分正确的是( )A 、326x xx =;B 、0=++yx yx ;C 、xxy x y x 12=++;D 、214222=y x xy3.下列各式正确的是( )A 、c c a b a b =----; B 、c ca b a b =---+; C 、c c a b a b =--++; D 、c ca b a b-=----;4.人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示为( )A 、57.710-⨯米;B 、67710-⨯米;C 、57710-⨯米;D 、67.710-⨯米;5.下列分式是最简分式的是( ) A 、11m m--; B 、3xy y xy-; C 、22x y x y -+; D 、6132mm-; 6.将分式2x x y+中的x 、y 的值同时扩大2倍,则扩大后分式的值( )A 、扩大2倍;B 、缩小2倍;C 、保持不变;D 、无法确定; 7、若分式33x x --的值为零,则x =( )A 、3;B 、-3;C 、3±;D 、08、已知0≠x ,xx x 31211++等于( ) A 、x21 B 、x 61 C 、x65D 、x611二.填空题(每小题3分,共21分) 9.分式x x -+212中,当____=x 时,分式没有意义,当____=x 时,分式的值为零。

10.分式2x yxy+,23y x ,26x yxy-的最简公分母为; 11.计算:201()( 3.14)3π--+-=; 12.分式方程3-x x +1=31--x x 有增根,则x =13.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式》单元测试题
姓名: 班级:
1.下列各式中,分式的个数为:( )
3x y -,21a x -,1x π+,3a b -,12x y +,12x y +,21
23
x x =
-+; A 、5个; B 、4个; C 、3个; D 、2个;
2、下列约分正确的是( )
A 、3
26x x x =; B 、
0=++y x y x ; C 、x xy x y x 12=++; D 、2
14222=y x xy 3.下列各式正确的是( )
A 、c c a b a b =----;
B 、c c a b a b =-
--+; C 、c c a b a b =--++; D 、c c a b a b -=-
---; 4.人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示为( ) A 、57.710-⨯米; B 、67710-⨯米; C 、57710-⨯米; D 、67.710-⨯米; 5.下列分式是最简分式的是( ) A 、
11m m --; B 、3xy y xy -; C 、22x y x y -+; D 、6132m
m
-;
6.将分式2
x x y +中的x 、y 的值同时扩大2倍,则扩大后分式的值( )
A 、扩大2倍;
B 、缩小2倍;
C 、保持不变;
D 、无法确定;
7、若分式3
3
x x --的值为零,则x =( )
A 、3;
B 、-3;
C 、3±;
D 、0
8、已知0≠x ,x
x x 31
211++等于( )
A 、
x 21 B 、x 61 C 、x 65 D 、x
611
二.填空题(每小题3分,共15分)
9.分式x x -+21
2中,当____=x 时,分式没有意义,当____=x 时,分式的值为
零。

10.分式
2x y xy +,23y
x
,2
6x y xy -的最简公分母为 ; 11.计算:201
()( 3.14)3π--+-= ;
12.分式方程3-x x +1=3
1
--x x 有增根,则x =
13.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。

(结果化为最简形式)
三.解答题(每小题5分,共30分)
14.约分:22444a a a --+; 15、计算:m
n n
n m m m n n m -+
-+--2
16.计算:22211065)32(x y
x y y x ÷⋅; 17、计算:x
x x -+-33)3(32;
18.计算:
11
2
-+-x x x ;
19、先化简,再求值1
)1211(2
-÷-++x x
x x : 其中2x =-;
四.解答题(每小题5分,共10分)
20.解方程:5
12552x x x
+=--;
21、解方程:283
111
x x x ++=
--;
五.解答题(第22题7分,第23小题6分,共13分)
22.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做多少个零件?
23.甲、乙两地相距360千米,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时。

试确定原来的平均速度。

六、附加题:若的值求1
,3124
2
++=+x x x x x (10分)
参考答案:
9、 2 2
1-。

10、2
26y x 11、 10。

12、3 13、y x xy +
三、
14、22-+a a 15、m n m - 16、2
3
97y x 17、2)3(9-x 18、11222-+-x x x
19、
2
5
四、
20、0=x 21、1=x 是增根,无解。

五、
22、解:设现在每天做x 个零件。

203000
4000-=
x x 解得80=x
23、解:设原来得平均速度为每小时x 千米。

25.1360
360=-x x 解得60=x 六、
8
1。

相关文档
最新文档