人造血管的现状及其研究进展
双绒编织人造血管用途
双绒编织人造血管用途人造血管是一种替代的医疗器械,用于修复和替代受损或狭窄的自然血管。
双绒编织人造血管作为一种新型的材料,在血管再生和维修方面具有广泛的应用前景。
首先,双绒编织人造血管具有优异的力学性能,可在体内提供稳定的血流。
它的材料通常由生物相容性高的聚合物制成,如聚乙烯醇(PVA)和聚左旋乳酸(PLA)。
这种材料具有良好的延展性、韧性和耐久性,能够承受较大的内外压力,保持血管的形态和功能。
与传统的人造血管相比,双绒编织人造血管具有更好的生物相容性和生物降解性,不会引发排斥反应或长期植入后产生健康隐患。
其次,双绒编织人造血管具有良好的血液相容性。
它能够抵抗血栓形成和血管炎等不良反应,保持正常的血液流动。
双绒编织人造血管内壁光滑,能够减少血小板和纤维蛋白在血管内的沉积,降低血管硬化的风险。
此外,双绒编织人造血管还具有良好的载药性能,可以通过在材料表面镀覆药物或将药物包裹在纤维中,实现药物的持续释放,降低再狭窄和血管堵塞的可能性。
第三,双绒编织人造血管在临床上具有广泛的应用价值。
它可以用于各种血管修复和替代手术,如动脉瘤修复、血栓切除和冠状动脉搭桥术等。
双绒编织人造血管可以作为血管替代品,用于修复因外伤、感染、疾病或手术切除等原因导致的血管缺损。
与传统的自体或异体移植血管相比,双绒编织人造血管可以避免移植物的供体限制和移植后的排斥反应,减轻患者的痛苦和并发症。
此外,双绒编织人造血管还可以用于血管再生和组织工程方面的研究。
科学家们可以在血管模板上种植干细胞或其他组织工程材料,促进新的血管生长和组织修复。
双绒编织人造血管的微孔结构可以提供细胞附着和扩散的空间,有利于血管内皮细胞和平滑肌细胞的生长和分化。
通过调控材料的成分和结构,还可以实现对新生血管的形态和功能的精密控制。
综上所述,双绒编织人造血管作为一种新型的人工血管材料,具有优异的力学性能、良好的血液相容性和广泛的临床应用价值。
它在血管修复和替代、血管再生和组织工程等领域具有巨大的潜力,将为现代医学的发展和血管疾病的治疗带来新的希望。
2024年人造血管市场分析现状
2024年人造血管市场分析现状简介人造血管是一种用于替代或修复受损或缺失血管的医疗装置。
随着人口老龄化和心血管疾病的增加,对人造血管的需求不断增加。
人造血管市场在过去几年中经历了快速增长,但目前仍存在许多挑战和机遇。
市场规模根据市场研究机构的数据,全球人造血管市场在2019年达到了XX亿美元,并预计到2027年将达到XX亿美元。
亚洲地区是人造血管市场增长最快的地区,预计在未来几年将继续保持高速增长。
市场驱动因素1. 人口老龄化和心血管疾病增加随着人口老龄化的加剧,心血管疾病的发病率不断上升。
心脏病和血管疾病是导致死亡和残疾的主要原因之一。
人造血管作为治疗和修复心血管疾病的一种有效手段,受到越来越多的关注和需求。
2. 技术进步随着科技的不断进步,人造血管的材料和制造工艺得到了大幅改进。
新材料的应用和人造血管的生物相容性得到了显著提高,增加了人造血管的使用范围和效果。
3. 医疗支出增加全球各国对医疗体系的投资不断增加,这为人造血管市场创造了良好的发展环境。
医疗保健支出的增加意味着更多的资金用于研发和推广人造血管技术。
市场挑战1. 高成本人造血管的制造和手术费用较高,这限制了该技术的普及和推广。
尽管医疗支出增加,但一些发展中国家仍然无法承担这些高昂的费用,限制了市场的发展。
2. 安全性和可靠性问题尽管人造血管的技术不断改进,但安全性和可靠性仍然是一个挑战。
人造血管可能存在血栓形成、感染和排异反应等风险,这需要更多的研究和改进。
3. 法规和监管限制人造血管的开发和使用受到各国的法规和监管限制。
这些限制可能会增加生产商的负担和市场准入的难度。
未来趋势1. 个性化治疗随着基因组学和生物医学的发展,个性化治疗将成为人造血管市场的一个重要趋势。
通过个体化的治疗方案,可以提高治疗效果并减少副作用。
2. 发展中国家市场的增长人口老龄化和心血管疾病的增加不仅在发达国家,而且在发展中国家也日益严重。
这为人造血管市场在发展中国家开拓新的增长机会。
2024年人造血管市场发展现状
2024年人造血管市场发展现状引言随着人口老龄化和慢性疾病发病率的增加,血管相关疾病逐渐成为全球公共卫生问题。
然而,由于血管移植困难和供体有限,人造血管逐渐成为治疗血管疾病的有希望替代方案。
本文将分析当前人造血管市场的发展现状,并探讨其未来发展趋势。
人造血管的概念及分类人造血管是一种用于重建或替代血管功能的人工器械。
根据其材料、结构和功能,人造血管可以分为以下几类:•合成聚合物人造血管:采用合成聚合物材料制造,具有良好的生物相容性和机械性能,如聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)等。
•生物活性人造血管:采用生物活性材料制造,可促进细胞外基质生成和血管再生,如生物降解聚合物和生物陶瓷等。
•细胞矩阵人造血管:基于细胞培养的技术,通过培养人体细胞在支架上形成血管组织。
人造血管市场的发展现状市场规模和增长趋势目前,全球人造血管市场规模不断扩大。
根据市场研究机构的数据,2019年全球人造血管市场规模约为XX亿美元,并预计年均增长率将在未来几年保持XX%的增长。
市场的增长主要受到人口老龄化和慢性疾病的增加影响,以及技术进步和医疗保健投资的增加。
市场分析北美地区北美地区是人造血管市场的主要消费者和生产地。
该地区的市场占据全球市场份额的XX%,并且预计在未来几年内将保持较高的增长率。
北美地区的市场增长主要得益于该地区医疗保健基础设施的先进和人口老龄化的加剧。
欧洲地区欧洲地区的人造血管市场相对较小,但也具有较高的增长潜力。
该地区的市场份额约为XX%,并预计在未来几年内将以XX%的年均增长率增长。
欧洲地区的市场增长主要受到医疗技术的进步和对创新医疗解决方案的需求推动。
亚太地区亚太地区的人造血管市场份额约为XX%,并预计将保持较高的增长率。
亚太地区的市场增长主要受到人口老龄化的加剧、医疗保健投资的增加和技术进步的影响。
市场竞争情况目前,全球人造血管市场竞争激烈,市场上存在多家主要供应商。
这些供应商通过不断推出创新产品、提高产品质量以及与医疗机构合作等方式来竞争市场份额。
拿什么替代你,血管——探秘人造血管技术
拿什么替代你,血管——探秘人造血管技术导致的动脉变窄甚至闭塞;颈动脉粥样硬化导致的中风;冠状动脉粥样硬化导致的心脏病等.当血管由于动脉硬化,老化或破损不能正常工作时,需进行管移植.公元前800年到公元前600年,SushrutaSamhita第一次用烙铁和沸油粘合血管的方式来治疗出血.公元前2世纪,Refus和Antyllus用结扎线将动脉捆起来止血,古罗马的Galen第一次将动脉和静脉区分开来.文艺复兴时期,AmbroisePare用结扎线治疗出血.1759年,Larobert和Hallowell为了修复血管后不损伤腔体而引入了血管的修复术和连接术,但脓毒病导致其失败.l9世纪下半叶,Lister~[JPasteur引入感染的控制方法,血管修复术和连接术才取得成功.l881年,Czerny第一次将无菌技术带入血管外科手术.l882年,C1uck成功地修复了狗的大腿动脉.l889年,Jassinowsky指出在无菌条件下受伤的颈动脉可以修复.1890年,Burci提出了连续缝合技术.l9世纪末期,札管修复试验不计其数,但所有这些试验都因为血栓的形成而告失败.2O世纪早期,"血管外科之父"Carrel和Guthrie使用白体静脉替代动脉移植成功后,血管外科在血管代用品领域有了较大的发展.lI缶床上,越来越多的血管重建和修补手术也增加了对血管的需求,而可用于移植的白体血管毕竟有限,因而从生物组织型人造血管,人1.合成人造m管列入丁{j物混44fzoo8.8f首都医药CAPITALMEOfCINE 拿什么替代你,血管探秘人造血管技术一本刊记者陈铮合型人造血管乃至组织工程型人造血管,人们始终没有停止探寻血管替代物的脚步.材料与织造技术决定着人造血管的发展人造『f『L管材料的研究道路分曲折.人造血管的研制开始于2O世纪初,各国学者首先采用金属,玻璃,聚乙烯,硅胶等材料制成的管状物进行大量动物实验,但因其易在短期内并发腔内血栓而未能存临床上得到广泛应用.l952年V oorhees首先研究将维纶制成人造血管,改变r【往人造血管管壁无通透性的缺点.按下来的几年中,V oorhees,Blakemore以及Jaretzki作了大量的临床试验,研制了带有网孔的人造血管,这是血管代用品发展史上的一个里程碑.随着纤维材料和医学生物材料的不断发展,继V oorhees之后,各国科研工作者研究出各种材料,各种加工方法生产的有孔隙的人造血管并用于动物实验和临床.随后,专家们测试了很多材料,~UPVC(聚氯乙烯),聚丙烯腈(腈纶),丝绸,尼龙以及粘胶.聚丙烯腈(腈纶)和尼龙制得的人造血管稳定性差,因此这两种材料很快被淘汰.PTFE(聚四氟乙烯)长丝直径比较大,其制得的人造血管不论是机织还是针织都较硬较重,因此较难缝合,其实用性不如聚酯(涤纶)人造血管.在中,小直径人造血管中,过去较多使用整体成型的膨化聚四氟乙烯(ePTFE),但其人造向管的顺应性较差,临床资料表明ePTFE人造血管的通畅率仅为30%.近年来聚氨酯(PU)材料备受关注,因为这种材料具备良好的顺应性和弹性,具有优良的抗血栓性.与ePTFE血管对比实验表明,PU血管在更短的时间内实现了内皮化,而且新生内膜厚度明显比ePTFE血管内膜薄.解决了材料的问题,接下来需要解决的就是人造血管织造方法及技术方面的难题.由于人造血管材料是纤维,因此织造方式成为决定人造血管功效的又一个关键点. 早期的人造血管均采取机织,采用了较长一段时间后又出现了针织人造血管.从总体上[召nmi看,针织物结构较松,柔顺性好,易于操作,不易脱边,有较好的缝合稳定性.但由于空隙大,渗透性较大,植入前需用患者的血液进行预凝.机织物结构紧密,强度高,空隙率低,无需患者进行血液预凝.但其刚性较强,手术中处理较困难,且切开端容易散边,缝合强度较低.20世纪70年代出现了机织和针织丝绒型人造血管,其内外表面都有伸出的纱圈,后由于渗透性大和抗张强度低而被淘汰.为了增加人造血管的纵向延伸性和侧向挠曲性,防止由于肢体弯曲造成人造血管弯折阻碍血液的流动导致血栓形成,现在大部分大直径的机织和针织人造血管均设计有圆周向的波纹,类似可弯曲的麦秆.为了改善血管的弹性和柔顺性,El本学者采用弹性纱和非弹性纱,通过针织或编织制成具有类似天然血管弹性的管状组织,从而改善了人造血管的顺应性.内皮化及复合体织造技术使人造物能够替代血管.1978年,Herring等人首先报道了使用内皮细胞种植技术对人造血管进行内皮化,从而开辟了人造血管研究的新途径.即将自体血管内皮细胞种植在人造血管的腔壁上,经过组织培养,使其形成内皮化的腔面,以增强抗血栓能力.20世纪80年代血管织造技术又有了新进展,主要就是将更多的缎纹浮点混合到机织的丝绒结构当中.事实证明,这样做有其临床价值:既可以改善初期的血栓粘连又可以改善体内后期的组织附着.目前使用比较多的人造血管是超薄超强纤维织物与金属支架结合的复合体,其中织物部分可用天然丝(真丝)或合纤丝(聚酯,聚乙烯,聚四氟乙烯),一般采用机织方法生产,也可采用含微孔的薄膜,如超薄聚四氟乙烯,聚氨酯薄膜等.因为在手术时需要将人造血管经股动脉或肱动脉通过导管送入病变位置,所以要求人造血管必须控制在一定的厚度以内,一股不超过0.12mm.同时,为了保证血管植入时不发生渗漏,织物的渗透率必须严格控制.所有这些对织造提出了很高的要求.人造血管的现状很多病人特别是患心血管疾病的病人的终末期治疗,都需要用血管替代物进行血管重建和修补手术.如血管狭窄,闭塞,扩张,损伤,畸形,受累等.随着科技日新月异的发展,目前血管替代物的研究也达到了一个新的高度.目前应用最多的人造血管主要有4类.生物组织型血管:生物组织型血管是指从病人自身,他人或者动物身上取得血管植入体内,分为自体移植,异体移植和异种移植.异体移植和异种移植中血管的免疫排斥等问题直到目前都未能很好解决,已基本放弃临床应用.自体移植血管从理论上讲是动脉旁路移植最理想的材料,但是可取用的自体血管少,其长度和口径往往都不能满足临床需要.合成型人造血管:合成型人造血管研制初期,鹅羽毛茎,玻璃管,象牙管,镁管,石蜡油玻璃铝管,铝钻合金,硅胶管,钢网管以及聚乙烯管都曾作为人造血管被尝试使用,但均以失败告终.转折出现在1952年,V oorhees在犬实验中,将涤纶人造血管移植于犬的腹主动脉获得成功,次年即应用于临床,同样获得成功.同时他们提出了一个重要理论:网孔原理.大致内容是:人造血管必须具备适合的网孔,人造血管植入后其外组织穿过网孔向内生长,在血管内形成一层新内膜,人造血管外面也有一层纤维组织膜.自此,各种带有网孔的人造血管纷纷研制成功.目前国际上普遍采用的商品化的有涤纶,膨化聚四氟乙烯和真丝人造血管.值得一提的是上海中山医院在1957年首创以纺绸真丝血管进行动物实验并获得成功,促进了我国血管外科的发展.生物混合型人造血管:由于一股合成人造血管的生物相容性尚未达到理想状态, 所以可以在这些高分子材料表面接上一层生物材料,以进一步提高其生物相容性,这就是生物混合型人造血管.一般所接的人工涂层包括以下几种:白蛋白,可提高人造血管的抗凝性能;纤维连接蛋白,可促进内膜形成,进而抑制凝血的发生;胶原蛋白,能促进内膜形成,防止凝血发生,还能提高人造血管的顺应性;明胶,有促进细胞黏附和生长的功能,从而在植入后能诱导内膜形成,防止凝血.组织工程型人造血管:运用组织工程技术构建的血管移植物具有高度组织相容性,可生长性,可塑性及无排斥反应,无血栓形成,不易感染等潜在优势,移植后又具有维持长期通畅,可自我更新的优势,因此是血管替代物研究领域的焦点.但构建组织工程型人造血管还存在很多工程技术难点. 比如体外制作的人造血管能否在体内保持原有的结构和功能,如何充分运用血液动力学的作用构建"器官样"血管,细胞与细胞间或者细胞与基质问的作用能否协调,如何开发既具有良好生物活性又对人体无损害的生物材料,如何缩短体外构建自体血管的时间以及解决种子细胞来源少的问题等.这些都限制了组织工程型人造血管在临床的应用. 人造血管的未来从最早的纺织物血管到如今生物组织型血管,合成型人造血管,生物混合型人造血管以及组织工程型人造血管,它们各有优缺点和适应症,但还没有一种可以完全满足临床需要,因而人们仍然在探寻更好的替代物.也许在不久的将来,以下几种血管替代物将成为临床上的理想选择.抗感染人造血管:目前广泛应用的血管替代物中,除自体血管具备一定的抗感染能力,其余像涤纶,膨化聚四氟乙烯及其他人造血管由于其化学惰性,一方面保证了植入后的稳定,另一方面也使病原菌容易种植于这类惰性物质的表面,并大量生长繁殖,导致感染.而人造血管植入后的感染不同于临床上一般的感染,内科保守治疗几乎无效.目前治疗方法只能是取出感染的人造血管,另行解剖旁路的血管搭桥,死亡率和截CAPITALMEDICINE首都医药J2008.8J45届[nm肢率都很高.因此,开发和研制具有抗感染活性的人造血管就显得很重要了.支架型人造血管:支架型人造血管经股动脉置入用于治疗主动脉瘤,主动脉夹层等疾病在国内国外的刊物上已经有不少报道.较传统开放性手术,支架型人造血管的应用明显降低了手术风险,减轻了病人痛苦,也为越来越多的患者所接受.但是,支架型人造血管在很多方面,比如其支架强度,生物相容性,易操作性,安全性,能应用于大弯角的支架型人造血管等方面,都需要进一步研究和改善.内皮细胞衬里人造血管:随着血管内皮细胞在维持血流通畅,抑制内膜下增生方面的重要性被人们逐渐认识,科研人员开始了内皮细胞衬里人造血管的研究.1978年Herring首先使用内皮细胞种植技术对人造血管进行内皮化,开辟了人造血管内皮化的新途径.国内的汪忠镐教授在上世~P.80年代初进行了这方面的研究.但是,目前该项技术还有很多问题需要解决,最重要的是如何更快更好地收集足够的内皮细胞.因此该技术有待进一步研究完善,尚不宜大量推广. 生物降解性血管:以生物组织为基础,建成新的血管,植入体内后,首先发挥疏通血液的作用,同时又起到支架的作用.待到一定时期,这种移植血管19动降解,随后,代之以自体生长出的血管.小口径人造血管:大口径的人造血管替代人体大动脉,就目前的报道和临床效果来看还是令人满意的.但是内径小于6ram的人造血管移植未获得满意效果,主要原因在于血栓形成以及新生内膜增厚,使得人造血管闭塞.目前对于小口径血管的研究,人们选择了两个突破口,一是选用顺应性更好的人造血管材料,另外就是开发内皮衬里小口径血管,以提高其远期通畅率.小口径人造血管移植仍是国际难题目前,大口径人造ff『L管的研究已经取46f2008.8f首都医药CAPITALMEDICINE 得突破性进展,在临床上得到广泛应用.而存小口径(直径小于6mm)人造血管研究方面,由于血管栓塞以及组织相容性等方面的核心问题没有得到有效解决,离实际应用还有很大的距离.理想的小口径人造血管要有良好的物理稳定性,力学性能,生物相容性,抗凝血性及抗感染性,其中力学性能和组织血液相容性是保旺血管的长期稳定性及通畅性的主要因素,也是突破人造血管技术的关键.理想的人造血管应具备一些必须的特点:良好的组织相容性和血液相容性;与宿主健康血管相近似的动力学性能;能与所替代的血管愈合成一体,有血管内膜长入;不易形成缸栓,长期保持通畅;不易发生退行性改变,性能稳定;耐受血管内压力,不易形成动脉瘤;受压后不易变形或扭折成角;不引起异物反应或排斥反应;可以对抗感染;缝合容易,不易撕裂,能适应不同的口径和长度.目前小口径人造血管存在的主要问题是血液与管腔接触时易引发血小板聚集,促使血栓形成.其中血液中凝血酶原是一个关键因素,人造血管的表面孔隙率及渗透压也是诱导血小板聚集的重要因素.此外,小口径人造血管很难保证良好的力学性能.现已商品化的多种高分子材料人造血管均已在临床上广泛使用,包括涤纶人造血管,真丝人造血管,膨化聚四氟乙烯人造血管,但是均无法完全达~uJ4,口径人造血管的必要要求. 涤纶人造血管:涤纶人造血管通畅率较高,长期以来被成功地用于血管桥接.它是通过针织和梭织两种方式制成的具有良好机械性能的高分子材料,适用于大口径动脉的替代.但其血液相容性不佳,无法完全满足小口径人造血管的制造要求.真丝人造血管:真丝人造血管1957年8月开始应用于临床.但其螺旋型皱缩不够稳定,易造成血管吸瘪,并且保形性差,应用不是非常广泛,现在已不在临床中使用.膨化聚四氟乙烯人造血管:国内外应用最广泛的人造血管材料是膨化聚四氟乙烯,具有很好的生物相容性与杭凝性,且孔径小,不需做预凝处理.然而临床资料表明, 自体血管移植物两年后的通畅率可达75%, 但膨化聚四氟乙烯人造血管移植物的通畅率仅为30%,尤其是直径小于6mm的膨化聚四氟乙烯人造血管上述缺点更加明显,远期通畅率极差,这可能与膨化聚四氟乙烯人造血管的顺应性较差有关.涤纶,真丝和膨化聚四氟乙烯人造血管的共同缺陷在于顺应性都非常差,完全不具备人体动脉的柔韧性与弹性,这个缺陷在与小El径动脉吻合时就表现得非常明显,这也是血栓易在吻合口部位形成的主要原因. 血液相容性对植入生命体内的材料的一个重要的要求就是它能与血液相容而不会引起血凝结,毒性和免疫反应.因此,血液相容性是生物医用材料极其重要的性能.而对抗凝血性的研究一直是提高医用生物材料血液相容性的关键.人造血管材料的抗凝血性能主要是指对血液的亲和性.人造血管应可抑制血小板的附着和聚集,能发生生物融合反应,能形成模拟生物组织表面.血液组分大部分为水,材料的血液相容性很大程度上表现为亲水性.组织相容性,是指人工生物材料移植人体内后,在短期内不会出现明显的急性毒性反应.在长期过程中,不会引起严重的炎症反应,排斥反应,细胞毒性反应以及畸变. 目前所用材料制成的小口径人造血管,尚无法有效解决这些问题.目前小口径人造血管的顺应性差是移植失败的原因之一.血管在体内会承受一定压力,局部血管病变,血管损伤打破了血管的平衡状态,所以血管替代物除了要重建血管本身以外,还要重建这种平衡.这就要求人造血管材料有一定的刚性,能承受压力而不塌陷.还要有一定的曲性(顺应性),即在与19体血管连接时,改变原来血管的弯曲度.人造血管顺应性分为体积顺应性,径向顺应性,轴向顺应性.目前所用的人造血管, 最多只有2项顺应性适合,尚没有材料能完全达到顺应性的要求.■。
人造血管的研究与进展
人造血管的研究与进展人造血管是指在体外培养人体细胞和组织,制作出与自然血管相似的血管。
随着医学技术的不断进步,人造血管的研究和制备已经开展了多年,它被认为是一种极为重要的治疗手段,尤其是对于心脑血管疾病患者来说。
在这篇文章中,我们将介绍人造血管的研究和进展。
一、人造血管简介人造血管是一种新型的生物医学工程技术,它可以用来修复或替换人体缺陷的自然血管。
目前,人造血管的研究和制备主要包括三个方面:材料学、细胞学和模拟学。
其中,材料学研究主要集中在寻找适宜的材料,包括聚合物、金属合金、生物降解性材料等;而细胞学研究则主要是针对材料的表面性质和化学成分,通过体外培养人体细胞和组织,使其在固定的支架上形成血管组织;而模拟学研究则是通过计算机模拟和实验仿真来分析和描述人造血管的力学性能和流体动力学特性。
二、人造血管的制备方法1. 自组装方法自组装法是指利用化学和生物学技术,将体外培养的人体细胞和自然血管内皮细胞等组成血管壁的材料,通过特定的温度、酸碱度和电荷等因素调节,使其自行组装形成相应的血管壁材料。
自组装技术不仅可以直接制备出生物相容性高、生物相似性好的人造血管,而且还可以制备出具有一定生物活性的纳米材料和三维细胞培养组织。
2. 并行微流控法并行微流控技术是利用微纳技术和生物医学工程技术,将多种细胞和组织材料,通过微流控芯片、生物反应器等器具进行混合和培养,根据不同的化学物质和生物学特性,自动配置和调节相应的血管壁材料,形成高度可控、高效和一致的人造血管。
3. 3D打印技术3D打印技术是一种高精度、高精度纳米级别的形状制作技术,它利用计算机辅助设计软件、数值控制机器设备等工具,将血管壁材料按比例控制、排列和塑造成不同的形态,形成各种形状和尺寸的血管壁材料。
3D打印技术不仅可以制备出与自然血管非常相似的人造血管,而且还可以对血管壁材料进行形状、大小和壁厚的设计和调节,实现对人造血管功能的高度控制和精确化程度。
纺织人造血管的研究与发展
纺织人造血管的研究与发展作者:孙炳军张玉海来源:《中国纤检》2012年第18期摘要:简单介绍了人造血管材料的发展及人造血管的研究现状,分析了人造血管研制及使用中存在的主要问题,指出了今后研究的重点。
关键词:人造血管;纺织;研究;发展随着社会的发展,人类文明的进步,健康越来越受到人们的关注。
在全球,每年都有数以万计的人由于身体某部分器官的老化、损伤、病变等多方面原因而必须更换,人体内的血管也不例外。
但血管的数量根本无法满足异体移植的需要,为此必须研制和生产医用人工血管以满足手术之需。
“纺织人造血管”系采用高分子化合物的纺织材料,通过纺织机械,应用纺织技术制成的管状物体,再经造纹处理形成360°可弯曲,而不会发生扭曲和萎陷的柔软的螺旋形纺织管状织物。
它的功能是当人体血管阻塞、创伤断裂、动脉缩窄或患动脉瘤需切除时,可用相应口径的人造血管接上,以挽救人的生命[1]。
1 人造血管材料的发展人造血管的研制开始于20世纪初,各国学者首先采用金属、玻璃、聚乙烯、硅橡胶等材料制成的管状物进行大量动物试验,但因其易在短期内并发腔内血栓而未能在临床上得到广泛应用。
1952年Voorhees[2]首先研究将维纶制成人造血管,改变了以往人工血管管壁的无通透性。
接着,Voorhees、Blakemore以及Jaretzki做了大量的临床试验,研制了带有网孔的人造血管,这是血管代用品发展史上的一个里程碑。
随着纤维材料和医学生物材料的不断发展,继Voorhees之后,各国工作者研究出各种材料,各种加工方法生产出人造血管并用于动物试验和临床。
随后,专家们测试了很多材料,如PVC、PAN、丝绸,尼龙以及粘胶纤维[3]。
PAN和尼龙制得的人造血管会在体内退化,因此这两种材料很快被淘汰。
目前人造血管使用最多的原料是合成纤维,如聚酯、聚四氟乙烯纤维,它们结构稳定性好,在人体内可长期工作而不发生降解。
2 人造血管的研究现状2.1 国外人造血管的研究现状国外人造血管经过一个长时期的发展已趋于成熟,目前,已经开发了成型的移植无缝管状人造血管,并且可以随着长度逐渐改变直径。
人造血管行业研究分析及市场前景预测报告
人造血管行业研究分析及市场前景预测报告Ⅰ. 引言人造血管一词源于拉丁文,意为“构建血管”。
自20世纪60年代首次成功进行人工血管置换手术以来,人造血管行业得到迅猛发展。
本篇报告将对人造血管行业进行研究分析,包括行业现状、技术发展、市场规模及市场前景的预测。
Ⅱ. 行业现状1. 技术背景人造血管是用于治疗心血管疾病的一种医疗器械,以聚合物材料或合金材料作为主要材质,通过仿生学的设计和制造工艺,使其具有类似自然血管的结构和功能。
人造血管分为全人工血管和生物人工血管两类。
2. 市场规模根据最新数据,全球人造血管市场规模约为XX亿元。
目前,美国、欧洲和亚太地区是全球人造血管行业的主要市场,其中美国在全球市场占据了约XX%的份额。
3. 主要应用领域人造血管主要应用于心脏病、动脉疾病和血管狭窄等心血管系统疾病的治疗。
随着人口老龄化趋势的加剧,心血管疾病的发病率逐年增加,这为人造血管行业的发展提供了良好的市场机遇。
4. 市场竞争格局人造血管行业存在着一定的市场竞争。
目前,全球医疗器械制造企业主要集中在美国、德国和日本等发达国家。
这些企业通过不断创新和提高产品质量来争夺市场份额,以满足市场需求和提高竞争力。
Ⅲ. 技术发展趋势1. 材料创新人造血管行业的发展离不开材料创新。
目前,多种新型材料正在应用于人造血管的制备中,如纳米材料、天然高分子材料等。
这些新材料具有生物相容性好、耐久性强的特点,可以更好地模拟自然血管的功能。
2. 生物打印技术生物打印技术的进步也为人造血管的制造带来了新的可能。
通过使用3D打印技术,可以根据患者的具体需求,精准制造人造血管,实现个性化治疗。
这将大大提高手术的成功率和患者的生活质量。
3. 基因工程技术基因工程技术的发展为人造血管行业带来了新的机遇。
利用基因编辑技术,可以改变人造血管的生物化学特性,提高其生物相容性和抗衰老能力,延长使用寿命。
Ⅳ. 市场前景预测1. 市场增长潜力随着人口老龄化的加剧和心血管疾病的高发情况,全球人造血管市场有望持续增长。
人造血管的研究与发展
l国外人造血管的发展
1.1血管移植的历史 时间 人物 成果
公元前800到600年,Sushruta saIIlhita用沸油粘和血管的方式来治疗出血 公元前二世纪, Refus和Antyllus幢。用结扎线将动脉捆起来的方式止血 Galen 将动脉和静脉区分开来 古罗马 Cosmas和Damien 完成了人腿的移植 公元前三世纪, AmbroisePare 用结扎线治疗出血 文艺复兴时期, 1759年, L锄bert和Hallowell引入了血管的修复术和连接术 将无菌技术带入血管外科手术 1881年, czerny 1889年, Jassinowsky 指出在无菌条件下受伤的颈动脉可以修复 Burci 1890年, 提出了连续缝合技术 20世纪早期, carrel和Guthrie使用自体静脉替代动脉移植成功b。 20世纪90年代 Parodi[4]用可被球囊扩张的覆有涤纶的支架治疗仪
2我国人造血管的现状
国外人造血管经过一个长时期的发展已趋于成熟,其与国产人造血管相比有绝对的竞 争优势。据调查,现在我国各大医院的临床手术中,所采用的人造血管多为进口。基于这种 情况,分析限制我国人造血管研发的因素主要有3个方面Ⅲ。 一是我国高分子材料发展的 限制,如用于小直径人造血管开发的聚氨酯类产品,用于血管组织工程基布的具有良好生 物性能的可降解材料的发展都不尽如人意。二是各行业之间缺乏良好的合作,人造血管的研 究开发是一个涉及材料工程、生物工程、医学和纺织工程等各个学科的交叉学科,需要各个 学科专门人才突破行业间的隔阂,密切合作,共同研究,才能取得较大进展。其三,也是最 重要的是我国缺乏对人造血管生物力学性能表征的研究,在研究开发过程中没有合适的测 试手段对产品的质量进行体外监测和评价,只通过短期的动物实验进行研究。 这一方面提高了开发的实验经费和开发周期,限制了产品研究开发的进行。另一方面, 由于不能对所开发的产品的性能给出合乎国际标准的各项测试指标,不能取信于消费者, 限制了产品的市场开发,造成如今进口人造血管产品几乎垄断我国市场的现状。因此必须充 分认识国内外人造血管研究的差距和限制我国人造血管发展的制约条件,加大我国产品开 发的力度,尽早实现系列产品的国产化。
生物医用纺织品——人造血管
常见的ePTEF材料
常见的PU材料
第二阶段:合成过程:一般采用医用级聚酯 纺制成复丝,用针织和机织方法制成,加工 成蛇腹状以获得与人体血管相似的屈曲和伸 缩性,再经表面毛羽化处理,以利于血液中 血清蛋白的附着,形成薄而牢固的假膜,与 人体组织愈合,达到“器官化”的效应。
目前已经商品化的人造血管有:涤纶人造血管、 真丝人造血管、膨体聚四氟乙烯人造血管和聚氨 酯人造血管。较大直径的人造血管生产技术已较 为成熟了,上海长海医院与东华大学协作,进行 多年研究,取得了很大进展。
力,在生物体内不老化;来自(2)富有弹性、伸展性,具有适当的孔隙,抗 血栓性,能牢固缝合; (3)有利于血液流动,保持持久的强度;可靠 的耐降解抗腐蚀性等。
目前常用人造血管使用最多的原料是合成纤维, 有:膨体聚四氟乙烯(ePTFE)和聚氨酯(PU)。 (expanded PTFE):是一种新型的医用高分子材料, 由聚四氟乙烯树脂经拉伸等特殊加工方法制成。 白色,富有弹性和柔韧性,具有微细纤维连接而 形成的网状结构,这些微细纤维形成无数细孔, 使膨体PTFE可任意弯曲(过360° ),血液相容性 好,耐生物老化,用于制造人造血管、心脏补片 等医用制品。 (Polyurethane Resin):作为一种具有高强度、抗 撕裂、耐磨等特性的高分子材料,在日常生活、 工农业生产、医学等领域广泛应用。
谢谢!
三、人造血管技术突破
近几年聚氨酯(PU)材料发展很快,出现了一些 更具生物稳定性的PU人造血管,可用于小直径的人造 血管。如corvitat(一种血管类型)其材料是碳酸盐和 甲氨酯多聚化合物,外膜增强型设计,有PET网和蛋白 涂层,具有很好的径向支撑力。这些最新的商品化PU 人造血管长期的通畅率还有待进一步检验。 2015年11月,日本国立循环器官疾病研究中心宣 布,该中心研究人员成功研制出直径仅为0.6毫米的人 工血管。这是目前世界最细的人工血管,有望应用于 脑和心脏的血管搭桥手术等领域。该中心一个研究小 组利用胶原蛋白遇到进入体内的异物时会将其包裹的 性质,将直径0.6毫米、长2厘米的外表被硅覆盖的不 锈钢丝植入大鼠后背皮下,约两个月后取出,发现不 锈钢丝周围形成胶原蛋白的管状物。研究人员将管状 物移植到实验鼠大腿后,观察了约六个月,发现其发 挥了人工血管的作用。
人工血管
人工血管作为许多严重狭窄或闭塞性血管的替代品,在临床上有着重要的应用价值。
随着生物工程学和生物材料学的迅猛发展,目前,在外科手术中,人工血管主要用于暂时性或永久性的取代患者缺损的动脉或静脉,或作为动脉阻塞时的分流通道,以及肾病患者进行血液透析时所需的动静脉移植替代管。
用人工合成血管作为替代品,特别是大口径人工血管在组织修复、血管重建手术中已经得到了广泛的应用。
但内径<6mm的人工血管替代人体小动脉或静脉一直未获得满意的效果(血管口径<6mm。
6个月后通常率< 40%)。
其主要原因是由于血栓形成以及新生内膜增厚、血流阻力较大使人工血管阻塞。
因此,人工血管植入后防止其管径狭窄、小口径人工血管内皮化的研究已经成为人工血管研究的热点和难点。
1 小口径人工血管的材料选择1.1 ePTFE(expanded po1ytetraf1uorethy1ene)化学名称是聚四氟乙烯,是一种化学稳定性极佳的新型高分子材料,聚四氟乙烯人工血管由2层材料组成:内层材料呈纵向性,外层材料呈横向性,从而结合成为一种纵向、横向都具有极度牢固的血管壁结构。
其壁具有无数可控制的微孔结构,ePTFE的多微孔结构可以提高材料的顺应性。
植入后,人体组织可迅速贴敷到血管外壁上,成纤维细胞和结缔组织在管壁微孔中广泛长人,毛细血管在孔隙结构中存在,内壁形成完整而较薄的新内膜。
ePTFE具有较高的负电性,不易发生腔内凝血,且孔径较小,术前不需进行预凝。
与人体组织相容性好,膜薄,光滑,柔顺性强,易缝合,对人体无任何不良反应,可作为体内保持持久强度的血管代用品。
但是,ePTFE植覆内皮细胞有困难。
同时,有机溶剂(酒精、脂肪溶液、组织液等)可增加移植物的多孔性和过滤性,应避免与之接触,避免形成移植物周围血清肿。
1.2 聚氨酯(polyurethane,PU)聚氨酯是一种具有良好的理化性能、血液相容性和生物相容性的医用高分子材料。
PU具有良好的顺应性,韧性和弹性,耐磨、耐腐蚀,易加工,能采用通常的方法灭菌。
人工血管技术的现状和前景研究
人工血管技术的现状和前景研究近年来,人工血管技术在医学领域逐渐崭露头角。
随着生物科技和材料科学技术的不断发展,人工血管技术已经达到了令人瞩目的水平,正在开启一个新的医疗健康时代。
本文将探讨人工血管技术的现状和前景研究。
一、人工血管技术的现状人工血管技术是目前最经济、有效、安全的血管替代方法。
它的研究主要集中在四个方向:一是生物纳米科技,借助纳米技术、微织技术、原子自组装等将人工血管材料优化,使其与自然血管相似度更高,更符合生物学要求;二是材料工程,优化材料组分和材料构造,使人工血管具备稳定性和生物相容性;三是细胞工程,通过人工开发或重塑血管壁的细胞,将其移植到人工血管中,使其与人体组织完美结合;四是融合技术,使用现代微电子技术、仿生学技术、动力学及分子模拟技术,设计出一种更加优越的人工血管。
在这四个方向中,细胞工程在人工血管技术研究中有着至关重要的作用。
骨髓和其他源自成人的干细胞可以分化出胶原、弹性蛋白等组织体支持物,因此很适合用于制造血管。
目前,人们已经成功地将这种以干细胞为基础的人工血管应用于临床,取得了良好的效果。
二、人工血管技术的前景人工血管技术将成为未来医疗技术发展的重要趋势。
它不仅可以被用来解决血管手术难度大、血管狭窄等重大医学难题,还可以在心血管疾病、局部缺血、组织缺血以及复杂的外科手术中,取代自身组织塑形等传统医疗治疗方式,达到更好的医疗效果。
未来人工血管技术发展的趋势将主要表现在以下几个方面:一是在生物学和材料学领域的深入研究,将会有更多的研究成果用于制造人造血管材料;二是在组织工程学领域,一些技术难题将被解决,例如如何利用生物材料、细胞和肌肉构建硬度适中的血管;三是在微电子学领域,可以预见人造血管将成为基于医学成像的智能血管,可以随时检测到人体内部的动态变化;四是在医疗设备和医疗信息学领域,人工智能技术将会为人工血管技术的发展提供巨大帮助,智能化的医疗设备将可有效地管理人工血管和其他血管支持长期使用者的健康情况。
人造血管材料的合成与应用
人造血管材料的合成与应用随着医学技术的飞速发展,人造血管材料的合成与应用也愈发重要。
人造血管技术的发展,对于心脑血管疾病患者来说将是福音。
本文将简要介绍人造血管材料的合成与应用现状。
一、材料的合成人造血管材料的合成是指利用人工或半合成方法制造可漂移至人体内部的体外材料。
其制造材料种类和实践应用的多样性,必须考虑诸多数学、生理和化学方面的观点。
近年来,科技进步的快速提升,使得新材料和新技术得以应用于血管替代物的制造,以进一步提高其使用效果。
目前,材料的合成大致分为两种方式,分别是体外和体内方法。
1、体外方法这种方法是通过无菌环境中之生物统计制法(又称为“轮廓形态学")来制造血管,即,利用高纯度和高度可控材料生产,以创造完全符合血管物理结构的形态学。
2、体内方法这种方法是通过使用基因工程技术,制造出与人体更为类似的材料,基于一系列生物的环境、和环境变化所产生的影响,血管替代物的性能和材料都会适应人体变化和发展。
比较常用的人造血管材料有两种,分别为生物材料和人造材料。
1、生物材料以异位移植血管和人脐静脉为代表,掌握这些材料的技术,精密合成并通过配合具理化药物分子,开发出一系列心血管领域的替代物。
2、人造材料这种血管材料以合成聚合物、生物纳米材料、金属材料等为材料基础,可根据多种生物学特性进行调控和优化,用于捕捉、传递信息的多种信号以及增加血管的生理响应和反应时间。
二、材料的应用人造血管材料的应用主要有四个方面,具体分别是:1、心血管疾病的应用人造血管材料如心脏支架、人造心脏瓣膜等可以用于治疗和预防心血管疾病,从而提高患者的生活质量和预期寿命。
尤其对于那些已经进入老年的患者,这种材料的应用可以避免由于动脉硬化所造成的心脑血管疾病。
2、器官重建等医疗用途人造血管材料可以用于各种器官重建的医疗用途,如肝脏、胰腺、下肢、皮肤等,增加更高的机会,使组织和器官攀附紧密。
3、工程和素材领域人造血管材料可以应用于工程和素材领域,用于生产突破性的体有效率内突破润滑油,酶、电池和信号处理等。
2024年人造血管市场分析报告
2024年人造血管市场分析报告引言人造血管是一种用于治疗心血管疾病的医疗器械,可以替代受损或阻塞的血管,恢复正常的血液流动。
随着人口老龄化加剧和心血管疾病患者的增加,人造血管市场迎来了巨大的发展机遇。
本报告旨在对人造血管市场进行深入分析,为投资者和相关利益相关者提供可靠的市场信息和发展趋势。
市场规模及预测根据市场研究数据,当前全球人造血管市场规模约为XX亿美元。
预计在未来五年内,该市场将以X%的年复合增长率增长,到2025年将达到XX亿美元。
增长的主要驱动因素包括人口老龄化,心血管疾病患者的增加以及对更有效治疗方法的需求。
市场细分人造血管市场根据材料类型和应用进行细分。
材料类型根据材料类型,人造血管市场可以分为以下几类:1.聚合物2.生物材料3.金属聚合物材料目前占据了市场的主导地位,这主要归因于其较低的成本、较长的寿命和较好的生物相容性。
然而,生物材料和金属材料在某些特殊情况下也有其独特的应用价值。
应用根据应用领域,人造血管市场可以分为以下几类:1.心血管疾病2.肾脏疾病3.体外循环手术4.其他目前,心血管疾病是人造血管市场最主要的应用领域。
随着心血管疾病患者数量的增加,对人造血管的需求也在不断增加。
预计在未来几年内,肾脏疾病和体外循环手术等应用领域也将迎来快速增长。
市场竞争情况人造血管市场竞争激烈,存在多家知名企业和新兴企业。
主要竞争对手包括:•Johnson & Johnson•Medtronic•Boston Scientific Corporation•W.L. Gore & Associates• C. R. Bard这些企业通过不断创新和技术进步,致力于开发更高质量、更安全有效的人造血管产品。
此外,市场还存在许多小型企业,通过专注于特定的人造血管领域,在市场上找到自己的竞争优势。
市场趋势•技术创新:人造血管市场正在不断发展新的材料和技术,以提高产品的生物相容性和使用寿命,满足不同患者的需求。
人造血液的研究进展
人造血液的研究进展近年来,人造血液技术得到了广泛关注。
这项技术旨在为迫切需要改善血液功能的患者提供一种替代品,例如,创伤患者、囊性纤维化患者、癌症患者等等。
其中最具挑战性的领域是在极端情况下替代红细胞。
人造血液的研究进展如何?值得关注。
血液是人体内最重要的物质之一,主要由红细胞、白细胞和血小板组成。
红细胞主要携带氧气,但在一些情况下,人体无法正常产生红细胞,例如白血病等血液疾病,铁缺乏性贫血等原因。
这些患者需要输血以维持生命。
人造血液技术是一种通过人工制造血液组成部分以取代传统输血的技术。
这项技术得到了广泛关注,因为目前的输血供应链存在诸多问题。
一些LBGTQ患者、HIV感染患者等很难获得合适的输血产品。
目前,人造血液技术的研究主要分为两个方向:一是血液细胞类型的人造,二是使用干细胞技术制造血液细胞。
在第一个方向,研究人员针对红细胞、白细胞和血小板进行了许多研究。
但是,红细胞的研究进展最为迅速,原因是红细胞形态相对简单。
人工制造红细胞最常用的方法是将一小部分健康人体的血液提取到培养皿中,并添加一定的细胞因子,使来源于血液的造血干细胞分化成红细胞。
然而,在短时间内制造出红细胞仍然是一个巨大的挑战,因为不同的人有不同的RH血型,这需要使用不同的“基础血”制造每种类型的红细胞。
在第二个方向,使用干细胞制造血液细胞有一个潜在的优点,那就是所有类型的血液细胞都可以一起制造。
这种方法需要用一个相当数量的精炼的干细胞群体,使它们分化成所需的血液细胞类型。
干细胞可以从自身或其他人的骨髓中提取。
对于任何类型的人造血液,临床试验都是必要的,以确保其安全性和有效性。
目前各种人造血液的药物和技术正在研究和开发之中,但是很难确定哪种方案能够在短期内实现生产和推广。
并且,任何一种技术的研究都需要大量的成本和时间。
直到2020年,欧洲生物技术公司Pharmaceuticals PLC成功制造出独立商业化的人工红细胞产品——Hemopure。
人造血管
人造血管摘要:本篇综述是关于人造血管的种类、国内外人造血管的现状以及人造血管主要存在的问题和研究方向。
为之后的学者和研究人员提供查阅资料,省去大部分查阅的时间。
前言在当今社会,人们越来越关注自己的健康状况以及国家的医疗条件。
他们对医学已经不再是一无所知。
相信不少人对/血管0这一专业名词也有一定的了解,血管就是运输血液的管道。
它将血液从心脏导出,血液流遍全身之后再回到心脏。
血管为全身的组织以及肌肉送去营养和氧气,并且将有毒的代谢物运到肝脏进行解毒,再运到肾脏进行排泄。
与血管有关的疾病往往是危及人生命的。
比如,下肾主动脉、髂动脉以及下行的胸主动脉瘤的膨胀会导致血管扩张;动脉粥样硬化会导致动脉变窄甚至闭塞;颈动脉粥样硬化会导致中风;冠状动脉粥样硬化会导致心脏病,当血管由于动脉硬化、老化或破损等原因而不能正常工作时,需进行血管移植。
因此我们引入了人造血管的概念,人造血管在血管移植方面发挥着重要的作用。
1人造血管的分类人造血管是当人体某部位的血管由于老化、动脉硬化、栓塞或破损等原因不能保证人体正常供血时,需采用人工血管进行置换、搭桥或介入等外科手术进行治疗。
自cluck(1898)和carrel(1906)使用自体静脉替代动脉移植成功后,血管外科在血管代用品领域有了较大进展。
特别是1952年Voothee,应用维纶(vinylon“N”)人造血管在动物实验中获得成功,并于第二年用于临床后,血管代用品的应用突飞猛进地发展起来川。
至今所应用的血管代用品从材料上分为两类:生物血管和人造血管。
1.1生物血管生物血管分为自体血管、同种异体血管和异种血管。
自体血管可采用自体静脉和自体动脉。
自体大隐静脉容易获得,移植后通畅率高,是目前外科手术中替代中、小血管最理想的生物血管。
自体动脉移植有很多优点,但自体非必要、可切除的动脉很少,使其来源受到很大限制。
由于当前可成功用于临床的小口径人工血管很少,所以自体血管仍有其特殊的应用价值。
人造血管
人造血管摘要:本篇综述就是关于人造血管得种类、国内外人造血管得现状以及人造血管主要存在得问题与研究方向.为之后得学者与研究人员提供查阅资料,省去大部分查阅得时间。
前言在当今社会,人们越来越关注自己得健康状况以及国家得医疗条件。
她们对医学已经不再就是一无所知.相信不少人对/血管0这一专业名词也有一定得了解,血管就就是运输血液得管道。
它将血液从心脏导出,血液流遍全身之后再回到心脏.血管为全身得组织以及肌肉送去营养与氧气,并且将有毒得代谢物运到肝脏进行解毒,再运到肾脏进行排泄.与血管有关得疾病往往就是危及人生命得.比如,下肾主动脉、髂动脉以及下行得胸主动脉瘤得膨胀会导致血管扩张;动脉粥样硬化会导致动脉变窄甚至闭塞;颈动脉粥样硬化会导致中风;冠状动脉粥样硬化会导致心脏病,当血管由于动脉硬化、老化或破损等原因而不能正常工作时,需进行血管移植。
因此我们引入了人造血管得概念,人造血管在血管移植方面发挥着重要得作用.1人造血管得分类人造血管就是当人体某部位得血管由于老化、动脉硬化、栓塞或破损等原因不能保证人体正常供血时,需采用人工血管进行置换、搭桥或介入等外科手术进行治疗。
自cluck(1898)与carrel(1906)使用自体静脉替代动脉移植成功后,血管外科在血管代用品领域有了较大进展。
特别就是1952年Voothee,应用维纶(vinylon“N”)人造血管在动物实验中获得成功,并于第二年用于临床后,血管代用品得应用突飞猛进地发展起来川.至今所应用得血管代用品从材料上分为两类:生物血管与人造血管。
1、1生物血管生物血管分为自体血管、同种异体血管与异种血管。
自体血管可采用自体静脉与自体动脉。
自体大隐静脉容易获得,移植后通畅率高,就是目前外科手术中替代中、小血管最理想得生物血管.自体动脉移植有很多优点,但自体非必要、可切除得动脉很少,使其来源受到很大限制.由于当前可成功用于临床得小口径人工血管很少,所以自体血管仍有其特殊得应用价值.同种异体血管与异种生物血管移植物易形成血栓,这两种产品已经很少使用。
经编人造血管编织设备的研究现状
经编人造血管编织设备的研究现状曹清林【摘要】The study on artificial blood vessel mainly takes four aspects into consideration, namely the material, structure design, manufacturing of fundamental elements and relevant post-processing method. The manufacturing of fundamental elements and the development of relevant knitting equipment are essential for producing artificial blood vessels. This paper analyzed and compared several kinds of manufacturing methodsand relevant knitting equipment for making fundamental elements of artificial blood vessels. In view of the effect of clinical application, artificial blood vessels manufactured by warp knitting machines have been widely applied in actual clinics. Besides, this paper also introduced the products of two domestic artificial blood vessel producers, analyzed their structural characteristics and displayed some physical samples of artificial blood vessel.%对人造血管的研究涉及4个方面的问题,即人造血管的材料、结构设计、基础结构件的制造和后处理方法,其中,基础结构件的制造及相应编织设备的开发是生产人造血管的关键。
国外人造血管的发展_敖伟
国外人造血管的发展敖 伟 陈南梁 (东华大学,上海,200051)摘 要:叙述了人造血管的产生、性能要求、采用的材料和一般的加工方法,并介绍了国外人造血管发展状况,以及目前存在的问题和将来的发展方向。
关键词:人造血管,医用纺织品,发展,国外0 引言当人体的某部分器官或组织因病变或损坏而失去功能时,就需要进行器官移植。
如当血管由于动脉硬化、血管老化或破损等原因而不能正常工作时,需进行血管移植。
由于异体器官强烈的排异作用、来源少、价格昂贵等原因,使得人造器官成为合理的代替品。
因而人造血管在血管移植方面发挥着重要的作用。
1 人造血管的产生早在40年代,Hufnaged就开始研究生物体血管的移植,当时限于条件,只能采用硬质塑料管代替血管植入生物体内,由于严重的凝血反应,实验没有一例获得成功。
1952年Voorhees在一次实验中偶然发现植入生物体内的真丝缝线上覆盖有一层内皮细胞,他设想假定植入生物体内的织物也发生同样的现象,就能避免血液和植入物的直接接触从而防止凝血现象的产生,这就为人造血管的发展提供了思路。
2 人造器官的性能要求为制造具有实用性的人造血管,首先要明确人造血管的性能要求。
它必须具有良好的生物相容性及一定的机械性能。
生物相容性方面,要求其不引起异常的免疫、排异和过敏反应,对细胞的生长无不良影响,没有致畸、致变作用。
机械性能方面,要求其具有较高的缝接强度;一定的弹性;其变形能力应和所替代的器官或组织相一致;具有长期使用的稳定性,无明显的生物降解现象;结构和几何形状无明显改变;其表面具有一定的粗糙度,以利于周围细胞的成长。
3 采用的材料和加工的方法目前人造血管使用最多的原料是聚酯、聚四氟乙烯纤维,这是因为它们结构稳定性好,在体内可长期工作而不发生降解。
内径大于10mm的人造血管一般用机织物或针织物制成,前者结构稳定,后者弹性较好。
血管的管壁必须保持适当的紧密程度,并具有一定的孔洞,这样周围组织就能附在血管外壁并通过管壁向内生长,使血管内壁覆盖一层薄薄的内皮细胞。