人教版八年级数学下册第17章勾股定理教案
(完整版)新人教版八年级下册数学第十七章勾股定理教案
八年级下册数学第十七章勾股定理集体备课(教课设计)17.1 勾股定理(一)一、教课目的1.认识勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培育在实质生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所获得的成就,激发学生的爱国热忱,促其勤劳学习。
二、教课要点、难点1.要点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、讲堂引入当前生界上很多科学家正在试图找寻其余星球的“人”, 为此向宇宙发出了很多信号,如地球上人类的语言、 音乐、各样图形等。
我国数学家华罗庚曾建议,发射一种反应勾股定理的图形, 假如宇宙人是“文明人”, 那么他们必定会辨别这类语言的。
这个事实能够说明勾股定理的重要意义。
特别是在两千年前, 是特别了不起的成就。
让学生画一个直角边为 3cm 和 4cm 的直角△ ABC ,用刻度尺量出 AB 的长。
以上这个事实是我国古代 3000 多年前有一个叫商高的人发现的, 他说:“把一根直尺折成直角,两段连接得向来角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是 3,长的直角边(股)的长是 4,那么斜边(弦)的长是 5。
再画一个两直角边为 5 和 12 的直角△ ABC ,用刻度尺量 AB 的长。
你能否发现 32 +42 与 52 的关系, 52+122 和 132 的关系,即 32+42 =52,52+122=132,那么就有勾 2 +股 2=弦 2 。
关于随意的直角三角形也有这个性质吗?达成 23 页的研究,增补下表,你能发现正方形 A 、B 、C 的关系吗?A 的面积(单位面B 的面积(单位面C 的面积(单位面 积) 积) 积)图 1 图 2由此我们能够得出什么结论?可猜想:命题 1:假如直角三角形的两直角边分别为 a 、b ,斜边为 c , 那么 。
四、合作研究:方法 1:已知:在△ ABC 中,∠ C=90°,∠ A 、∠ B 、 DC∠ C 的对边为 a 、b 、c 。
人教版八年级数学下册第十七章勾股定理单元教学设计
1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能
人教版八年级数学下册17.1勾股定理(教案)
-对于勾股数的识别,教师可以通过列出一些常见的勾股数组合,并让学生自己尝试找出规律,以提高识别能力。
-在解决实际问题时,教师应引导学生如何从问题中提取关键信息,如何构建直角三角形模型,并运用勾股定理进行求解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,斜边的平方等于两直角边的平方和。它是解决直角三角形相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明过程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
在学生小组讨论环节,我鼓励学生们提出自己的观点和想法,这有助于培养他们的创新思维和解决问题的能力。但从讨论成果来看,部分学生的观点较为片面,缺乏深度。在今后的教学中,我将加强对学生的引导,提高问题的开放性,促使他们更加深入地思考。
最后,总结回顾环节,学生们对勾股定理的理解和掌握程度有了明显提高。但在课后,我还会关注学生的反馈,了解他们在学习过程中遇到的困难和问题,以便在接下来的教学中进行调整。
人教版八年级数学下册17.1勾股定理(教案)
一、教学内容
人教版八年级数学下册第17.1节,本节课主要围绕勾股定理展开,内容包括:
1.勾股定理的概念与证明:介绍勾股定理的定义,引导学生通过图形观察、分析,理解并掌握勾股定理的证明过程。
2.勾股数:讲解勾股数的概念,指导学生运用勾股定理找出满足条件的勾股数,并能解决实际问题。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级下册17.1勾股定理(教案)
(2)勾股定理的证明方法:掌握至少两种证明方法,如割补法、动态拼图法等,以便加深对定理的理解。
举例:通过割补法证明,将直角三角形分割成两个小直角三角形和一个矩形,推导出勾股定理。
(3)勾股定理的应用:学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度,判断一个三角形是否为直角三角形等。
五、教学反思
在今天的勾股定理教学过程中,我发现学生们对于定理的概念和应用表现出较大的兴趣,但同时也存在一些理解和操作上的难点。让我来谈谈几个值得注意的方面。
首先,关于勾股定理的概念,大多数学生能够理解直角三角形两个直角边的平方和等于斜边的平方这一关系,但在具体应用到实际问题中时,部分学生仍然会感到困惑。这说明我们在教学中需要更多实际案例的引导,让学生更好地将理论知识与实际应用结合起来。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:已知直角三角形的两个直角边长度,求斜边长度。
人教版八年级数学下册第17章勾股定理(教案)
b.在实际问题中,如何判断一个三角形是否为直角三角形,并运用勾股定理解决问题。
-解决方案:通过动画、实物模型等直观教具帮助学生形象地理解勾股定理的证明过程,采用分组讨论、师生互动等方式引导学生主动探究,突破难点。
四、教学流程
(一)导入新课(用时5分钟)
课堂上,我尝试采用了多种教学方法,如分组讨论、实验操作等,让学生在实践中学习和探索。这种做法在很大程度上提高了学生的参与度和积极性,但我也发现,在小组讨论过程中,部分学生依赖性强,不够主动参与。为此,我将在后续的教学中加强对学生的引导,鼓励他们提出自己的观点和疑问。
此外,我发现学生们在解决勾股定理相关问题时,有时会忽略细节,如单位不统一、计算错误等。针对这一问题,我将在今后的教学中加强对学生细节方面的指导,培养他们严谨的解题态度。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用绳子、直尺等工具制作直角三角形,并验证勾股定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
理的证明过程,提高学生观察、分析、归纳的数学思维,增强几何直观和空间观念;
3.运用勾股数解决实际问题时,培养学生数学建模和数学应用的素养,激发创新意识;
4.通过勾股定理在生活中的实例探讨,增强学生数学与现实生活联系的意识,提高数学文化素养。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念及其证明过程,这是本节课的核心内容。通过讲解勾股定理的起源、证明方法(如欧几里得的证明、我国古代的证明等),使学生深入理解定理的本质。
人教版数学八年级下册教案:17.1勾股定理
一、教学内容
人教版数学八年级下册第十七章第一节:勾股定理。本节课主要内容包括:
1.了解勾股定理的概念及其在直角三角形中的应用。
2.学会使用勾股定理计算直角三角形的斜边长度。
3.掌握勾股定理的证明方法,理解其数学原理。
4.能够解决实际问题中涉及勾股定理股定理的应用条件。教师需要明确指出,勾股定理仅适用于直角三角形,并通过举例说明非直角三角形不适用勾股定理的原因,加深学生的理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”(如测量旗杆高度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表述及其在直角三角形中的应用。
-学会运用勾股定理计算直角三角形的斜边长度。
-掌握勾股定理的证明方法,理解其数学原理。
-能够将勾股定理应用于解决实际问题。
举例:在讲解勾股定理时,重点强调其公式a² + b² = c²,其中a、b为直角边,c为斜边。通过多个具体例子的演示和练习,确保学生能够熟练运用该定理计算直角三角形的斜边长度。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和应用这两个重点。对于难点部分,如定理的证明,我会通过举例和几何作图来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作直角三角形的模型,并验证勾股定理。
人教版数学八年级下册17.1.1勾股定理(教案)
还有一个值得注意的问题是,在实践活动过程中,有些同学对实验操作不够熟练,导致实验结果出现偏差。这说明我们在平时的教学中,还应加强同学们的动手能力培养。可以考虑在课堂外布置一些相关的实践作业,让同学们在家长的协助下完成,提高他们的实际操作能力。
-勾股数的性质及其判定方法;
-运用勾股定理解决实际问题的方法。
举例解释:
-通过具体的直角三角形图形,让学生直观理解并记住勾股定理的表达式;
-通过列举常见的勾股数,引导学生发现勾股数的性质,如5、12、13是一组勾股数,满足5²+12²=13²;
-结合生活实例,如测量距离、计算面积等,让学生学会运用勾股定理解决问题。
人教版数学八年级下册17.1.1勾股定理(教案)
一、教学内容
人教版数学八年级下册第17章第1节,本节课主要学习勾股定理。内容包括:
1.了解勾股定理的起源和发展;
2.掌握勾股定理的表达式:在一个直角三角形中,直角边的平方和等于斜边的平方;
3.学会运用勾股定理解决实际问题,如计算直角三角形中未知边的长度;
-对于勾股数的判定,除了整数勾股数外,还可以引入分数、小数等勾股数,让学生掌握更全面的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形边长的情况?”(如测量家具尺寸)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计
(一)教学重难点
1.理解并掌握勾股定理的表达式及其适用条件。
2.运用勾股定理解决实际问题,特别是计算直角三角形斜边长度。
3.理解并掌握勾股定理的证明过程,提高逻辑思维能力。
4.培养学生运用勾股定理发现和解决实际问题的能力。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中的直角三角形实例,如楼梯、墙壁等,引导学生观察、思考,激发学生的好奇心和求知欲,为新课的学习做好铺垫。
(二)过程与方法
1.通过对勾股定理的探究,培养学生提出问题、分析问题、解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作精神和沟通能力。
3.引导学生运用多种方法证明勾股定理,培养学生的发散思维和创新能力。
4.设计实际情境,让学生在实际问题中运用勾股定理,提高学生的应用能力。
(三)情感态度与价值观
3.教师强调勾股定理在实际问题中的应用价值,鼓励学生在生活中发现数学的美。
4.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们运用勾股定理,计算以下直角三角形的斜边长度:
1.引入勾股定理的概念,引导学生了解勾股定理的背景和意义。
2.通过实例演示,让学生直观地感受勾股定理的应用。
3.采用多种方法证明勾股定理,如几何法、代数法等,培养学生的逻辑思维和创新能力。
4.设计丰富的练习题,巩固学生对勾股定理的理解和应用。
5.结合生活实际,让学生在实际情境中运用勾股定理,提高学生的应用能力。
某建筑工地需要测量一块直角三角形的斜边长度,已知两条直角边的长度分别为10米和24米。由于工地条件有限,无法直接测量斜边长度。请问:如何利用勾股定理计算斜边长度?
人教版数学八下17.1《勾股定理》教案3篇
初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。
人教版八年级数学下册17.1《勾股定理》教学设计
4.作业完成后,进行自我检查,确保答案正确。
2.勾股数的判断和应用,使学生能够灵活运用勾股数解决相关问题。
3.学生在解决实际问题时,能够将勾股定理与其他数学知识相结合,形成综合解决问题的能力。
教学设想:
1.创设情境,引入新课:通过讲述古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,激发学生的学习兴趣,为新课的学习营造良好的氛围。
2.自主探究,合作交流:引导学生通过观察、分析、归纳等思维活动,发现勾股定理。在此基础上,组织学生进行小组讨论,分享各自的发现和证明方法,培养学生的合作意识和交流能力。
2.提问引导:请学生们思考直角三角形的特点,回顾已学的直角三角形相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.勾股定理的概念及表述:
"勾股定理是关于直角三角形的一个基本定理,它描述了直角三角形三条边之间的关系。具体来说,直角三角形的两条直角边的平方和等于斜边的平方。"
2.勾股定理的证明:
a.利用具体的直角三角形进行演示,引导学生观察、思考、发现勾股定理。
8.融入数学文化,培养人文素养:在教学过程中,适时融入数学历史文化,让学生了解勾股定理在人类文明发展中的地位和作用,培养他们的人文素养。
四、教学内容与过程
(一)导入新课
1.情境引入:通过古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,引发学生对勾股定理的好奇心,激发学习兴趣。
"同学们,你们听说过古希腊数学家毕达哥拉斯吗?今天我们要学习的勾股定理,就是他在一次偶然的机会中发现的。让我们一起走进这个故事,探寻勾股定理的奥秘吧!"
"有兴趣的同学可以研究一下勾股数在三角形中的应用,以及它与三角形类型之间的关系,这将有助于你们更深入地理解勾股定理。"
人教版八年级数学下册17.1.1勾股定理教案
-实际问题中的勾股定理:展示勾股定理在建筑、工程等领域的应用,强化数学与实际生活的联系。
举例解释:以一个具体的直角三角形为例,讲解如何应用勾股定理计算斜边的长度,并强调在计算过程中要注意单位的统一。
2.教学难点
-难点内容:
-理解勾股定理的证明过程:学生需要从几何和代数两个角度理解证明的逻辑。
-灵活运用勾股定理解决问题:学生需要能够将勾股定理应用于不同类型的题目中,包括逆向思维题。
2.增强学生的空间观念,通过直角三角形的实际应用,培养学生的空间想象力和直观感知能力。
3.提高学生的数学运算能力,使学生能够熟练运用勾股定理进行相关计算,增强数学运算的准确性和效率。
4.培养学生的数据分析和应用能力,让学生在实际问题中运用勾股定理,学会从数学角度分析、解决现实生活中的问题。
5.增进学生对数学文化的理解,了解勾股定理的起源和发展,激发学生热爱数学、探索数学奥秘的兴趣。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明这两个重点。对于难点部分,我会通过举例钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示勾股定理的基本原理。
五、教学反思
在今天的勾股定理教学过程中,我发现学生们对于这个定理的概念和应用表现出很大的兴趣。他们通过实际案例和实验操作,对勾股定理有了更直观的认识。但在教学过程中,我也注意到了一些需要反思的地方。
人教版数学八年级下册17.1《勾股定理(直角三角形三边的关系)》教案
1.教学重点
-理解并掌握勾股定理的表达式:直角三角形两直角边的平方和等于斜边的平方。
-学会运用勾股定理计算直角三角形的边长。
-熟悉勾股定理的证明方法,如构造法、割补法等。
-能够识别和判断勾股数。
-掌握勾股定理在实际问题中的应用。
举例:在教学过程中,教师应通过多种例题和图形,反复强调勾股定理的表达式和应用方法,确保学生能够准确记忆并熟练运用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两直角边的平方和等于斜边的平方。它是解决直角三角形边长计算问题的关键,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明方法这两个重点。对于难点部分,如证明过程的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如构造直角三角形模型,演示勾股定理的基本原理。
其次,在实践活动环节,我发现学生们在分组讨论时,有些小组的讨论并不充分,部分学生参与度不高。为了提高学生的参与度,我打算在接下来的课程中,尝试采取一些激励措施,如设立小组竞赛,鼓励学生积极发言,提高他们的讨论热情。
此外,在学生小组讨论环节,我发现有些学生对于勾股定理在实际生活中的应用了解不够深入。这可能是因为他们在生活中观察不够仔细,或者是对数学知识的应用意识不够强烈。针对这个问题,我计划在今后的教学中,多引入一些生活中的实际案例,让学生感受到数学知识的实用价值,激发他们学习数学的兴趣。
人教版八年级数学下册第十七章-勾股定理-教案
17.1 勾股定理〔第1课时〕[教学任务分析]教学目标知识技能1.了解勾股定理的发现过程,掌握勾股定理的内容,会证明勾股定理.2.能运用勾股定理进行简单的运算.3.培养在实际生活中发现问题,总结规律的意识和能力.过程方法经历观察与发现勾股定理的过程,感受直角三角形三边关系 ,培养学生善于观察、发现、并学会验证.情感态度1.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,勤奋学习.2.培养学生严谨的数学学习态度,体会勾股定理在现实中的应用.重点勾股定理的内容与证明.难点勾股定理的证明.[教学环节安排]环节教学问题设计教学活动设计情境引入[问题1]相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.注意观察,你能有什么发现?分析:突出一下,换成下图你有什发现?说出你的观点.学生猜测得出结论:等腰直角三角形斜边的平方等于两直角边的平方和.教师:提出问题、引导学生观察,猜测、发现.学生:观察思考、尝试得出结论自主探究合作[问题2]其它直角三角形是否也存在这种关系?观察下边两个图并填写下表:[问题3]命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.命题证明:学生阅读课本65页,理解,提示:面积关系是214()2ab b a c⨯+-=.A的面积B的面积C的面积图1-2图1-3教师:变换图形,便于学生观察,得出:由面积和相等到斜边的平方等于两直角边的平方和.学生:观察图形,填表,并简要阐述理由.教师:引导学生得出结论.鼓励学生,敢于猜想、阐述自己观点.教师:引出问题3,怎样证明命题是否正确?交 流适当穿插我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情.总结:1.勾股定理:如果直角三角形的两直角边长分别为a 、b,斜边长为c,那么222a b c +=.2.理解:反映了直角三角形三边之间存在的内在联系,可由已知两边求第三边学生:阅读课本理解证明过程. 教师:根据学生实际看能否理解,若不能理解可少作提示分析.也可多列举几种证法.教师:汇总总结,帮助学生理解,激励学生.尝 试 应 用1.根据图18.1-1你能写出勾股定理的证明过程吗?[分析]总面积等于各面积之和221()42a b ab c +-⨯= 2.一个门框尺寸如图18.1-2所示,一块长3m,宽2.2m 的薄木板能否从门框内通过?为什么?[分析]木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过,对角线AC 是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板能否通过.教师:提出问题.学生:思考独立完成后小组内阐述、分析、交流.教师:根据学生完成情况适当讲评.第2题注意过程书写规范,见教材67页成果 展示 引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得与困惑.学习小组互相讨论,交流,补充,展示补 偿 提 高 1. 求出下列各直角三角形中未知边x 的长度.2.已知:如图在Rt △ABC 中,∠C=90°,A B=15,AC=12,求BC 的长3. 已知:如图,等边△ABC 的边长是6cm, AD 为BC 边上的高,求AD 的长2.3.作业 设计必做题:教材69页习题18.1第1、2两题,做在作业本上.选做题:教材69页习题18.1第7题教师布置作业,并提出要求. 学生课下独立完成,延续课堂.17.1 勾股定理 〔第2课时〕[教学任务分析]图图18.1-2教学目标知识技能1.会用勾股定理进行简单的计算和解决实际问题.2.理解掌握实际问题转化成数学问题的解题思路和方法.过程方法经历探究勾股定理在实际问题中的应用过程,掌握勾股定理的应用方法.情感态度通过学生思维方式、意识的培养,感受数学方法理念,体会勾股定理的应用价值,热爱数学.重点运用勾股定理进行计算的方法难点勾股定理的灵活运用.[教学环节安排]环节教学问题设计教学活动设计情境引入复习什么是勾股定理?勾股定理的作用?教师:勾股定理是直角三角形中特有的三边关系定理,运用它能由已知两边求第三边.学生:回答、理解自主探究合作交流[问题3]如图18.1-7,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?[分析]〔1〕由图根据勾股定理可求BD的长,看看是否是0.5m〔2〕已经知道那些线段的长?AB和CD是什么关系?〔3〕由图可知BD=OD-OB,分别求出OB、OD即可.解:〔由学生填全教材67页的空后,尝试在练习本上写出过程〕教师:出示题目并引导学生分析,学生:理解、写出过程,感受应用勾股定理进行计算的书写.建议:也可有学生独立分析完成教材填空,然后教师书写过程并强调写法与规范.尝试1. 1.教材68页,练习1、2题2.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.2. 3.如图18.1-8,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?教师:提出要求,简要讲评.学生:第1题找四名学生板练,其他学生在练习本上完成.组内学生自己互评互改.第3、4题找优秀学生解决图18.1--7应用提示:① AD 与BD有何关系?②设CD=x,则AD=③在△ACD中根据勾股定理可列出构造方程来解.4.已知:如图18.1-9,在△ABC中,∠C=60°,AB=34,AC=4,AD 是BC边上的高,求BC的长.成果展示引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得与困惑.学习小组互相讨论,交流,补充,展示补偿提高1. 在Rt△ABC中,∠C=90°〔1〕若a=5,b=12,则c=________;〔2〕b=8,c=17,则S△ABC=________.2. 下列各图18.1-10中所示的线段的长度或正方形的面积为多少.<注:下列各图中的三角形均为直角三角形>3. 在Rt△ABC中,∠C=90°,A a∠的对边为,B b∠的对边为,c斜边为〔1〕已知a:b=1:2,c=5, 求a〔2〕已知b=15,∠A=30°,求a,c.3. 4.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积针对前几个环节出现的问题,进行针对性的补偿,对学有余力的学生拓展提高.3题〔1〕设a=x,那么b=2x,由勾股定理可知()22225x x+=,解得5x=±其中边长不能为负数,所以5x=,即5a=〔2〕设a为x,那么2x a=,由勾股定理可知:222(2)x b x+=,作业设计必做题:教材70 页习题18.1第3、5两题做在作业本上.选做题:《同步学习》开放性作业第1,2,3题.教师布置作业,并提出要求.学生课下独立完成,延续课堂.17.1 勾股定理〔第3课时〕[教学任务分析]教知识技能1.会运用勾股定理在数轴上画出并表示无理数,进一步理解感受数轴上的点与实数一一对应.2.进一步理解数学中的数形结合思想,转化思想,学会运用勾股定理解决实际问题.[教学环节安排]自主探究合作交流[问题1]: 数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?分析引导:〔1〕你能画出长为2的线段吗?怎么画?说说你的画法.〔2〕长是13的线段怎么画?是由直角边长为_____和______整数组成的直角三角形的斜边?〔3〕怎样在数轴上画出表示13得点?解:①在数轴上找到点A,使OA=3,②过A点作直线L垂直于OA,,在L上截取AB=2,③以O为圆心,以OB为半径画弧,交数轴于点C,点C即为表示13的点.[问题2]:利用勾股定理,是否可以在数轴上画出表示2,3,4,5,•••的点?试一试.教师:提出问题,引导学生分析教师:根据学生叙述,写出画法.适当点评.你知道OC为什么等于13吗?教师:提出问题,巡查、指导.学生:〔1〕画图完成,感知画法并掌握.〔2〕阅读教材68页—69页学习理解画法.尝试应用1.教材69页,练习1、2题.2. 如图18.1-14,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是.3.如图18.1-15,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为两名学生尝试完成课后练习题 1.〔1、2两题〕的解题过程.教师:简单讲评.2、3、4题学生完成后,展示答案,师生共同进行订正.成果展示引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得与困惑.学习小组互相讨论,交流,补充,展示补偿提高1.如图18.1-16,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.2.如图18.1-17,∠ACB=∠ABD=90°,CA=CB,∠DAB=30°,AD=8,求AC的长.教师:出示题目,引导学生分析.学生:在练习本上完成后,组内核对、讨论.注意书写过程.教师:根据实际情况教师讲评, 注意总结方法和规律.答案:1.8;2.26作业设计必做题:教材70页习题18.1 第6题选做题:教材71页习题18.1 第10题教师布置作业,并提出要求.学生课下独立完成,延续课堂.17.1 勾股定理〔第4课时〕[教学任务分析]教学目标知识技能〔1〕理解勾股定理,并能用多种方法证明勾股定理.认识勾股定理是直角三角形特有的三边关系定理.〔2〕能熟练运用勾股定理进行有关计算和解决实际问题.过程方法<1>经历勾股定理的应用和证明过程,学会运用数学思想和思维方式解决实际问题.〔2〕感受数学与现实生活的密切联系,认识数学来源于生活,服务于生活,生活中要注意观察、善于发现、验证、应用.情感态度感受数学的悠久历史和成就、感受数学的作用和魅力,热爱数学、努力学好数学重点勾股定理的应用难点在应用中勾股定理与其它三角形知识的有机结合.[教学环节安排]环节教学问题设计教学活动设计情境引入1.若c为直角△ABC的斜边,b、a为直角边,则a、b、c的关系为___________.2.直角△ABC的主要性质是:若∠C=90°,那么〔用几何语言表示〕⑴两锐角之间的关系:;⑵若∠B=30°,则∠B的对边和斜边____________,两直角边之间_____________;若∠B=45°,则两直角边长_________,∠B的对边和斜边_________.⑶三边之间的关系:⑷直角三角形斜边上的高CD与直角三角形三边的关系是______________.教师:提出问题,引导学生完成,并就学生完成情况简单讲评.学生:思考、完成、总结.交流.教师总结:图18.1-16 图18.1-17自主探究合作交流[问题1]: 1.求出下列直角三角形中未知的边〔1〕〔2〕2. 〔1〕在在Rt△ABC中,∠C=90°,A a∠的对边为,B b∠的对边为,c斜边为,且a:b=3:4,c=15, 求a、b〔2〕小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水深度为< >A. 2m;B. 2.5m;C. 2.25m;D. 3m.学生:完成1,2两题总结方法.教师:方法总结:三种类型:〔1〕已知两边求第三边;〔2〕已知一特殊锐角30°、60°45°角和一边求其它边;〔3〕已知两边之间的关系和一边,求三边.答案:1.〔1〕8,17;〔2〕1,3;2.〔9〕12〔2〕A总结:利用勾股定理求边长的几种方法归类.尝试应用1.如下图在Rt△ABC中,∠C=Rt∠,CD⊥AB,若BC=15,AC=20,则AB=_____,AD=__,BD=__,CD=__.〔两种方法〕2.某飞机在天空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?3.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC, AB⊥AC,∠B=60°,CD=1cm,求BC的长.学生尝试完成由学生自主完成,如果遇到困难,可让学生在组内讨论后完成,并进行展示.成果展示引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得与困惑.学习小组互相讨论,交流,补充,展示补偿1.直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 < >A 2h ab= B 2222a b h+=C111a b h+= D222111a b h+=针对前几个环节出现的问题,进行610ACB图18.1-26提高2.把直角三角形两条直角边同时扩大到原来的3倍,则其斜边〔〕BA.不变B.扩大到原来的3倍C.扩大到原来的9倍D.减小到原来的1/33. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?针对性的补偿,对学有余力的学生拓展提高.作业设计必做题:课本第71页11题选做题:课本第71页12题教师布置作业,并提出要求.学生课下独立完成,延续课堂.17章勾股定理〔小结与复习〕[教学任务分析]教学目标知识技能1.熟知勾股定理、勾股定理逆定理,并能用多种方法证明勾股定理.2.能熟练运用勾股定理与其逆定理进行有关计算、证明,解决实际问题.过程方法经历勾股定理、勾股定理逆定理的的应用和证明过程,体会数形结合在解决数学问题中的作用,学会运用数学思想和思维方式解决实际问题.情感态度感受数学的悠久历史和成就、感受数学的作用和魅力,感受数学与生活的联系,热爱数学、努力学好数学.重点勾股定理与其逆定理的应用难点勾股定理与其逆定理综合运用.[教学环节安排]环节教学问题设计教学活动设计复习引入1.勾股定理、逆定理;他们在求解或证明中的作用?2.勾股定理与其逆定理关系?3.什么是命题?互逆命题?互逆定理?教师:以提问方式提出问题,并根据学生回答讲评总结.学生:回答理解..自主探1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.2.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为〔〕A.6cm B.8.5cm C.错误!cm D.错误!cm3.在Rt△ABC中,∠C=90°,CD 是斜边上的高,AB=1,则2CD2+AD2+BD2=_________.4.一个三角形的三边的比为5:12:13,它的周长为60cm,则它的面积是________.5.如图要在高3m,斜坡5m的楼梯表面铺地毯,地毯的长度至_____米6.判断下列命题:教师:出示题目,提出要求,布置完成.学生:完成后,小组内核对讨论,提出问题.教师:根据学生存在问题讲解.答案:1.错误!2.D3.14. 1205. 76. A7. 2步索①等腰三角形是轴对称图形;②若a>1且b>1,则a+b>2;③全等三角形对应角的平分线相等;④直角三角形的两锐角互余,其中逆命题正确的有< >A.1个B.2个C.3个D.0个7.学校有一块长方形的花圃,经常有同学为了少走几步而走捷径,于是在草坪上开辟了一条"新路",他们这样走少走了________.<每两步约为1米〕8.△ABC三边a、b、c满足222506810a b c a b c+++=++求△ABC的面积.9.如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和10㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?10.在△ABC中,∠BAC=120°,AB=AC=10错误!cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直.8.解:提示:配成完全平方式9. 放置露在盒外面的最短,(25102)cm-,10. 5秒和0秒时,PA与腰都垂直.尝试应用1.下列命题中不正确的是< >.A.若∠B=∠C-∠A,则△ABC是直角三角形.B.若a2=<b+c><b-c>,则△ABC是直角三角形.C.若∠A:∠B:∠C=3:4:5则△ABC是直角三角形.D.若a:b:c=5:4:3则△ABC是直角三角形.2.如图,在△ABC中,AB=AC,D点在CB延长线上,求证:22AD AB BD CD-=•由学生自主完成,如果遇到困难,可让学生在组内讨论后完成,并进行展示.成果展示引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得与困惑.学习小组互相讨论,交流,补充,展示补偿提高1. Rt△ABC中,∠C=90°,如图〔1〕,若b=5,c=13,则a=__________;若a=8,b=6,则c=__________.2. 若直角三角形的三条边长分别是6,8,a则〔1〕当6,8均为直角边时,a=__________;〔2〕当8为斜边,6为直角边时,a=__________.3. 一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是24则三边分别是____________.4. 如图,在四边形ABCD中,∠BAD=90°,AD=4,AB=3,BC=12,求正方形DCEF的面积.针对前几个环节出现的问题,进行针对性的补偿,对学有余力的学生拓展提高.作业设计必做题:课本第80页第3、4题选做题:课本第80页第6题教师布置作业,并提出要求.学生课下独立完成,延续课堂.第17章勾股定理教学活动图[教学任务分析][教学环节安排]应用2..如图,某学校〔A点〕与公路〔直线L〕的距离为300米,又与公路车站〔D点〕的距离为500米,现要在公路上建一个小商店〔C点〕,使之与该校A与车站D的距离相等,求商店与车站之间的距离.学生完成后,展示答案,师生共同进行订正.学生自主完成,如果遇到困难,可让学生在组内讨论后完成,并进行展示成果展示引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得与困惑.学习小组互相讨论,交流,补充,展示补偿提高1.在长30cm、宽50 cm、高40 cm的木箱中,如果在箱内的A处有一只昆虫,它要在箱壁上爬行到B处,至少要爬多远?5.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处〔三条棱长如图所示〕,问怎样走路线最短?最短路线长为多少?针对前几个环节出现的问题,进行针对性的补偿,对学有余力的学生拓展提高.分析: 根据题意分析蚂蚁爬行的路线有三种情况,由勾股定理可求得爬行的路线最短.作业设计必做题:教材80页复习题18.第8两题选做题:教材80页复习题18.第9两题教师布置作业,并提出要求.学生课下独立完成,延续课堂.。
人教版八年级下册第十七章17.1勾股定理教学设计
3.请举出三个生活中的例子,说明勾股定理的应用。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的内容,总结勾股定理的定义、证明方法和应用。同时,强调勾股定理在数学和生活中的重要性,激发学生学习数学的兴趣。
最后,我会告诉学生:“勾股定理是数学中的一个重要定理,它揭示了直角三角形边长之间的内在联系。希望同学们能够掌握这个定理,并在今后的学习和生活中,善于运用它,解决实际问题。”通过总结,使学生对勾股定理的认识更加深刻,提高他们的数学素养。
2.通过实际操作和练习,使学生熟练掌握勾股定理的计算方法,提高数学运算能力。
3.引导学生从多个角度去思考问题,培养学生的逻辑思维和发散思维。
4.通过小组合作学习,培养学生的团队协作能力和交流表达能力。
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,克服困难,勇于挑战。
2.使学生认识到数学在生活中的重要作用,增强数学应用的意识。
在这个过程中,我会注重学生的参与和思考,鼓励他们提出问题,发表自己的看法。通过师生互动,使学生更好地理解和掌握勾股定理。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们针对以下问题进行讨论:
1.勾股定理的发现过程是怎样的?
2.你能想到哪些方法证明勾股定理?
3.勾股定理在生活中的应用有哪些?
4.应用环节:设计具有实际背景的练习题,让学生运用勾股定理解决问题。教师应关注学生的解题过程,指导他们正确建立数学模型,提高问题解决能力。
5.巩固环节:通过课堂练习和课后作业,巩固学生对勾股定理的理解和应用。同时,开展小组互评、讨论等活动,促进学生之间的交流与合作。
人教版八年级数学下册《17.1勾股定理》教案
(四)学生小组讨论(用时10分钟)
1鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例解释:
-在讲解勾股定理的表达式时,教师应通过图示和实际例子,让学生明确a、b、c分别代表直角三角形的哪三条边,并强调只有直角三角形才满足这一关系;
-在应用勾股定理解决实际问题时,教师应选取贴近学生生活的例子,如房屋的斜边长度计算,使学生理解数学与生活的紧密联系;
-在介绍证明方法时,教师应详细讲解每种方法的思路和步骤,让学生理解证明的逻辑过程。
-勾股定理在直角三角形中的运用,如求斜边或直角边的长度;
-结合实际情境,运用勾股定理解决问题,如房屋建筑、道路设计等;
-了解勾股定理的数学证明,包括几何证明和代数证明;
-了解勾股定理在古代数学史上的发现和应用。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探索勾股定理的证明过程,让学生体会数学逻辑的严谨性,提高推理和证明能力;
五、教学反思
在今天的教学中,我发现学生们对勾股定理的概念和应用表现出很大的兴趣。通过引入日常生活中的实际问题,他们能够更直观地理解数学知识的应用。在讲授理论时,我注意到有些学生对于几何证明的部分感到困惑,这提示我需要在这个环节上多下功夫。
我尝试使用了不同的教学方法,比如通过动画和模型来展示证明过程,这样有助于学生理解抽象的数学原理。在实践活动环节,分组讨论和实验操作让学生们积极参与,他们不仅学会了如何应用勾股定理,还提高了团队合作能力。
这些核心素养目标与新教材要求相符,注重培养学生的综合能力和人文素养,为学生的终身发展奠定基础。
人教版八年级数学下册教案第十七章勾股定理.docx
八年级下册教案设计第十七章勾股定理17.1.1 勾股定理(一)教案总序号:10 时间:2014年2月26日星期三一、教学目的1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章 勾股定理17.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗? 五、例习题分析例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 4×21ab +(b -a )2=c 2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷ 勾股定理的证明方法,达300余种。
这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
A B例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4×21ab +c 2右边S=(a+b )2左边和右边面积相等,即 4×21ab +c 2=(a+b )2 化简可证。
六、课堂练习 1.勾股定理的具体内容是: 。
2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: 。
3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°; 若满足b 2>c 2+a 2,则∠B 是 角; 若满足b 2<c 2+a 2,则∠B 是 角。
4.根据如图所示,利用面积法证明勾股定理。
七、课后练习 1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= 。
(已知a 、b ,求c ) ⑵a= 。
(已知b 、c ,求a ) ⑶b= 。
(已知a 、c ,求b )2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来。
3.在△ABC 中,∠BAC=120°,AB=AC=310cm ,一动点P 从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直。
4.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上。
bbbbaaA BbA EB求证:⑴AD 2-AB 2=BD ·CD⑵若D 在CB 上,结论如何,试证明你的结论。
课后反思:17.1 勾股定理(二)一、教学目标1.会用勾股定理进行简单的计算。
2.树立数形结合的思想、分类讨论思想。
二、重点、难点1.重点:勾股定理的简单计算。
2.难点:勾股定理的灵活运用。
三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
让学生明确在直角三角形中,已知任意两边都可以求出第三边。
并学会利用不同的条件转化为已知两边求第三边。
例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。
例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。
让学生把前面学过的知识和新知识综合运用,提高综合能力。
四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。
学习勾股定理重在应用。
五、例习题分析例1(补充)在Rt △ABC ,∠C=90°⑴已知a=b=5,求c 。
⑵已知a=1,c=2, 求b 。
⑶已知c=17,b=8, 求a 。
⑷已知a :b=1:2,c=5, 求a 。
DCB⑸已知b=15,∠A=30°,求a ,c 。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2(补充)已知直角三角形的两边长分别为5和12,求第三边。
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。
让学生知道考虑问题要全面,体会分类讨论思想。
例3(补充)已知:如图,等边△ABC 的边长是6cm 。
⑴求等边△ABC 的高。
⑵求S △ABC 。
分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法。
欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=21AB=3cm ,则此题可解。
六、课堂练习 1.填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。
⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。
⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。
⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。
2.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。
3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
七、课后练习1.填空题在Rt △ABC ,∠C=90°,⑴如果a=7,c=25,则b= 。
⑵如果∠A=30°,a=4,则b= 。
⑶如果∠A=45°,a=3,则c= 。
⑷如果c=10,a-b=2,则b= 。
⑸如果a 、b 、c 是连续整数,则a+b+c= 。
⑹如果b=8,a :c=3:5,则c= 。
2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,DB A A BBAB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。
课后反思:17.1 勾股定理(三)一、教学目标1.会用勾股定理解决简单的实际问题。
2.树立数形结合的思想。
二、重点、难点1.重点:勾股定理的应用。
2.难点:实际问题向数学问题的转化。
三、例题的意图分析例1(教材P66页探究1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。
例2(教材P67页探究2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。
四、课堂引入勾股定理在实际的生产生活当中有着广泛的应用。
勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
五、例习题分析例1(教材P66页探究1) 分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。
⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。
⑸注意给学生小结深化数学建模思想,激发数学兴趣。
例2(教材P67页探究2)分析:⑴在△AOB 中,已知AB=3,AO=2.5,利用勾股定理计算OB 。
⑵ 在△COD 中,已知CD=3,CO=2,利用勾股定理计算OD 。
则BD=OD -OB ,通过计算可知BD ≠AC 。
⑶进一步让学生探究AC 和BD 的关系,给AC 不同的值,计算BD 。
六、课堂练习1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。
ABC2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。
2题图 3题图 4题图3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。
4.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少? 七、课后练习1.如图,欲测量松花江的宽度,沿江岸取B 、C 两点,在江对岸取一点A ,使AC 垂直江岸,测得BC=50米, ∠B=60°,则江面的宽度为 。
2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。