大学物理光学光的干涉习题
大学物理 光学答案
第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。
2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。
干涉条纹将变密。
本题答案为A 。
3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。
若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B )A. P 处仍为明条纹B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。
故本题答案为B 。
4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定解:反射光和透射光的等倾干涉条纹互补。
本题答案为B 。
5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n )6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。
当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm 选择题3图解:增透膜 6.904/min ==n e λnm本题答案为C 。
大学物理答案
《大学物理CII 》作业 No.05 光的干涉班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题:1.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ D ] (A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹 (C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹 解:因不同颜色滤光片使双缝出射的光颜色不同,从而频率不同,两缝出射光不再是相干光,因此不产生干涉条纹2. 双缝干涉的实验中,两缝间距为d ,双缝与屏幕之间的距离为D (D >>d ),单色光波长为λ,屏幕上相邻的明条纹之间的距离为(A)dDλ (B)Ddλ (C)dD2λ (D)Dd2λ[ A ]解:由双缝干涉条件可知,相邻的两明条纹间距为 λdDx =∆ 故选A3. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且321n n n ><, 1λ 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为(A) 1122λπn en (B) πλπ+1212n en (C) πλπ+1124n en(D) 1124λπn en[ C ]解:光在薄膜上表面反射时有半波损失,下表面反射时无半波损失,所以,两束反射光在相遇点的光程差为 2212λ+=∆e n由光程差和相位差的关系,相位差为 112,42n en λλπλπλπϕ=+=∆=∆所以 πλπϕ+=∆1124n en故选C4. 如图,用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移(B) 向中心收缩 (C) 向外扩张(D) 静止不动3(E) 向左平移[ B ]解:牛顿环是等厚干涉条纹,当平凸透镜垂直向上缓慢平移而远离平面玻璃时,某一厚度的空气膜将向中心收缩,所以环状条纹向中心收缩。
大学物理课件 第14章光的干涉习题答案
C.有一凸起的埂,深入 / D4 . 有一凸起的埂,深入
天道酬勤
4
6.一束白光以30度的入射角照射平静的湖水(水的折射 率为4/3)表面的一层透明液体(折射率为 10)2 的薄膜, 若反射光中波长为600nm的光显得特别明亮,则该透 明液体薄膜的最小厚度为( )
r1' r1 x sin
r2 r2' x sin
x
sin sin
天道酬勤
10
2.在1题基础上,考虑使用激光测速仪测量微粒运动速度 问题。在激光测速仪里两列交叉的相干激光束照射运 动微粒,…求微粒运动速度大小。
解:利用1题结论,粒子走过的路程
为λ/(sinθ+sinφ),其中θ、φ分
别为30度。
距D=1.0m,若第二级明条纹离屏中心的距离为
6.0mm,此单色6光00的n波长 相邻两明条纹间的3距m离
为.
m
m
10.在不同的均匀媒质中,若单色光通过的光程相等时,
其几何路程
同不,其所需时间
相同。
11.两光相干除了满足干涉的三个必要条件,即频率相同、 振动方向相同、相位相等或相位差恒定之外,还必须满足 两个附加条件 两相干光的振幅不可相差太大 , 两 相干光的光程差不能太大 。
6
二、填空题
1.真空中的波长为 的单色光在折射率为n的媒质中由
A点传到B点时,周相改变量为3,则光程的改变量
为 3λ/,2 光从A传到B所走过的几何路程为 3。λ/2n
2.如图所示,在杨氏双缝实验中,若用红光做实验,则 相邻干涉条纹间距比用紫光做实验时相邻干涉条纹间
距 ,大若在光源S2右侧光路上放置一薄玻璃片,则中
第12章(1) 光的干涉答案
图中数字为各处的折射率图16-23一、选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C]根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。
其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。
【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B]干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B]中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。
【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。
若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。
(A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。
题解1-光的干涉(已修改)
e
,干涉条纹有
大学物理习题_刘晓旭制作
Physics of university_LXX
解: (1)
n2 n
。因为劈尖的棱边是暗纹,对应光程差应为
只能是下面媒质的反射光有半波损失 才合题意。 2 n 9 9 5000 3 e 9 1 .5 10 mm (2) 2 2n 2 1.5
的平行光垂直入射劈形薄膜的上表面,
从反射光中观察,劈尖的棱边是暗纹。若劈尖上面媒质的折射率
n1 大于薄膜的折射率 n (n 1.5) 求:(1)膜下面媒质的折射率 n2 与 n
什么变化?若 暗纹占据?
的大小关系;
(2)第10条暗纹处薄膜的厚度; (3)使膜的下表面向下平移一微小距离
e 2.0 m ,原来的第10条暗纹处将被哪级
e 2 1.2 m
大学物理习题_刘晓旭制作
k 4 k 1
Physics of university_LXX
6、 1.4
劈尖干涉的条纹宽度:l
3 7、 2n
9 8、 4n2
2n
n
2l
相邻明(暗)纹对应膜厚度差:e
1.40
2n
第2条明纹和第5条明纹膜厚差: e25 劈尖干涉的光程差:
空气 r2 r1 k 3 液体 n(r2 r1) 3n 4
D d
1.33
n 1.33
4、 1mm 杨氏双缝干涉的条纹宽度:
x空气
D x空气 x水 1mm nd 1.33
5、1.2 m
从中心向外数第四个暗环 : 2e (2k 1) ; k 4 2 2
Physics of university_LXX
大学物理Ⅰ第13章光的干涉与衍射习题答案
第13章 光的干涉与衍射训练题(含答案)一、选择题1. 如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3。
若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是[ ] (A ) e n 22 (B) 222λ-e n(C) λ-e n 22 (D) 2222n e n λ-2.真空波长为λ的单色光,在折射率为n 的均匀透明介质中从A 点沿某一路径传播到B 点,路径的长度为l 。
若l 等于下列各选项给出的值,A 、B 两点光振动位相差记为ϕ∆,则[ ] (A) 3, 32l λϕπ=∆= (B) πϕλn nl 3,23=∆=(C) πϕλ3,23=∆=nl (D) πϕλn nl 3,23=∆=3. 在双缝干涉实验中,两缝隙间距离为d ,双缝与屏幕之间的距离为)(d D D >>。
波长为λ的平行单色光垂直照射到双缝上。
屏幕上干涉条纹中相邻暗纹之间的距离是 [ ] (A)d D λ2 (B) D dλ (C) λdD (D) dDλ4. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹[ ] (A) 间隔变大,向下移动。
(B) 间隔变小,向上移动。
(C) 间隔不变,向下移动。
(D) 间隔不变,向上移动。
5. 把一平凸透镜放在平玻璃上,构成牛顿环装置。
当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环[ ] (A) 向中心收缩,条纹间隔变小。
Sλ3(B) 向中心收缩,环心呈明暗交替变化。
(C) 向外扩张,环心呈明暗交替变化。
(D) 向外扩张,条纹间隔变大。
6. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和。
大学物理光学答案
第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n 解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。
2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失 解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。
干涉条纹将变密。
本题答案为A 。
3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。
若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B ) A. P 处仍为明条纹 B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。
故本题答案为B 。
4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。
本题答案为B 。
5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n ) 6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。
当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm选择题3图解:增透膜 6.904/min ==n e λnm 本题答案为C 。
大学物理-光学答案
第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。
2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。
干涉条纹将变密。
本题答案为A 。
3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。
若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B )A. P 处仍为明条纹B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。
故本题答案为B 。
4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定解:反射光和透射光的等倾干涉条纹互补。
本题答案为B 。
5.一束波长为λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n )6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。
当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm选择题3图解:增透膜 6.904/min ==n e λnm本题答案为C 。
大学物理第12章光的干涉测试题(附答案及知识点总结)
第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm )1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中:(A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等. (C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n . (C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是: (A )使屏靠近双缝. (B )使两缝的间距变小. (C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]5、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]36、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.10、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.S S 113、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.16、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距mm 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离mm 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:图b图an 1n 2 n 3(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少(2)若相邻的明条纹间距mm 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是.ROλO 1(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径mm 4k =r ,第10+k 个暗环半径mm 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n - 10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ16、θλn 2 17、n2λ 18、解:nm 5.562/=∆=D x d λ. 19、解:mm 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k =,则膜厚度mm 1022.1)4/(41-⨯==n e λ. (2)mm 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ). (2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆. 二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹. 光程差:Dxd =δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距) 2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹 2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率.劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差nd 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同. 利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -=),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。
《大学物理学》(网工)光的干涉练习题(解答)(1)
k
,
k
取 2,有 d2
3 4
450
nm ,k 取
5,有 d5
9 4
1350
nm ,则 d
900
nm 】
拓展题:用 600 nm 的单色光垂直照射牛顿环装置时,第 4 级暗纹对应的空气膜厚度为
m。
【提示:首先要考虑半波损失,由于只考虑第 4 级暗纹对应的空气膜厚度,所以此装置是否是牛顿环并不重要,直
(A)中央明条纹向下移动,且条纹间距不变;
(B)中央明条纹向上移动,且条纹间距增大; (C)中央明条纹向下移动,且条纹间距增大; (D)中央明条纹向上移动,且条纹间距不变。
S1 S
S
S2
【提示:画出光路,找出 S ' 到光屏的光路相等位置】
(D)
O
拓展题:双缝干涉实验中,若双缝所在的平板稍微向上平移,其他条件不变,则屏上的干涉条纹( B )
S2
【提示:两光在玻璃内的光程差应为 5λ,即(n2-1)d-(n1-1)d=5λ,可得玻璃片厚度 d】
P O
拓展题:用白光光源进行双缝试验,如果用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光
片遮盖另一条缝,则:
(D)
(A)干涉条纹的宽度将发生改变; (B)产生红光和蓝光两套彩色干涉条纹; (C)干涉条纹的亮度将发生改变; (D)不产生干涉条纹。
光的干涉(解答)-4
合肥学院《大学物理 B》自主学习材料(解答)
6.波长=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜
厚度之差为
nm。
【提示:首先要考虑半波损失,由于只考虑第 k 级明纹对应的空气膜厚度,所以此装置是否是牛顿环并不重要,直
4-1光-光 的 干 涉 大学物理作业习题解答
n 1 1.5 1
6
1-5 用白光垂直照射在折射率为1.40的薄膜上,如果紫光 (400纳米)在反射光中消失,问此薄膜的最小厚度是多少?紫 光在薄膜中的波长是多少?
解(1)设薄膜在空气中,反射极小时光程差满足
2nd (k 1 ),
2
2
当k=1时有最小厚度,由上式解得
dmin
2n
400106 21.4
141 .
1-10 一个透明塑料(n=1.40)制成的劈尖,当用单色光垂直照射 时,观测到两相邻干涉明(或暗)条纹之间的距离为2.5毫米, 设劈尖的夹角=1.0×10-4弧度,求单色光的波长.
解 相邻两明(或暗条纹)的距离为 x 2.5mm,劈尖的夹角
1.0104rad, 又因 x 2 n ,
1-8 为了使可见光中黄绿光反射最少,在照相机镜头表面覆盖一层
折射率为1.38的氟化镁介薄膜. 照相机镜头呈蓝紫色就是因为反射
光中缺少了黄绿光. 若照相机镜头的折射率为1.5 , 试求氟化镁介质
薄膜的最小厚度.
9
解 人眼对黄绿光反应最灵敏,但照相底片没有这种性
能..为了使照片显示出人眼观察到的色彩,必须对黄绿光
变)(3)当膜快要破时,从反射方向看它是暗的,为什么?
解 (1)入射角i 3 00 ,由折射定律1.0 sin i n sin
式中 n 1.33, 解得 220 , 为膜内折射角. 相干加强条件为:
2nd cos k. 2
取k=0,得膜最小厚度为
d
4n cos
.
在300方向上,绿光(=500纳米)相干加强,因此最小厚度为 8
增透,这样照片的景色才能接近人眼观察到的景色. 对黄绿光增透, 反射光中黄绿光相干相消, 光程差公
大学物理光学 光的干涉习题
几何关系 暗纹时 暗纹公式
2 2
k 2k 1 2
2
明 暗 R
R r ( R h)
2n h k 2
r
2
O
牛顿环半径 r 2 2 Rh
kR n 2
n2
n1
r
h
r暗( 空 气)
KR rk
r暗( 水 )
rk rk 1 1 1 1 13.3% rk n 1.33 2
λ (2k - 1) = 2hn 由此可得反射最小满足: 2 λ 解得 : h = (2k - 1) (k = 1,2,3...) 4n λ = 9.42nm 当k=1时,厚度最小: h min = 4n
例题6.厚度为340nm,折射率为1.33的薄膜,放在日光下。 问: 在视线与薄膜的法线成 60 的地方观察反射光, 该处膜呈什么颜色?
B
解: 光线1在B点反射有半波损失,其光程为
600
2l
2
A
1
600
光线2通过介质,光程有改变,其光程为
2
L
C L/2
l l l l 3l n 2 2 2 2 2 2
二光束的光程差为:
2l
2
3l l 2 2
测试题
1.用双缝干涉实验测某液体的折射率n , 光源为单 色光,观察到在空气中的第三级明纹处正好是液体 中的第四级明纹,试求n=? 2.波长=550 nm的单色光射在相距d=2×10-4m的双 缝上,屏到双缝的距离D=2m。 求:(1)中央明纹两侧的 两条第10级明纹中心的间距; (2)用一厚度为e=6.6×10-6m,折射率为n=1.58的云母片 覆盖上面的一条缝后,零级明纹将移到原来的第几级明 纹处?
大学物理 8章作业 and answers
第八章 波 动 光 学(一) 光的干涉一. 选择题1. 波长为λ的单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e,且,则两束反射光的光程差为(A)(B)(C) (D)2. 如图示,波长为λ的单色光,垂直入射到双缝,若P 点是在中央明纹上方第二次出现的明纹,则光程差为(A) 0 (B) λ (C) 3λ /2 (D) 2 λNote: P 点是在中央明纹上方第二次出现的明纹,所以k=2 3. 在双缝干涉实验中,屏幕上的P 点处是明条纹,若将缝盖住,并在连线的垂直平分面处放一高折射率介质反射面M ,如图示,则此时(A) P 点处仍为明条纹 (B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹Note:注意出现了半波损失4. 双缝干涉中,若使屏上干涉条纹间距变大,可以采取 (A) 使屏更靠近双缝 (B) 使两缝间距变小(C) 把两个缝的宽度稍稍调窄 (D) 用波长更短的单色光入射Note:干涉条纹间距Ddλ=5. 波长为λ的单色光垂直入射到折射率为n 的透明薄膜上,薄膜放在空气中,要使反射光干涉加强,薄膜厚度至少为(A) λ /2 (B) λ /2n (C) λ /4 (D) λ /4n Note: 2nd+λ /2=k λ (k=1,2,3,,,)6. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢向上平移,则干涉条纹(A) 向棱边方向平移,条纹间距变小 (B) 向棱边方向平移,条纹间距变大 (C) 向棱边方向平移,条纹间距不变 (D) 向远离棱边方向平移,条纹间距不变 (E) 向远离棱边方向平移,条纹间距变小 Note: 牢记如下规律:1. 厚度增大,角度不变则条纹向着劈尖处(也就是棱边)平移,条纹间距不变;2. 厚度减小,角度不变则条纹向远离劈尖处(也就是棱边)平移,条纹间距不变;3. 角度增大,条纹向着劈尖处(也就是棱边)平移,同时条纹间距变小;4. 角度减小,条纹向远离着劈尖处(也就是棱边)平移,同时条纹间距变大,详见PPT 第八章,page 677. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,再反射光中看到干涉条纹,则在接触点处形成的圆斑为(A) 全明 (B) 全暗(C) 右半边明,左半边暗 (D) 右半边暗,左半边明8. 在迈克耳逊干涉仪的一条光路中放入折射率为n 的透明薄膜后,观察到条纹移动6条,则薄膜的厚度是(A) 3λ (B) 3λ /n()2sin 2l n n λλθθ∆=≈间距(C) 3λ /(n -1) (D) 6λ /nNote: 2d(n-1)=6λ 二. 填空题9. 有两种获得相干光的基本方法,它们是__________________和___________________.( 分波面法 ;分振幅法 )10. 两同相位相干点光源、,发出波长为λ的光,A 是它们连线中垂线上的一点,在与A 间插入厚度为e 折射率为n 的薄玻璃片,两光源发出的光到达A 点时光程差为______________,相位差为____________________.;11. 杨氏双缝干涉实验中,双缝间距为d ,屏距双缝的间距为D (D >>d ),测得中央明条纹与第三级明条纹间距为x ,则入射光的波长为_____________________.Note 相邻干涉条纹间距 ,中央明条纹与第三级明条纹间距x =12. 一双缝干涉装置,在空气中观察时干涉条纹间距为1mm ,若将整个装置放入水中,干涉条纹的间距变为______ 3/4 ___________mm .(设水的折射率为4/3)13. 波长为λ的单色光垂直照射到两块平玻璃片构成的劈尖上,测得相邻明条纹间距为l ,若将劈尖夹角增大至原来的2倍,间距变为__________________.Note:14. 用λ=600nm 的平行单色光垂直照射空气牛顿环装置时,第四级暗环对应的空气膜厚度为______1.2 ________µm .Note:2d+λ /2=(2k+1)λ /2,这里k=0,1,2,3,4,,,第四级暗环k=4,所以d=2λ=1200nm三. 计算题15. 在双缝干涉实验中,两个缝分别用和的厚度相同的薄玻璃片遮着,在观察屏上原来的中央明纹处,现在为第5级明纹.若入射光的波长为nm 600,求玻璃片的厚度.解: 放上玻璃后原中央明纹处的光程为D d λ=3Ddλ()2sin 2l n n λλθθ∆=≈间距对应第5级明纹16. 取白光波长范围400nm ~760nm ,用白光入射到mm 25.0 d 的双缝,距缝50cm 处放置屏幕,问观察到第一级明纹彩色带有多宽?解: 取白光波长范围400nm ~760nm ,对于波长的光波,第一级干涉明纹中心的位置为波长和的光波,第一级明纹间距为17. 一薄玻璃片,厚度为μm 4.0,折射率为1.50,用白光垂直照射,问在可见光范围内,哪些波长的光在反射中加强?哪些波长的光在透射中加强? 解:从玻璃片两表面反射的光的光程差光在反射中加强有可解得在可见光范围内,只有,相应波长为透射光的光程差光在透射中加强有可解得在可见光范围内,有和,相应波长为18. 波长为680nm 的平行光垂直地照射到12cm 长的两块玻璃片上,两玻璃片一边相互接触,另一边被厚0.048mm 的纸片隔开. 试问在这12cm 内呈现多少条明条纹? 解:两玻璃片之间是一空气劈尖,相邻明纹间距为l设玻璃片长为L 、纸片厚度为d则呈现明纹条数为(二) 光的衍射、偏振一. 选择题1. 光的衍射现象可以用(A) 波传播的独立性原理解释(B) 惠更斯原理解释(C) 惠更斯-菲涅耳原理解释(D) 半波带法解释2. 在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射到宽为a =4 λ的单缝上,对应衍射角为30o的方向,单缝处波面可分成的半波带数目为(A) 2个 (B) 4个(C) 6个 (D) 8个3. 单缝衍射中,若屏上P点满足,则该点为(A) 第二级暗纹(B) 第三级暗纹(C) 第二级明纹(D) 第三级明纹Note: 2k+1=74. 利用波动光学试验可测细丝的直径,通常采用下述实验的哪种(A) 牛顿环 (B) 劈尖干涉(C) 劈尖干涉和杨氏双缝干涉 (D) 单缝衍射或衍射光栅5. 某元素的特征光谱中含有波长和的谱线,在光栅光谱中两种谱线有重叠现象,重叠处谱线的级次是(A) 2、3、4、5…(B) 2、5、8、11…(C) 2、4、6、8…(D) 3、6、9、12…Note:光栅方程:λkθd±= sink1/k2必须正比于λ2/λ1即k1=(5/3)k2, 同时要求k1,k2都为整数,所以6. 波长的单色光垂直入射于光栅常数的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2 (B) 3(C) 4 (D) 5Note:光栅方程:λkθd±= sin,令衍射角等于90度,得到最大k值为d/λ,注意k必须取整数。
光的干涉与衍射应用练习题及
光的干涉与衍射应用练习题及解答光的干涉与衍射应用练习题及解答练习题一:1. 孔径为1 mm的单缝衍射实验中,光的波长为600 nm,距离中央亮条纹的位置为2.5 cm,请问中央到第一次暗条纹的距离是多少?解答:根据单缝衍射的暗条纹位置公式d sinθ = mλ,其中d为衍射方向孔径,θ为观察角度,m为暗条纹级次,λ为光的波长。
我们可以将式子转换为θ = mλsinθ/d。
对于中央到第一次暗条纹的距离,即m=1,代入计算得到θ=λ/d=600 nm/1 mm=0.6 rad。
由于角度较小,可以近似取tanθ=θ,所以距离为tan(0.6 rad) * 2.5 cm = 0.010 cm。
2. 一束波长为500 nm的光通过一个缝宽为0.1 mm的单缝,屏幕离缝的距离为2 m。
观察到屏幕上出现了一系列的亮纹,相邻亮纹之间的距离是多少?解答:对于单缝衍射实验,两个连续亮纹间的距离d可以通过公式dλ = mL计算,其中d为亮纹间距,λ为光的波长,m为亮纹级次,L为屏幕离缝的距离。
代入数据可得,d= Lλ/m=2 m* 500 nm / 0.1 mm =10 m。
练习题二:1. 一束波长为600 nm的光通过一块厚度为1 mm的玻璃板,折射系数为1.5,求玻璃板中心位置发生的相位差。
解答:根据折射的相位差公式Δ = 2πnt/λ,其中Δ为相位差,n为折射系数,t为厚度,λ为光的波长。
代入数据可得,Δ = 2π*1.5*1 mm / 600 nm = 15π。
2. 一束波长为400 nm的光通过一块薄膜,膜厚为100 nm,折射系数为1.4,求反射光与透射光的相位差。
解答:对于薄膜的反射与透射,相位差可以通过公式Δ = 2πnt/λ计算,其中Δ为相位差,n为折射系数,t为膜厚,λ为光的波长。
代入数据可得,Δ = 2π*1.4*100 nm / 400 nm = 0.88π。
练习题三:1. 一束波长为600 nm的光衍射通过一块缝宽为0.2 mm的双缝,两缝间距为0.5 mm,观察到屏幕上出现了一系列的亮纹,相邻亮纹之间的距离是多少?解答:双缝衍射实验中,两个连续亮纹间的距离d可以通过公式dλ = mL / D 计算,其中d为亮纹间距,λ为光的波长,m为亮纹级次,L 为屏幕到缝的距离,D为两缝间距。
大学物理第12章光的干涉测试题(附答案及知识点总结)培训讲学
大学物理第12章光的干涉测试题(附答案及知识点总结)第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm ) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中: (A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等.(C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n .(C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小.(C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]35、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.S S 110、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.13、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.图b图an 1n 2 n 316、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距mm 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为1.5mm ,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离mm 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为12.2mm ,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强?22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少? (2)若相邻的明条纹间距mm 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少?23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的R OλO 1曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径mm 4k =r ,第10+k 个暗环半径mm 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n -10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ 16、θλn 2 17、n2λ18、解:nm 5.562/=∆=D x d λ. 19、解:mm 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k =,则膜厚度mm 1022.1)4/(41-⨯==n e λ. (2)mm 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ).(2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆.二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹.光程差:Dx d=δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距)2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11 等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率. 劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差n d 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同.利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -= ),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。
光学练习题光的干涉与衍射现象
光学练习题光的干涉与衍射现象在光学领域中,干涉与衍射是两个重要的现象,它们展示了光的波动性质。
通过进行一系列的练习题,可以进一步加深对光的干涉与衍射现象的理解和应用。
练习题一:双缝干涉设有一平行光束垂直照射到一均匀单色光源通过的双缝上,双缝的间距为d,并且缝宽极窄。
屏幕距离双缝为L。
试回答以下问题:1. 当光源波长为λ、缝宽为a时,在屏幕上的干涉图案特征是怎样的?2. 缝宽增大,即a增大,会对干涉图案有何影响?3. 双缝间距增大,即d增大,会对干涉图案有何影响?4. 若将一透明薄片放置在其中一个缝口前,会对干涉图案有何影响?练习题二:单缝衍射假设平行光束通过的是一个宽度为a、高度为b的矩形孔。
矩形孔的中央垂直方向上有一个很细小的缝。
试回答以下问题:1. 当光源波长为λ时,矩形孔对通过的光的衍射图案特征是怎样的?2. 矩形孔的宽度和高度增大,会对衍射图案有何影响?3. 若将一较宽的单缝替换原来很细的缝,会对衍射图案有何影响?练习题三:光的多缝干涉考虑一平行光束通过的是N个相距相等、缝宽为a的狭缝。
试回答以下问题:1. 当光源波长为λ、缝宽为a时,在屏幕上的干涉图案特征是怎样的?2. 缝宽和缝距减小,即a和d减小,会对干涉图案有何影响?3. 双缝干涉的特征与多缝干涉的特征有何区别?练习题四:菲涅尔衍射假设光源通过一个直径为D的圆孔,并沿其垂直方向发出单色平行光束。
试回答以下问题:1. 当光源波长为λ时,圆孔对通过的光的衍射图案特征是怎样的?2. 圆孔的直径增大,会对衍射图案有何影响?3. 圆孔替换为方形孔,会对衍射图案有何影响?通过以上的练习题,我们可以深入了解光的干涉与衍射现象。
这些现象的应用广泛,例如在光学中的干涉仪、衍射光栅等装置中都有重要作用。
进一步学习和掌握光学相关知识,将有助于我们更好地理解自然界中的光现象,并为技术和科学的发展做出贡献。
总结通过以上的练习题,我们对光学中的干涉与衍射现象进行了探讨和分析,深入了解了其中的特征和影响因素。
大学物理学练习题-波动光学(干涉、衍射与偏振)
专业班级____________ 学号 ____________姓名__________ 序号大学物理练习题波动光学一、选择题1. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹[ ]。
(A)向棱边方向平移,条纹间隔发生变化;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔发生变化;(D)向远离棱的方向平移,条纹间隔不变。
2. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃以棱边为轴缓慢向上旋转,则干涉条纹[ ] 。
(A)向棱边方向平移,条纹间隔变小;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔不变。
3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ]。
(A) 干涉条纹的宽度将发生改变;(B) 产生红光和蓝光的两套彩色干涉条纹;(C) 干涉条纹的亮度将发生改变;(D) 不产生干涉条。
4. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则[ ]。
(A) 干涉条纹的间距变宽;(B) 干涉条纹的间距变窄;(C) 干涉条纹的间距不变,但原极小处的强度不再为零;(D) 不再发生干涉现象。
5. 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是[ ](A) λD / (nd);(B) nλD/d;(C) λd / (nD);(D) λD / (2nd)。
6. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]。
(A) 中心暗斑变成亮斑;(B) 变疏;(C) 变密;(D) 间距不变。
大学物理_光学答案
第十七章 光的干涉一. 选择题1.在真空中波长为λ的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3π,则路径AB 的长度为:( D )A. 1.5λB. 1.5n λC. 3λD. 1.5λ/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。
2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。
干涉条纹将变密。
本题答案为A 。
3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。
若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时( B )A. P 处仍为明条纹B. P 处为暗条纹选择题3图C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增π,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。
故本题答案为B 。
4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定解:反射光和透射光的等倾干涉条纹互补。
本题答案为B 。
5.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. λ/4B. λ/ (4n )C. λ/2D. λ/ (2n )6.在折射率为n '=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。
当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm解:增透膜 6.904/min ==n e λnm本题答案为C 。
大学物理光的干涉习题课
2 n 2 e cos k
k max 2n2e 2 1 . 50 1 . 00 10 6 . 328 10
7 5
S
n1
R n2 e f
中心亮斑的干涉级最高,为kmax,其 = 0,有:
47 . 4
d
应取较小的整数,kmax = 47(能看到的最高干涉级为第47级亮斑). 最外面的亮纹干涉级最低,为kmin,相应的入射角为 im = 45(因R=d), 相应的折射角为m,据折射定律有
2.如图所示,在双缝干涉实验中 SS1= SS2,用波长 为 的光照射双缝 S1和 S2 ,通过空气后在屏幕E 上形成干涉条纹,已知 P 点处为第三级明条纹, 3 则 S1 和 S2 到 P 点的光程差为,若将整个 装置放在某种透明液体中,P 点为第四级明条纹, 则该液体的折射率 n =______。 1.33
ek 1 ek
A B 图 a
2
[ B ] 4. 用波长为1的单色光照射空气劈形膜,从反射光干涉条纹中观察到劈 形膜装置的A点处是暗条纹.若连续改变入射光波长,直到波长变为2 (2>1)时,A点再次变为暗条纹.求A点的空气薄膜厚度. 解:设A点处空气薄膜的厚度为e,则有
2e 1 2
S1 S S2
r1 r2
P
r2 r1 k , ( k 3 )
n ( r2 r1 ) 4 , 3n 4 n 4 / 3 1 . 33
3. 如图a所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波 长=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条 纹如图b所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分 的连线相切.则工件的上表面缺陷是 (A) 不平处为凸起纹,最大高度为500 nm. (B) 不平处为凸起纹,最大高度为250 nm. (C) 不平处为凹槽,最大深度为500 nm. (D) 不平处为凹槽,最大深度为250 nm.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案: 2 (n 1)e;
e 4103 nm.
S1
n
A
S2
6.观察肥皂液膜的干涉时,先看到膜上有彩色条纹, 然后条纹随膜的厚度变化而变化。当彩色条纹消失膜面 呈黑色时,肥皂膜随即破裂,为什么?
分析:白光在肥皂膜上、下表面的反射光相干,其中干涉相长 的成分显色。随着膜厚度变化,干涉相长的频率在变化,因此 彩色条纹也在不断变化。当膜厚度趋于0时,光程差只剩半波损
2n
n
2(n 1)
[D]
5、如图所示。假设两个同相的相干点光源S1和S2,发出 波长为的光。A是它们连线的中垂线上的一点。若在S1 与A之间插入厚度为e、折射率为n的薄玻璃片,则两光
源发出的光在A点的相位差=--------。若已知=500nm,
n=1.5,A点恰为第四级明纹中心,则 e = ------- 。
例题1 如图所示,用波长为 的单色光照射双缝干涉实 验装置。并将一折射率为 n ,劈尖角为 ( 很小)的透 明劈尖b 插入光线2 中。设缝光源S和屏C上的O点都在 双缝S1和S2 的中垂线上。 问:要使O点的光强由最亮变为最暗,劈尖b 至少向上 移动多大距离d (只遮住S2)。
s1
s
O
s2 b
C
解:O点从最明到最暗,则是劈尖向上移产生的附加
气时的间距缩小 Δl 0.5mm,那么劈尖角应是多少?
解:空气劈尖时,间距
l1
λ 2n sinθ
λ 2θ
液体劈尖时,间距
λ
λ
l2 2nsinθ 2nθ
间距缩小: Δl l1 l2 λ(11/n)/(2θ)
θ λ(1 1/n) / 2Δl 1.7 104 rad
例题3 用波长为 的平行光垂直照射图中所示的装置, 观察空气薄膜上、下表面反射光形成的等厚干涉条纹。 试在装置图下方的方框内画出相应干涉条纹。只画暗条 纹,表示出它的形状、条数和疏密。
所以相邻明纹的间距为: x xk1 xk D / d
例题5. 折射率为1.5的玻璃片上,镀一层折射率为1.38 的薄膜,为了使波长为520nm的光反射减到小。
求: 膜的最小厚度?
解 :顺着光到达的介质的先后顺序,折射率由小到大排列
所以光程差不必考虑半波损失。
于是光程差为: δ = 2hn
半波损失 半波损失
当k=1时,厚度最小:
h min
=
λ 4n
=
9.42nm
例题6.厚度为340nm,折射率为1.33的薄膜,放在日光下。 问: 在视线与薄膜的法线成 60。的地方观察反射光, 该处膜呈什么颜色?
空气n1 = 1 h 薄膜 n2 = 1.38
玻璃 n3 = 1.5
要使光的反射减到最小就是要使入射波与反射波波长相差
半波长
λ 2
的奇数倍即:δ = (2k
- 1)λ(k 2
=
1,2,3...)
由此可得反射最小满足: (2k - 1)λ = 2hn
解得 :
2
h
= (2k - 1) λ 4n
(k = 1,2,3...)
失引起的 /2,各种频率成分都干涉相消,此时膜呈黑色,也面
临着破裂。
7.两块平玻璃板构成的劈尖干涉装置发生如下变化, 干涉条纹将怎样变化? (1)上面的玻璃略向上平移; (2)上面的玻璃绕左侧边略微转动,增大劈尖角; (3)两玻璃之间注入水; (4)下面的玻璃换成上表面有凹坑的玻璃。
(a)
二、计算题
一、选择题
1、双缝干涉实验中,入射光波长为,用玻璃纸遮住其中 一缝,若玻璃纸中光程比相同厚度的空气大2.5 , 则屏上 原0级明纹处 A.仍为明条纹 B.变为暗条纹 C. 非明非暗 D.无法确定
[ B]
2、两个直径相差甚微的圆柱夹在两块平板玻璃之间构成
空气劈尖,如图所示。单色光垂直照射,可看到等厚干涉
1) r2 r1 d P0O / D 又因为零级明纹: (l2 r2 ) (l1 r1) 0
r2 r1 l1 l2 3
P0O D(r2 r1) / d 3D / d
2) 由扬氏双缝干涉光程差公式: (d x / D) 3
光强极大时: k k 1,2,3
可得各级明纹的位置为 xk (k 3) D / d :
程差为:
s1
s
O
n 1 l
2
s2 b
l
2n
1
C
tg l
d
d
2 n
1
d
l
例题2 折射率为1.6的两块标准平面玻璃板之间形成
—个劈尖 (劈尖角很小).用波长 600nm(1nm 109 nm)
的单色光垂直入射,产生等厚干涉条纹。假如在劈尖
内充满n =1.40的液体时的相邻明纹间距比劈尖内是空
几何关系 R2 r 2 ( R h)2 O
牛顿环半径 r 2 2Rh
R
暗纹时 暗纹公式
2n2h k
r 2 kR
n2
n2
r
h
n1
r暗(空气) KR rk r暗(水)
rk rk 1 1 1 1 13.3%
KR
n2
rk'
rk
n2
1.33
例题5.在双缝实验中,单色光源 S0和两缝 S1 、S2 的距离 分别为 l1和 l2,并且 l1 l2 3,双缝之间的距离为d , 双缝到屏幕的距离为D ( D>> d).如图,求:1) 零级明 纹到屏幕中内O的距离;2)相邻明纹间的距离。 解:如图所示,零级明纹中心的位置为P0
条纹,如果将两圆柱之间的距离L拉大,则L范围内的干
涉条纹
A. 数目增加,间距不变
B. 数目增加,间距变小
C. 数目不变,间距变大
D. 数目减小 ,间距变大
[ C]
L
3、如图所示,折射率为n2、厚度为e 的透明介质薄膜的上 方和下方的介质的折射率分别为n1和n3,已知n 1< n 2> n3。 若用波长为的单色平行光垂直入射到该薄膜上,则从薄
膜上、下两表面反射的光束①与②的光程差是 [ B ]
A).
2n2e
B).
2n2e
1 2
C ).
2n2e D).
2n2e
1 2n2
①②
n1
n2
e
n3
4、在迈克尔干涉仪的一支光路中,放入一片折射率
为n的透明介质薄膜后,测出两束光的光程差的改变
量为一个波长,则薄膜的厚度是
A).
B).
C ). D).
2
7 /4
球面平凹透镜
柱面平凹透镜
例题4 在图示的牛顿环装置中,把玻璃平凸透镜和平面
玻璃(设玻璃折射率 n1 1.50)之间的空气( n2 1.00 )
改换成水n(2 1.33 );
求:第k个暗环半径的相对改变量 (rk rk ) / rk
解:空气换水后
光程差
2n2h
2
2k
k
1
2
明 暗