超声波测距传感器(硬件件篇)

合集下载

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告【文章标题】基于STM32单片机的超声波测距仪设计报告【引言】超声波测距是一种常见且有效的测量方法,被广泛应用于工业控制、自动化、智能家居等领域。

本文将深入讨论基于STM32单片机的超声波测距仪的设计原理、硬件搭建和软件编程,并分享对该设计的观点和理解。

【简介】1. 超声波测距原理简介(可使用子标题,如1.1)- 超声波的特性与应用- 超声波传感器原理及工作方式2. 设计方案(可使用子标题,如2.1)- 系统框图:硬件模块与连接方式- 所需材料清单及器件参数选择【正文】1. 超声波传感器的选型与特性比较(可使用子标题,如1.1)1.1 超声波传感器的种类与特点1.2 STM32单片机与超声波传感器的配合选择理由与原则2. 硬件电路设计与搭建(可使用子标题,如2.1)2.1 超声波发射电路设计与实现2.2 超声波接收电路设计与实现2.3 STM32单片机与超声波传感器的连接方法及引脚映射3. 软件编程实现(可使用子标题,如3.1)3.1 STM32单片机开发环境配置与准备3.2 程序框架和流程设计3.3 超声波信号处理与距离计算算法【总结】1. 设计成果总结与优缺点评价- 设计成果与功能实现总结- 设计过程中的挑战与解决方案- 设计的优点与改进空间2. 对基于STM32单片机的超声波测距仪设计的观点和理解- 本设计在硬件搭建和软件编程方面充分利用了STM32单片机的性能与功能- 超声波测距仪在工业自动化和智能家居等领域具有广阔应用前景 - 未来可以进一步提升设计的灵活性和可扩展性【参考资料】- 张三: 《超声波测距原理与应用技术》,出版社,2018年- 李四: 《STM32单片机与嵌入式系统设计》,出版社,2019年以上是本文基于STM32单片机的超声波测距仪设计报告,对这个主题的观点和理解。

希望这篇文章内容全面、深入,并能帮助您对超声波测距仪设计有更深刻的理解。

EM310-UDL 超声波测距传感器用户手册说明书

EM310-UDL 超声波测距传感器用户手册说明书

超声波测距传感器EM310-UDL用户手册安全须知为保护产品并确保安全操作,请遵守本使用手册。

如果产品使用不当或者不按手册要求使用,本公司概不负责。

严禁拆卸和改装本产品。

请勿将产品放置在不符合工作温度、湿度等条件的环境中使用,远离冷源、热源和明火。

请勿使产品受到外部撞击或震动。

本产品不可作为计量工具使用。

为了您的设备安全,请及时修改设备默认密码(123456)。

产品符合性声明EM310-UDL系列符合CE,FCC和RoHS的基本要求和其他相关规定。

版权所有©2011-2022星纵物联保留所有权利。

如需帮助,请联系星纵物联技术支持:邮箱:*********************电话:************传真:************总部地址:厦门市集美区软件园三期C09栋深圳:深圳市南山区高新南一道TCL大厦A709文档修订记录日期版本描述2021.9.6V1.0第一版2021.12.30V1.1更新品牌Logo目录一、产品简介 (4)1.1产品介绍 (4)1.2产品亮点 (4)二、产品结构介绍 (4)2.1包装清单 (4)2.2外观概览 (5)2.3产品尺寸 (5)2.4电源按钮与指示灯 (5)三、产品配置 (6)3.1NFC配置 (6)3.2LoRaWAN®基本配置 (6)3.3常用设置 (9)3.4高级设置 (9)3.4.1校准设置 (9)3.4.2阈值设置 (10)3.5维护 (10)3.5.1升级 (10)3.5.2备份 (11)3.5.3重置 (12)四、产品安装 (12)五、数据通信协议 (13)5.1设备信息 (13)5.2传感器数据 (14)5.3下行指令 (14)一、产品简介1.1产品介绍EM310-UDL 是一款功能强大的超声波测距传感器,采用双探头设计,利用超声波测距原理,以非接触方式精准测量传感器与目标间的距离。

同时产品还内置MEMS 三轴加速度计,可用于监控设备姿态。

超声波传感器的使用方法和测距准确度

超声波传感器的使用方法和测距准确度

超声波传感器的使用方法和测距准确度超声波传感器是一种常用的测距设备,它利用了声波在空气中传播的特性来测量距离。

在工业自动化、智能家居和机器人等领域,超声波传感器被广泛应用。

本文将介绍超声波传感器的使用方法和测距准确度,以帮助读者更好地了解和应用这种传感技术。

一、超声波传感器的工作原理超声波传感器通过发射超声波脉冲并接收反射回来的声波来测量距离。

其工作原理基于声波在空气中传播的速度是已知的,因此可以通过测量声波的往返时间来计算距离。

传感器的发射器发射超声波脉冲,然后等待接收到反射波的时间,通过测量时间间隔就可以得到距离。

二、超声波传感器的使用方法超声波传感器的使用非常简单,只需连接至相应的电路和控制器。

在测距前,用户需要进行以下几个步骤:1. 确定适当的超声波传感器型号:超声波传感器有多种不同型号和规格可供选择,因此用户需要根据实际需求选择适合的型号。

一般来说,传感器的功耗、测距范围和精度是需要考虑的重要因素。

2. 连接电源和信号线:超声波传感器通常需要接入电源和信号线,以便传输测距数据和控制信号。

用户需要根据传感器的规格和要求,正确连接相应的线缆。

3. 安装传感器:根据实际应用场景,用户需要将超声波传感器正确安装在测距的目标物体附近。

要保证传感器与目标物体之间没有遮挡物,以充分发挥传感器的功能。

4. 数据采集和处理:连接超声波传感器后,用户可以通过相应的控制器或电路板来采集和处理传感器输出的数据。

一般情况下,用户可以将测距数据用数字设备进行显示或存储,也可以通过编程实现更复杂的功能。

三、超声波传感器的测距准确度超声波传感器的测距准确度是使用者非常关注的一个重要指标。

其测距准确度主要受到以下几个因素的影响:1. 传感器频率:超声波传感器的频率决定了其测距能力的上限。

一般来说,频率越高,传感器的测距精度越高。

但是高频的传感器通常功耗也较高,因此需要根据实际需求权衡测距范围和功耗。

2. 目标物体的特性:不同的目标物体对超声波的反射能力不同,这也会影响传感器的测距准确度。

超声波传感器测距离

超声波传感器测距离

目录一、课程设计任务书 (2)二.超声波传感器测距原理 (4)2.1超声波传感器 (4)2.2超声波测距原理概述 (5)三.系统总体设计方案 (6)四.系统的硬件结构设计 (8)4.1单片机最小系统原理概述 (8)4.2超声波发射电路 (14)4.3超声波检测接收电路 (14)4.4超声波测距系统的显示电路设计 (15)4.5PROTUES仿真硬件电路图 (15)五.系统软件的设计 (16)5.1超声波测距仪的算法设计 (16)5.2程序流程图 (16)5.3主程序设计 (18)5.4定时中断服务子程序设计 (18)5.5超声波发生子程序和超声波接收中断程序设计 (19)六.调试结果 (20)七.系统误差来源及解决方案分析 (22)八.收获体会 (23)参考文献 (24)附录一超声波测距电路原理图 (25)附录二程序清单 (26)附录三元件清单 (36)一、课程设计任务书《智能仪器综合设计》课程设计任务书题目:超声波测距系统设计一、课程设计任务超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,如液位、井深、管道长度等场合。

超声波测距的原理是,发射器发射出超声波,遇到被测物体后返回声波由接收器接收,测量出超声波发射和接收到回波的时间差,超声波波速与时间差乘积的一半即为被测距离。

该超声波测距系统以A T89S52单片机为核心进行设计。

二、课程设计目的通过本次课程设计使学生掌握:1)智能仪器的一般设计、实现方法;2)超声波传感器测距的工作原理;3)智能仪器设计的实际调试技巧。

从而提高学生对智能仪器的设计和调试能力。

三、课程设计内容和要求1、掌握超声波传感器的测距原理,测量结果数显;2、根据超声波测距原理,设计超声波测距系统的硬件结构电路并画出原理图;3、用PROTUES对所设计的系统进行仿真;4、给出软件设计流程图;5、系统软硬件连调,给出该测距系统的性能指标,并对产生的误差进行分析。

四、课程设计报告要求报告中提供如下内容:1、目录2、正文(1)课程设计任务书;(2)超声波传感器测距原理;(3)系统总体设计方案;(4)超声波测距系统硬件电路的设计,包含发射电路、接收电路和显示模块的设计,用PROTEL软件绘制硬件原理图并列出器件清单,用PROTUES仿真;(5)软件设计:程序流程图及清单(子程序不提供清单,但应列表反映每一个子程序的名称及其功能);(6)调试结果:各个关键点波形和实测数据组;(7)系统误差来源及解决方案分析;3、收获、体会4、参考文献五、课程设计进度安排周次工作日工作内容第一周1 布置课程设计任务,查找相关资料2 熟悉智能仪器综合实验平台所提供的相关资源3 完成总体设计方案4 画出硬件原理图并进行仿真5 完成硬件接线,编写程序并调试第二周1 编写程序并调试2 编写程序并调试3 编写程序并调试及准备课程设计报告4 完成课程设计报告并于下午两点之前上交5 答辩本课题共需两周时间七、课程设计考核办法本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%。

超声波传感器测距

超声波传感器测距

US-100 超声波测距模块1.概述US-100 超声波测距模块可实现2cm~4.5m 的非接触测距功能,拥有2.4~5.5V 的宽电压输入范围,静态功耗低于2mA,自带温度传感器对测距结果进行校正,同时具有GPIO,串口等多种通信方式,内带看门狗,工作稳定可靠。

2.主要技术参数工作电压:DC 2.4V~5.5V静态电流:2mA工作温度:-20~+70 度输出方式:电平或UART(跳线帽选择)感应角度:小于15 度探测距离:2cm-450cm探测精度:0.3cm+1%UART 模式下串口配置:波特率9600,起始位1 位,停止位1 位,数据位8 位,无奇偶校验,无流控制。

3.实物图(自己拍的不是很清楚)4.测量原理选用超声波传感器来采集信号,超声波发射端和接收端在同一水平面上。

首先发射端向目标发射超声波,并同时启动定时器计时,超声波在空气中传播的途中一旦遇到障碍物后就会被反射回来,当接收端收到反射波后就会给负脉冲到单片机使其立刻停止计时。

定时器能够准确的记录下超声波发射点至障碍物之间往返传播所用的时间t,设声速为c,可得距离测量值为:s=ct/2,由单片机控制定时器可测得t值,从而得到s 值。

5.程序源代码本代码是基于C8051F120单片机,采用LCD液晶显示屏进行显示,经过多次调试可将误差缩小至1-2mm。

#include<c8051f120.h>#include<intrins.h>#include<declare.h>typedef unsigned char uchar;typedef unsigned int uint;extern uchar old_SFRPAGE;double n0=0,n=0;float M0, t,s;sbit D=P1^0;//连TX //输出高低电平sbit Q=P1^1;//连RXuchar flag=0;uchar flag_0=1;void timer1_int() // 定时器1,产生中断{old_SFRPAGE = SFRPAGE;SFRPAGE=0X00;TL1=0X00;TH1=0X00;TMOD|=0X90; //定时器1方式1,16位定时器功能, CKCON=0X00; //TCLK=SYSCLK/12;TCON|=0X40; //启动定时器1ET1=1;EA=1; //允许定时器1中断SFRPAGE = old_SFRPAGE;}void timer1_intr() interrupt 3{old_SFRPAGE = SFRPAGE;SFRPAGE=0X00;n0++;TF1=0;SFRPAGE=old_SFRPAGE;}void timer3_int() //定时器3溢出标志位必须使用软件清0{ //16 位自动重载定时器,当初值为0xFFDB 时为200000Hz,周期为5usold_SFRPAGE = SFRPAGE;SFRPAGE=0x01;TMR3L = 0XDB;TMR3H = 0XFF; //初值RCAP3L = 0XDB;RCAP3H = 0XFF; //重载值(捕捉寄存器)TMR3CF = 0X00; //sysclk/12 向上计数TMR3CN = 0X04; //自动重载EIE2 = 0X01;EA=1; //允许中断SFRPAGE = old_SFRPAGE;}void timer3_intr() interrupt 14{n++;if(n > 2000){n = 0;}if(n<5) //25usD=1;elseD=0;old_SFRPAGE = SFRPAGE;SFRPAGE=0x01;TMR3CN &= 0X7F; //清除中断标志SFRPAGE = old_SFRPAGE;}void port_int(){old_SFRPAGE = SFRPAGE;SFRPAGE=0x0F;P1MDOUT=0XFF; //推挽输出,键盘P3|=0X02; //液晶端口接P3XBR1=0X10; // INT1 接到端口XBR2=0X40; //允许交叉开关,全局弱上拉SFRPAGE = old_SFRPAGE;}uchar code num[16][16]={ {0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x0F,0x10,0x20,0x20,0x10,0x0F ,0x00},{0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00 ,0x00},{0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,0x00,0x30,0x28,0x24,0x22,0x21,0x30, 0x00},{0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,0x00,0x18,0x20,0x20,0x20,0x11,0x0E ,0x00},{0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,0x00,0x07,0x04,0x24,0x24,0x3F,0x24 ,0x00},{0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,0x00,0x19,0x21,0x20,0x20,0x11,0x0E ,0x00},{0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,0x00,0x0F,0x11,0x20,0x20,0x11,0x0E ,0x00},{0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,0x00,0x00,0x00,0x3F,0x00,0x00,0x00 ,0x00},{0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,0x00,0x1C,0x22,0x21,0x21,0x22,0x1 C,0x00},{0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x00,0x31,0x22,0x22,0x11,0x0F ,0x00},{0x00,0x00,0xC0,0x38,0xE0,0x00,0x00,0x00,0x20,0x3C,0x23,0x02,0x02,0x27,0x3 8,0x20},{0x08,0xF8,0x88,0x88,0x88,0x70,0x00,0x00,0x20,0x3F,0x20,0x20,0x20,0x11,0x0E ,0x00},{0xC0,0x30,0x08,0x08,0x08,0x08,0x38,0x00,0x07,0x18,0x20,0x20,0x20,0x10,0x08 ,0x00},{0x08,0xF8,0x08,0x08,0x08,0x10,0xE0,0x00,0x20,0x3F,0x20,0x20,0x20,0x10,0x0F ,0x00},{0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,0x20,0x3F,0x20,0x20,0x23,0x20,0x18 ,0x00},{0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,0x20,0x3F,0x20,0x00,0x03,0x00,0x00 ,0x00},};//0~Fuchar code shen[]={0x00,0x00,0x00,0xFC,0x54,0x56,0x55,0x54,0x54,0x54,0x54,0xFC,0x00,0x80,0 x40,0x00,0x40,0x42,0x42,0x23,0x22,0x22,0x12,0x12,0x0A,0x46,0x82,0x7F,0x01,0x00,0x00,0x00 ,};uchar code gao[]={0x04,0x04,0x04,0x04,0xF4,0x94,0x95,0x96,0x94,0x94,0xF4,0x04,0x04,0x04,0x 04,0x00,0x00,0xFE,0x02,0x02,0x7A,0x4A,0x4A,0x4A,0x4A,0x4A,0x7A,0x02,0x82,0xFE,0x00, 0x00,};unsigned char code danwei[][16]={{0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x3 0,0x00,0x00,0x00},//:{0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x00,0x20,0x3F,0x20,0x00,0x3F,0x20,0x00,0x3 F},//m{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x0 1},//-};//uchar code dian[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,0x 00,0x00};void display (float dat){uint x1,x2,x3,x4;x1=(uint)(dat)%10;x2=(uint)((dat)/10)%10;x3=(uint)((dat)/100)%10;x4=(uint)((dat)/1000)%10;if((dat>1500)&&(dat<1900)){lcd_disword(0,0,shen);lcd_disword(18,0,gao);lcd_disletter(36,0,danwei[0]);lcd_disletter(45,0,num[x4]);lcd_disletter(54,0,num[x3]);lcd_disletter(63,0,num[x2]);lcd_disletter(72,0,num[x1]);lcd_disletter(81,0,danwei[1]);lcd_disletter(90,0,danwei[1]);}else{//x5=(uint)((dat)/10000)%10;//y1=(uint)(dat*10)%10;//y2=(uint)(dat*100)%10;//y3=(uint)(dat*1000)%10;//lcd_disletter(24,4,num[x5]);lcd_disword(0,0,shen);lcd_disword(18,0,gao);lcd_disletter(36,0,danwei[0]);lcd_disletter(45,0,danwei[2]);lcd_disletter(54,0,danwei[2]);lcd_disletter(63,0,danwei[2]);lcd_disletter(72,0,danwei[2]);lcd_disletter(81,0,danwei[1]);lcd_disletter(90,0,danwei[1]);//lcd_disletter(64,4,dian);//lcd_disletter(72,4,num[y1]);//lcd_disletter(80,4,num[y2]);//lcd_disletter(88,4,num[y3]);}}void main()uchar i;sys_int();oscx_int();pll_int();port_int();lcd_int();for(i=255;i>0;i--)delay1ms();timer3_int();timer1_int();delay1ms();lcd_clr();while(1){//display(s);if(Q==0) //当门控为0时进行计算并显示{if(flag==0){ old_SFRPAGE = SFRPAGE;SFRPAGE=0x00;M0=n0*65536+(TL1+TH1*256);t=M0/(11.0592*1000000*8/12);s=t*170000;display(s);flag=1;flag_0=1 ;SFRPAGE = old_SFRPAGE;}}elseif(flag_0==1){old_SFRPAGE = SFRPAGE;SFRPAGE=0x00;TL1=0;TH1=0;SFRPAGE = old_SFRPAGE;n0=0;flag_0=0;flag=0 ;}}}6.测量结果图为LCD液晶屏显示的身高测量值。

超声波距离传感器的工作原理

超声波距离传感器的工作原理

超声波距离传感器的工作原理
超声波距离传感器是一种测量距离的电子设备,它的工作原理是利用超声波的特性进行测量。

超声波是一种高频声波,它的频率通常在20kHz以上。

超声波距离传感器通过发出一束超声波,经过一定时间后,接收回波信号,并根据回波信号的时间和速度计算出被测物体与超声波距离的大小。

超声波距离传感器发出的超声波是由一个声发生器产生的,它的频率通常在40kHz左右。

超声波在空气中传播的速度是固定的,大约是340米/秒。

当超声波遇到一个物体时,会发生声波的反射,形成一个回波信号。

传感器会记录下发出超声波和接收回波信号之间的时间差,这个时间差就是超声波传播的时间,乘以传播速度就可以计算出被测物体与传感器之间的距离。

超声波距离传感器通常有两种工作模式:连续测距模式和单次测距模式。

在连续测距模式下,传感器会不断地发出超声波,并记录下每一次接收到回波信号的时间,根据时间差计算出被测物体与传感器的距离。

在单次测距模式下,传感器只会发出一次超声波,接收到回波信号后就停止工作,根据时间差计算出被测物体与传感器的距离。

超声波距离传感器广泛应用于各种领域,如机器人导航、车辆避障、温度控制、水位监测等。

- 1 -。

超声波测距

超声波测距

超声波测距超声测距该电子产品-超声测距仪是在按键的步进控制下实现在30cm~120cm的距离探测,并具有数码管实时显示探测距离值功能,设定距离值报警功能,手动调整报警范围等功能。

1.硬件电路原理设计该超声测距仪其硬件电路框图如图1所示(虚线框图电路不在机器内部PCB 电路板上)。

整个电路可分为电路板供电电路,超声波发射接收电路,控制、显示及报警电路三个大的部分。

交流220V的市电经经变压、整流滤波、稳压的处理后输出±12V和+5V的恒定直流电压供应整个电路各个部分电源使用。

脉冲产生电路产生的40KHz的脉冲信号经驱动电路驱动功率后进如超声波发射器,让其发出超声波。

超声波接收器接受到发射器发出的超声波信号后经信号方大、处理比较后进入单片机微控制器,单片机将进行计算分析后在数码管显示模块显示出当前测量距离值。

并与从按键处设定的报警上下限值进行比较,当超出其所设定值时,报警电路将启动,红色警报灯点亮。

图1 硬件电路框图下面将分别按照上面陈述的电路分三个部分进行分析,图2是其电路原理图图2 硬件电路原理图1.1 电路板供电电路设计电路板供电电路如图2所示,220V的市电经变压器变压后输出两路交流15V 电压,此电压经整流、滤波处理后输出±15V直流电压,分别经三端集成稳压芯片U1(7812),U2(7912),输出恒定的+12V电压和-12V电压,这两路电压提供运放芯片所需电源及PCB板电路部分需要电压。

+12V电压经U3(7805)后输出恒定+5V电压,供应单片机、555芯片等芯片所需电源。

图2 电路板供电电路原理图1.2超声波发射接收模块设计超声波发射接收模块电路如图4所示,单片机PD7端口控制脉冲产生电路的启动与否,脉冲产生电路由555芯片接成多谐振荡器,选取合适的元器件参数,U4(555芯片)第三脚将输出40KHz的矩形波脉冲信号,此信号经反相器U5(CD4049)接成的驱动电路后进入超声波发射器,由电压信号转换为机械信号,发射出超声波。

基于MAXQ7667超声波测距系统硬件设计

基于MAXQ7667超声波测距系统硬件设计

基于MAXQ7667超声波测距系统硬件设计【摘要】超声波定位一被广泛的应用,其原理简单,实现起来比较容易。

本文介绍的超声波测距系统是基于MAXQ7667作为控制器,设计发射,接收和温度补偿检测电路,再利用MAXQ7667自身的高信噪比及数字信号处理能力,设计出的有比较高精度的测距系统。

【关键词】MAXQ7667;超声波;温度补偿检测1.引言超声波是由机械振动产生的,可以在固,液,气等状态下的介质中以不同的速度传播。

超声波具有定向性好、能量集中、反射能力较强等特点,且由于超声波检测技术具有不受光线影响、结构简单、成本低、信息处理可靠、易于小型化和集成化等优点,被广泛使用于移动物体定位及导航系统。

在科技飞速发展的今日,超声波定位及导航技术应用于众多领域,例如交通管理,物流监控,安保防护,医疗诊断,恶劣环境监测,军事制导等领域均能见到超声波定位及导航技术的丰富应用案例[1]。

本文应用基于Maxim公司的微控制器MAXQ7667进行了超声波测距系统的硬件设计,可用于一定距离内的高精度测距。

2.超声波测距原理超声波的谐振频率一般高于20kHz,且为直线传播,频率越高,反射能力越强,而绕射能力越弱,因此在遇到障碍物的时候会发生反射,利用这一特性,在超声波测距中常常用发射和接收所用的时间换算成所要测量的距离,如图1所示。

若假设介质中声波的传播速度为m/s,发射和接收的时间差为s,就可以算出发射点与反射点的距离m:(1)其中超声波在该介质中的传播速度,在固体中传播最快,在气体中传播最慢,且与温度有关[2],所以如果环境变化显著,就不得不考虑温度补偿的问题。

空气中声速与温度的关系可以表示为:(2)式中T为环境温度,单位为摄氏度(℃)。

从上述式子可以看出,温度没变化1℃,风速大概就变化0.6m/s。

在常温(25℃)下,忽略其他外界的干扰,传播速度大概为346.6m/s。

所以在测距之前我们因先对温度进行检测,从而得到当时超声波在空气中传播的速度。

超声波传感器测量距离

超声波传感器测量距离

一、超声波测距原理超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即:S = v·△t /2 ①这就是所谓的时间差测距法。

由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。

在使用时,如果温度变化不大, 则可认为声速是基本不变的。

常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。

如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。

已知现场环境温度T 时, 超声波传播速度V 的计算公式为:V = 331.45 + 0.607T ②声速确定后,只要测得超声波往返的时间,即可求得距离。

这就是超声波测距仪的机理。

二、系统硬件电路设计图2 超声波测距仪系统框图基于单片机的超声波测距仪框图如图2所示。

该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。

单片机是整个系统的核心部件,它协调和控制各部分电路的工作。

工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。

当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。

下面分别介绍各部分电路:1 、超声波发射电路超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。

HC-SR04超声波测距模块介绍

HC-SR04超声波测距模块介绍

HC-SR04超声波测距模块介绍超声波简介超声波是由机械振动产生的, 可在不同介质中以不同的速度传播, 具有定向性好、能量集中、传输过程中衰减较小、反射能力较强等优点。

超声波传感器可广泛应用于非接触式检测方法,它不受光线、被测物颜色等影响, 对恶劣的工作环境具有一定的适应能力, 因此在水文液位测量、车辆自动导航、物体识别等领域有着广泛的应用。

超声波测距原理超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波, 从而测出发射和接收回波的时间差Δt , 然后求出距离S 。

在速度v 已知的情况下,距离S 的计算,公式如下:S = vΔt/ 2在空气中,常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。

因此在测距精度要求很高的情况下, 应通过温度补偿的方法对传播速度加以校正。

已知现场环境温度T 时, 超声波传播速度V 的计算公式如下:V = 331. 5+0.607T这样, 只要测得超声波发射和接收回波的时间差Δt 以及现场环境温度T,就可以精确计算出发射点到障碍物之间的距离。

HC-SR04超声波测距模块简介HC-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。

HC-SR04超声波测距模块实物图HC-SR04超声波测距模块特点1、典型工作用电压:5V2、超小静态工作电流:小于5mA3、感应角度(R3 电阻越大,增益越高,探测角度越大):R3 电阻为392,不大于15 度R3 电阻为472, 不大于30 度4、探测距离(R3 电阻可调节增益,即调节探测距离):R3 电阻为392 2cm-450cmR3 电阻为472 2cm-700cm5、高精度:可达0.3cm6、盲区(2cm)超近HC-SR04超声波测距模块管脚VCC(5V)、 Trig(控制端)、 Echo(接收端)、地(GND)使用方法:控制口发一个10US 以上的高电平,就可以在接收口等待高电平输出。

超声波测距传感器

超声波测距传感器

2.安装位置
• 倒车雷达系统中所用的距离传感器有2、3、 4、6、8之分,2、3、4装在汽车后保险杠 上,6、8个的一般前2后4,或者前4后4, 通常来说,探头数量决定了倒车雷达的覆 盖能力,能减少盲区,6个以上探头的倒车 雷达在倒车中能探测前左和右角和障碍物 的距离。
3.工作原理
• 超声波是一种振动频率高于声波的机械波, 由换能晶片在电压的激励下发生振动产生 的,它具有频率高、波长短、绕射现象小, 特别是方向性好、能够成为射线而定向传 播等特点。超声波对液体、固体的穿透本 领很大,尤其是在阳光不透明的固体中, 它可穿透几十米的深度。超声波碰到杂质 或分界面会产生显著反射形成反射成回波, 碰到活动物体能产生多普勒效应。因此超 声波检测广泛应用在工业、国防、生物医 学等方面。
第四节
溢流环位置传感器
1.作用
• 溢流环位置传感器用在电子式柴油喷射装 置上,用来检测溢流环的位置,实现电子 控制喷油量。
2.安装位置
力和各种弹簧力的平 衡位置决定溢流环位置。因机械式调速器 结构复杂、配合件又精密,机械控制受到 制约,它的特性与控制机能有一定限度。 但改用电子控制,就可以利用计算机计算 出系统的最佳状态,把控制信号输入溢油 控制电磁阀,使溢流环动作,从而实现柴 油机喷油量电子控制。电脑根据节气门开 度位置和发动机转速计算出基本喷油量,
2.安装位置
3.工作原理
• 在线圈内部有铁心,铁心与被检测位置的 部件一起动作,当铁心上下移动时,线圈 的电感发生变化,输出的信号也变化。根 据输出信号的大小,即可检测出被测部件 的位置。
电子控制柴油喷射系统原理
第五节
超声波测距传感器
1.作用
• 俗称“探头”,主要用于倒车雷达系统中 车辆与障碍物距离的测试,或者在车距控 制辅助系统中,用于测定前车和后车的跟 车距离。

超声波测距仪DM-01

超声波测距仪DM-01

超声波测距仪DM-011. 什么是超声波测距仪?超声波测距仪是一种利用超声波原理来实现测距的仪器。

它可以通过测量超声波的传播时间来确定距离。

超声波测距仪主要由信号源、发射器、接收器、放大器、计时器和显示器等组成。

2. 超声波测距仪DM-01的特点超声波测距仪DM-01是一款小巧、便携、精确的测距仪器。

它采用最新的超声波技术,能够测量距离范围从2厘米到400米,并具有很高的精确度。

此外,DM-01还具有以下特点:•采用全数字化设计,信号处理更加精确;•支持多种测量模式,例如连续测量、单次测量和最大/最小距离测量等;•显示屏可以在强光下清晰可见,方便户外使用;•具有低电量提示功能,方便及时更换电池。

3. 如何使用超声波测距仪DM-01?使用DM-01非常简单。

首先,需要将电池安装在设备后部的电池仓中,然后按下电源按钮。

此时,屏幕上会显示测量结果。

如果需要进行测量,只需要将DM-01对准测量目标,然后按下“测量”按钮即可。

DM-01会自动发出超声波信号,并计算出与目标的距离,并将结果显示在屏幕上。

根据需要,还可以通过调整测量模式来获得更好的测量效果。

例如,可以选择连续测量模式,在运动中测量目标的距离。

4. 超声波测距仪DM-01的应用场景超声波测距仪DM-01广泛应用于工业、建筑、设备维护、物流等领域。

以下是一些DM-01的典型应用场景:•监测建筑物的高度和深度;•测量空间中物体的距离和尺寸;•检测管道和隧道的尺寸和深度;•测量通风系统的长度和高度;•测量货车上货物的高度和深度;•测量机器人和卡车的距离。

5. 总结超声波测距仪是一种常见的测距仪器,具有精确、便携、易于使用等特点。

DM-01作为其中一款代表性的设备,具有高精度、多种测量模式和广泛的应用场景。

如果您需要进行距离测量,并且需要精确而方便的测量设备,DM-01是您不可或缺的选择。

测距传感器工作原理

测距传感器工作原理

测距传感器工作原理
测距传感器一般通过测量物体与传感器间的时间延迟或信号强度来确定距离。

以下是几种常见的测距传感器工作原理:
1. 超声波测距传感器:
超声波测距传感器通过发射超声波脉冲并接收其反射信号来测量物体到传感器的距离。

传感器首先发射一个短时的超声脉冲,当脉冲遇到物体并被反射回来后,传感器开始计时所花费的时间。

通过测量声波的传播时间,可以计算得出物体与传感器的距离。

2. 激光测距传感器:
激光测距传感器利用激光束的反射来确定物体与传感器之间的距离。

传感器向物体发射激光束,并用光电元件接收其反射信号。

通过测量激光脉冲的飞行时间或光电元件接收到激光的强度,可以计算出物体与传感器的距离。

3. 红外线测距传感器:
红外线测距传感器利用红外线光电元件(如红外线发射管和红外线接收器)来测量物体与传感器的距离。

传感器发射红外光,在光电元件接收到反射光后,通过测量接收到的光信号的强度或延迟时间来计算距离。

以上是几种常见的测距传感器工作原理,不同的传感器根据其原理的不同,适用于不同的应用领域和测距范围。

超声波测距仪硬件电路设计

超声波测距仪硬件电路设计

第三章超声波测距仪硬件电路的设计3.1超声波测距仪硬件电路硬件电路可分为单片机系统及显示电路、超声波发射电路和超声波检测接收电路三局部。

3.1.1单片机系统及显示电路本系统采用AT89S52来实现对超声波传感器的控制。

单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。

计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

超声波测距的硬件示意图如图3所示:单片机采用89552或其兼容系列。

采用12MHz高精度的晶振,已获得较稳定的时钟频率,减少测量误差。

单片机用口1.0端口输出超声波换能器所需的40KHz的方波信号,利用外中断0 口检测超声波接收电路输出的返回信号。

3.1.2显示的输出显示的种类很多,从液晶显示、发光二极管显示到CRT显示器等,都可以与微机连接。

其中单片机应用系统最常用的显示是发光二极管数码显示器〔简称 LED显示器〕。

液晶显示器简LCD。

LED显示器价廉,配置灵活,与单片接口方便,LCD可显示图形,但接口较复杂本钱也较高。

该电路使用7段LED构成字型“8〃,另外还有一个发光二极管显示符号及小数点。

这种显示器分共阳极和共阴极两种。

这里采用共阳极LED 显示块的发 光二极管阳极共接,如下列图3-1所示,当某个发光二极管的阴极为低电平时, 该发光二极管亮。

它的管脚配置如下列图3-2所示。

实际上要显示各种数字和字符,只需在各段二极管的阴极上加不同的电平, 就可以得到不同的代码。

这些用来控制LED 显示的不同电平代码称为字段码〔也 称段选码〕。

如下表为七段1日口的段选码。

表3-1七段1日口的段选码 显示字符共阳极段选码 dp gfedcba显示字符 共阳极段选码dp gfedcba0 C0H A 88H 1 F9H B 83H 2 A4H C C6H 3 B0H D A1H 4 99H E 86H 5 92H F 8EH 682HP8CHVCC图3-1图3-2come d c dp com7 F8H y 91H8 80H 8. 00H9 90H “灭〃FFH本系统显示电路采用简单实用的4位共阳LED数码管,位码用PNP三极管8550驱动。

基于单片机的超声波测距仪的主要硬件电路概要

基于单片机的超声波测距仪的主要硬件电路概要

基于单片机的超声波测距仪的主要硬件电路内容摘要:本文简要介绍了基于单片机的超声波测距仪的主要硬件电路。

随着检测技术研究的不断深入,对超声检测仪器的功能要求越来越高,单数码显示的超声检测仪测读会带来较大的测试误差。

进一步要求以后生产的超声仪能够具有双显及内带有单板机的微处理功能。

关键词:超声波测距技术,单片机,硬件电路,测距仪,线性度,外部中断,有源滤波器,发射,PORTA,IO传统的测距方式在某些特殊场合存在不可克服的缺陷。

如液面测量、井下测量等受到很大的限制。

利用超声波测距可解决这些问题,因此超声波测距技术在工业控制、勘探测量、机器人定位等领域得到了广泛应用。

所谓超声波是指高于20KHZ的机械波,具有强度大、方向性好等特点。

本系统选用M68HC08单片机为控制部件。

一、设计原理当超声波从空气中垂直入射到汽油、木材、钢材时,几乎产生全反射,这样,反射回来的回波具有足够的能量被接收探头所接收,为超声波测距创造了可能性。

如图1所示,超声波测距原理是通过超声波发射传感器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就停止计时。

常温下超声波在空气中的传播速度为C=340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(S),即:s=c*t/2=c*t0(t0就是所谓的渡越时间)二、超声波测距系统硬件设计总体方案本系统中选用的探头是40KHz的超声传感器,有一支接收传感器SZW-R40-10P和一支发射传感器SZW-S40-12M。

MC68HC908GP32单片机是Motorola公司的第2代8位微控制器,由于其高性价比,非常适用于中小型MCU开发商和生产厂家的欢迎。

这类MCU的指令集非常精简,容易被用户掌握。

其主要硬件资源有:片内307字节的监控ROM,32KB的片内FLASH存储器和512B RAM,33根通用的I/O引脚,2个16位的双通道定时器接口模块,外部中断,同时具有看门狗监视复位,低电压极限检测复位,非法指令检测复位等,使得应用系统免除了进入死循环的危险。

超声波测距传感器(硬件篇)

超声波测距传感器(硬件篇)

自制一个由你掌控的—— 超声波测距传感器(硬件篇)一、背景四年多前,我曾尝试自己制作一个超声波测距传感器。

当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。

由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。

为了达到目的,只好选用了 Sharp 公司的 GP2D12。

但自制超声波测距传感器的愿望一直没被遗忘。

一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。

前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。

本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。

现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。

二、需求分析¾能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外;¾可以提供给大学生和爱好者 DIY,具有学习功能;¾方便自己随时修改程序,使学习的作用得以充分发挥;¾成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。

三、概要设计总体设计参照 SensComp公司()6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。

TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自制一个由你掌控的—— 超声波测距传感器(硬件篇)一、背景四年多前,我曾尝试自己制作一个超声波测距传感器。

当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。

由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。

为了达到目的,只好选用了 Sharp 公司的 GP2D12。

但自制超声波测距传感器的愿望一直没被遗忘。

一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。

前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。

本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。

现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。

二、需求分析¾能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外;¾可以提供给大学生和爱好者 DIY,具有学习功能;¾方便自己随时修改程序,使学习的作用得以充分发挥;¾成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。

三、概要设计总体设计参照 SensComp公司()6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。

TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。

TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。

如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。

(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。

所以,本次设计的主要改变就是用单片机替换6500模块的TL851。

单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。

此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。

考虑体积因素,选择了SOP20封装。

从6500模块解剖中还有一个收获就是搞清了超声波发射的驱动细节。

以往资料上多数是直接用门电路驱动,最多接一级三极管放大。

我第一次试制时就发现功率无法增加,导致测距范围有限。

仔细看超声波发射器的要求:大多需要10V以上驱动,而且是正弦波信号。

压电陶瓷(超声波发射器多为此材料制造)功率增加只有通过提高电压,在单5V供电下无法实现,而增加12V供电又不实用。

6500模块驱动是通过变压器升压的,并且通过电容匹配,使次级与发射器构成谐振回路,这样既提高了驱动电压,又使得波形接近正弦波。

6500模块工作是收发一体模式,所以其接收回路自然也是谐振回路,一方面增加了灵敏度,同时还排除了其它频率波的干扰,因为只对谐振频率敏感。

为了便于初学者理解,本次设计改为收、发分体模式,发送回路借鉴6500模块,接收回路使用电感与接收器构成谐振回路。

之所以单片机采用3.3V供电,是为了增加一级稳压,以降低发射超声波带来的电源干扰,提高可靠性。

因为上述需求的第二条和第四条略有冲突,考虑到实用价值,偏向了第四条。

设计上为了体积合适,采用了部分表面安装(SMD)器件,但是一些调试时可能需要改变参数以及一些可能损坏的器件选用了直插式,以方便读者优化或观察改变器件参数的效果。

采用UART口输出数据、设置参数。

因为UART口可以使用中断模式,读取软件开销较小,且UART是目前MCU中配置最普遍的,虽说会占用一个串口,但是现在多串口MCU越来越多,特别是ARM系列,如ST的STM32系列就有2 – 3个UART口。

四、详细设计设计分硬件和软件两部分,本篇重点介绍硬件设计,软件留待下一篇详述。

4.1 硬件设计超声波传感器由以下部分构成:图1 工作原理框图框图中,单片机为核心控制部分,根据设定的工作方式,产生40kHz 方波,经过驱动电路驱动超声波发生器发出一簇信号。

单片机此时开始计时。

接收回路为谐振回路,将收到的微弱回波信号检出,送信号放大电路放大,收到产生脉冲输出送单片机中断端,单片机收到中断信号后停止计时,计算出距离值,保存等待读出或直接经UART 送出。

接收过程中,单片机定时控制放大电路的增益,逐渐提高,以适应距离越远越弱的回波信号。

核心器件为STC12LE4052、TL852、16mm 超声波收、发器。

采用5V 供电,因为5V 是最常见的工作电压,便于日后将传感器应用于装置中。

为了减小干扰,选用了3.3V 供电的单片机,使用目前常用的1117-3.3三端稳压器将5V 降到3.3V,减小电源扰动的影响,增加可靠性。

下面分步介绍各个部分的电路原理。

首先是超声波发射部分。

超声波发射器 超声波接收器图2 超声波发射驱动电路图中,Send_Ctrl、Cut_Off端由STC12LE4052控制。

此单片机的I/O口可设置为推挽输出模式(这是经典51不具备的),拉电流、灌电流均可达20mA,保证了D882有足够的驱动能力和快速的通断性能。

变压器的次级电感与发射器(发射器为容性,一般为2400p左右)构成谐振回路,好处是提高了发射效率,但副作用是发射后的余波时间较长,导致近距离的回波被淹没。

所以电路中设计了2种余波抑制电路。

一个是R6,通过增加谐振回路的损耗加速余波结束,这种方式不需要控制,但由于同时也消耗了发射的功率,所以阻值不能太小,导致衰减效果不明显(此部分读者可自行试验)。

另一个电路由R4、R5、P1构成,由单片机控制,在发射完脉冲后将P1导通,强制短路变压器初级,快速消耗掉谐振能量,达到消除余波的目的,电阻R5越小,效果越好,但带来的问题是:如控制失灵,会导致短路,烧坏P1或N1。

所以在电路中设计了一个跳线器,在软件没有调试好之前断开,避免无谓的损耗。

变压器升压比设计为20倍,实际输出电压约为 50V峰值。

控制部分采用MCU,如下图所示:图 3 单片机控制电路STC12LE4052为一种改进型的51兼容单片机,指令集及主要架构与经典51相同,硬件资源略有增加:1)增设了2通道PCA(可编程计数器阵列),弥补了经典51定时器功能“偏弱”的缺陷。

2)I/O口改进为可设置方式,支持:51准双向、高阻输入、OC输出、推挽输出四种模式,简化了外部硬件设计。

3)硬件SPI接口,本设计中暂未使用,但PCB上引出了,有兴趣者可尝试之。

4)指令速度大大提高了,将原来的12时钟为一个机器周期改进为 2 – 3个时钟周期,指令速度平均提高为原来的8倍左右。

5)计时时钟保留12分频模式,新增了2分频模式,提高了计时精度。

后两点对于超声波测距应用有益,指令速度快可减少响应延时的不确定,计时精度高可提高分辨率。

MCU端口资源分配如下:P10 - P13 —— 控制TL852增益,设置为OC输出,852内部有上拉电阻(见图5) P14 - P17 —— 保留P30(RXD)、P31(TXD) —— UART通讯P32(INT0) —— 接SOUT端,作为超声波发射时的852输出抑制,置为OC输出。

P33(INT1) —— 超声波接收输入,设置为输入P34 —— 产生超声波发射方波,设置为推挽输出模式P3.5 —— 控制P1,用于衰减余波,设置为OC输出模式P37 —— 工作指示灯,设置为OC输出模式关于P32控制 SOUT端的作用,请阅读TL851资料。

图 4 接收回路和信号放大、检出电路这个电路是超声波测距的核心。

因为产生波形和计时都容易解决,而准确的检测出回波信号才是决定传感器是否成功的关键。

为便于理解上图,将TL852 的内部原理框图列出:图 5 TL852 内部功能框图读者可对照TL852 数据手册分析其工作原理。

从图中可以看出,图4中的R7、R8为运放的输入、反馈电阻,通过改变两者比值可方便的改变灵敏度,故将R7、R8设计为直插器件。

图6 TL852输出信号处理电路图6所示电路是为了将TL852的输出转换为单片机需要的中断信号,U4A构成了一级同相跟随器,是为了隔离后级对C14积分电路的影响。

U4B构成一个比较器,理解此部分可参阅下面的TL851框图。

图 7 TL851内部功能框图图中,8脚应接在SOUT上,1.2V基准电压等效于图6中的2个1N4148串联,因为硅PN结的正向压降为0.6V。

第9脚ECHO输出相当于图6中的U4B的第7脚输出。

BLNK、BINH端子都是为了抑制发送时的信号,此部分在本设计中由单片机完成,单片机的P32口置为OC输出,就是为了替代图中接在8脚和3脚之间的三极管,实现对积分电容C14放电,为测量做准备。

如读者希望进一步了解这部分的工作原理,可对照6500模块的原理图和TL851、TL852 数据手册仔细研读。

4.2 器件选择和PCB设计单片机前面已说明。

TL852选用SOP16封装的,否则体积太大。

运放U4 选用LMV358,SOP8封装。

LMV358为低电压满幅输出运放,额定工作电压为2.7 — 5V,读者可对照LM358资料看两者的差别,因为单片机的工作电压为3.3V,所以选用LMV358,虽然成本略高,但性能得到保证。

超声波收、发器选用Φ16mm的,期望发射功率略大,测量距离可以远些。

谐振频率为40kHz,国内基本上都是此频率。

因为超声波收、发器的电容值偏差较大,如读者希望精确匹配电感以提高性能,可能需要自己根据实测的电容量手工绕制,所以电感选用了8X10的工字磁芯,而变压器采用EE16,体积都比较大,便于手工绕制;读者如需优化性能,或体验其影响,可尝试自己制作,从而更好的掌握超声波测距的原理,为日后设计正式产品打下基础。

对外连接的端子采用XH-4A四芯插座,一根电源、一根地线、2根UART收发线,这样可方便的与其它设备连接,既给传感器供电,又可与传感器通讯,获取数据。

相关文档
最新文档