2.3不等式的解集同步练习(原卷版)
二次函数与一元二次方程、不等式 练习(1)(原卷版)
第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式(第1课时)一、选择题1.(2019北京高一期中)不等式x(x +2)<3的解集是( ).A .{x|−1<x <3}B .{x|−3<x <1}C .{x|x <−1 ,或x >3}D .{x|x <−3 ,或x >1}2.(2019全国课时练习)已知集合A ={y|y −2>0},集合B ={x|x 2−2x ≤0},则A ∪B = ( )A .[0,+∞)B .(−∞,2]C .[0,2)∪(2,+∞)D .R3.(2019全国课时练习)不等式2620x x --+≤的解集是( ) A.21|32x x ⎧⎫-≤≤⎨⎬⎩⎭ B.21|32x x x ⎧⎫≤-≥⎨⎬⎩⎭或 C.1|2x x ⎧⎫≥⎨⎬⎩⎭ D.3|2x x ⎧⎫≤-⎨⎬⎩⎭4.(2019·安徽高一期中)若关于x 的不等式230ax bx ++>的解集为1(1,)2-,其中,a b 为常数,则不等式230x bx a ++<的解集是( )A .(1,2)-B .(2,1)-C .1(,1)2-D .1(1,)2- 5.(2019天津高一课时练习)在R 上定义运算⊗:a ⊗b =ab +2a +b ,则满足x ⊗(x −2)<0的实数x 的取值范围为( )A .(0,2)B .(−2,1)C .(−∞,−2)∪(1,+∞)D .(−1,2)6.(2019全国高一课时练习)一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立,则k 的取值范围是( )A.(﹣3,0)B.(﹣3,0]C.[﹣3,0]D.(﹣∞,﹣3)∪[0,+∞)二、填空题7.(2019全国高三课时练习)不等式220x x +-<的解集为___________.8.(2019广州市培正中学高二课时练习)若关于x 的不等式 −12x 2+2x >mx 的解集是{x|0<x <2},则实数m 的值是_____________.9.(2019天津高一课时练习)如果关于x 的不等式5x 2-a≤0的正整数解是1,2,3,4,那么实数a 的取值范围是____.10.(2019·全国高一课时练习)当()1,3x ∈时,不等式240x mx -+>恒成立,则实数m 的取值范围是_____________.三、解答题11.(2019·全国课时练习)若不等式ax 2+5x −2>0的解集是{x |12<x <2}, (1) 求a 的值;(2) 求不等式ax 2−5x +a 2−1>0的解集.12.(2019·广东揭阳三中高二课时练习)已知函数f(x)=x 2−2x −8,g(x)=2x 2−4x −16,(1)求不等式g(x)<0的解集;(2)若对一切x >2,均有f(x)≥(m +2)x −m −15成立,求实数m 的取值范围.2.3 二次函数与一元二次方程、不等式(第2课时)一、选择题1.(2019·吉林长春市实验中学高一期末)已知集合{}20A x x =+>,{}2230B x x x =+-≤,则A B ( ) A .[)3,2-- B .[]3,1-- C .(]2,1- D .[]2,1--2.(2019·汪清县汪清第六中学高一月考)不等式ax 2−x +c >0的解集为{x |−2<x <1},则函数y =ax 2+x +c 的图像大致为( )A .B .C .D .3.(2019·北京高一期中)某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为1602P x =-,生产x 件所需成本为C (元),其中50030C x =+元,若要求每天获利不少于1300元,则日销量x 的取值范围是( )A .2030x ≤≤B .2045x ≤≤C .1530x ≤≤D .1545x ≤≤ 4.(2019·河北高考模拟)已知函数f(x)=(ax −1)(x +b),如果不等式f(x)>0的解集为(−1,3),那么不等式f(−2x)<0的解集为( )A .(−∞,−32)∪(12,+∞)B .(−32,12)C .(−∞,−12)∪(32,+∞)D .(−12,32)5.(2019·全国高一课时练习)关于x 的不等式()210xa x a -++<的解集中恰有两个整数,则实数a 的取值范围是( )A .(][) 2,13,4--⋃ B .[][]2,13,4--⋃C .[)(] 2,13,4--⋃D .()() 2,13,4--⋃6.(2019·阜阳市第三中学高一期末)若一元二次不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是( )A .()3,0-B .](3,0-C .()(),30,-∞-⋃+∞D .()),30,⎡-∞-⋃+∞⎣二、填空题7.已知集合2{|12}A x x =≤≤,{|12}B x x =-<<,则A B =________.(写成区间形式) 8.(2019·北京高一期末)已知集合A={-5,-1,2,4,5},请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是______.9.某小型雨衣厂生产某种雨衣,售价P(元/件)与月销售量x(件)之间的关系为P =160-2x,生产x 件的成本R =500+30x.若每月获得的利润y 不少于1300元,则该厂的月销售量x 的取值范围为______. 10.(2019·重庆高一期末)若关于x 的不等式23x ax a --≤-有解,则实数a 的取值范围为________.三、解答题11.国家为了加强对烟酒生产的管理,实行征收附加税政策.现在某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征收R 元(叫做税率为R %),则每年产销量将减少10R 万瓶.要使每年在此项经营中所收附加税不少于112万元,R 应怎样确定? 12.(2019·全国高一课时练习)已知关于x 的不等式220x x a a -+-≤.(1)求不等式的解集A ; (2)若12a >,()1,1A ⊆-,求实数a 的取值范围.。
2021-2022学年北师大版八年级数学下册《2-3不等式的解集》同步练习题(附答案)
2021-2022学年北师大版八年级数学下册《2-3不等式的解集》同步练习题(附答案)1.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2C.x>﹣3D.x≤22.在数轴上表示﹣2≤x<1正确的是()A.B.C.D.3.在数轴上表示不等式x>﹣1的解集正确的是()A.B.C.D.4.在数轴上表示不等式﹣1<x⩽2,其中正确的是()A.B.C.D.5.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标志,这是限制车高的标志.则通过该桥洞的车高x(m)的范围在数轴上可表示为()A.B.C.D.6.定义新运算“⨂”,规定:a⨂b=a﹣2b.若关于x的不等式x⨂m>3的解集为x>﹣1,则m的值是()A.﹣1B.﹣2C.1D.27.下列解集中,不包括﹣4的是()A.x≤﹣3B.x≥﹣4C.x≤﹣5D.x≥﹣68.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.39.如果不等式组无解,则下列数轴示意图正确的是()A.B.C.D.10.若不等式组无解,则a的取值范围是.11.若关于x的不等式组有解,则m的取值范围为.12.已知关于x的不等式组有实数解,则m的取值范围是.13.如图,此不等式的解集为.14.若关于x的一元一次不等式组有解,则m的取值范围为.15.若关于x的不等式组的解集是x<4,则P(m+1,2﹣m)在第象限.16.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是.17.若关于x的不等式(a+1)x>a+1的解集为x>1,则a的取值范围是.18.在数轴上表示下列不等式:(1)x>﹣2;(2)﹣1≤x<3.19.分别用含x的不等式表示如图数轴中所表示的不等式的解集:①;②.20.如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.21.解不等式组.请结合题意,完成本题的解答.(1)解不等式①,得.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.参考答案1.解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选:A.2.解:﹣2是实心点,方向向右,1是空心点,方向向左,如图所示:故选:D.3.解:在数轴上表示不等式x>﹣1的解集如下:故选:A.4.解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选:A.5.解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:故选:D.6.解∵a⊗b=a﹣2b,∴x⨂m=x﹣2m.∵x⨂m>3,∴x﹣2m>3,∴x>2m+3.∵关于x的不等式x⨂m>3的解集为x>﹣1,∴2m+3=﹣1,∴m=﹣2.故选:B.7.解:A选项,﹣3以及比﹣3小包括﹣4,不合题意;B选项,可以等于﹣4,不合题意;C选项,﹣5以及比﹣5小的数不包括﹣4,符合题意;D选项,﹣6以及比﹣6大的数包括﹣4,不合题意;故选:C.8.解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选:D.9.解:若不等式组无解,则数轴示意图正确的是:故选:D.10.解:因为不等式组无解,所以a≤﹣3,故答案为:a≤﹣311.解:不等式组有解,则m≤x<2,解得m<2.故答案为:m<2.12.解:已知关于x的不等式组有实数解,则两个不等式一定有公共部分,则m的取值范围是m>3.故答案为:m>3.13.解:根据数轴可知:此不等式的解集为﹣2<x≤3.故答案为:﹣2<x≤3.14.解:解不等式2x>﹣m得:x>﹣,∵不等式组有解,∴﹣<2,∴﹣m<4,∴m>﹣4,故答案为:m>﹣4.15.解:∵关于x的不等式组的解集是x<4,∴m≥4.∴m+1>0,2﹣m<0,∴P(m+1,2﹣m)在第四象限.故答案为:四.16.解:不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.17.解:∵关于x的不等式(a+1)x>a+1的解集为x>1,∴a+1>0,解得a>﹣1,故答案为:a>﹣1.18.解:(1)将x>﹣2表示在数轴上如下:(2)将不等式组﹣1≤x<3表示在数轴上如下:.19.解:①数轴表示不等式解集为x>0,②数轴表示不等式解集为x≤3,故答案为:x>0;x≤3.20.解:(1)由数轴可知:﹣2x+3>1,解得:x<1,即x的取值范围是x<1;(2)在数轴上表示为:.21.解:(1)解不等式①,得x≥﹣3,依据是:不等式的基本性质.(2)解不等式③,得x<1.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<1,故答案为:(1)x≥﹣3;(2)x<1;(4)﹣2<x<1.。
2.3不等式的解集
既然不等式的解集在通常情况下有很多符合条件的解,那么我们可以用一
种直观的方法利用数轴把不等式的解集表示出来。
22:40 18
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 (1)请写出下列不等式的解集,并说出它的解集所表示的意思。 x-5≤-1 解: x≤4 x2>25 解: x<-5或x>5 正方向
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上表示-3和3的点的位置上画空心圆圈,表示-3和3不在这个 解集内。
22:40 22
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 【归纳总结】 在数轴上表示 不等式的解集 注意 指示线方向:“>”向右,“<”向左 步骤:画数轴→定界点→走方向 界点:有“=”用实心点,没有“=”用空心圈
22:40 26
界点:有“=”用实心点,没有“=”用空心圈
x 10 > 0.02 100 4
(4)根据实际情况,解不等式,写出符合条件的解
22:40 8ຫໍສະໝຸດ .3不等式的解集二、探究新知
1.创设情境 燃放某种烟花时,为了确保安全,燃放者在点燃引火线后要在燃放 前转移到10m以外的安全区域。已知引火线的燃烧速度为0.02m/s, 燃放者离开的速度为4m/s,那么引火线的长度应为多少厘米?
解:设引火线的长度为xcm,根据题意得
x 10 > 0.02 100 4 根据不等式的基本性质,得
x>5 所以,引火线的长度应大于5cm.
22:40 9
2.3不等式的解集
二、探究新知
2.不等式的解、解集以及解不等式的概念 (1)不等式的解 ①x=5,6,8能使不等式x>5成立吗? ②你还能找出几个使不等式x>5成立的x的值吗?
2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版原卷版)
专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值.6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++ (1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同.(1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值. 11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M . (1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 12.(2020·福建省高三)已知函数()1f x x a x =-+-. (1)当0a =时,求不等式()1f x ≤的解集A . (2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 13.(2020·福建省高三)已知函数()12f x x x =-+-. (1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333abb cc a++≤+++---.14.(2020·山西省高三)已知函数()2f x x =.(1)求不等式()1f x >的解集; (2)若正数,,a b c 满足24923a b c f ⎛⎫++=+⎪⎝⎭,求149a b c ++的最小值. 15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+.16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>. (1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证 18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1. (Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 26.(2020·四川省高三三模)已知函数()||f x x a =-.(1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围. 29.(2020·贵州省高三)设函数()16f x x x a =++--. (1)当2a =时,求不等式()0f x ≤的解集; (2)若()23f x a ≥-,求a 的取值范围.30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m . (1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b+++的最小值. 31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式()230m m f x --<成立,求实数m 的取值范围. 32.(2020·广东省高三)已知函数()1=-f x x . (1)解不等式()(1)4f x f x ++≥;(2)当0x ≠,x ∈R 时,证明:1()()2f x f x-+≥.33.(2020·福建省高三)已知函数2()1,()|||21|,f x x g x x a x a R =+=---∈.(1)当12a =时,解不等式27()2g x <-;(2)对任意12,x x R ∈,若不等式12()()f x g x ≥恒成立,求实数a 的取值范围. 34.(2020·湖北省高三)已知函数()|4||24|f x x x =--+. (1)解不等式()3f x ;(2)若()f x 的最大值为m ,且2a b c m ++=,其中0a ,0b ,3c >,求(1)(1)(3)a b c ++-的最大值.35.(2020·辽宁省高三三模)已知a ,b ,c 均为正数,设函数f (x )=|x ﹣b |﹣|x +c |+a ,x ∈R . (1)若a =2b =2c =2,求不等式f (x )<3的解集; (2)若函数f (x )的最大值为1,证明:14936a b c++≥. 36.(2020·广西柳城县中学高三)设函数()133f x x x a a =-+-+,x ∈R . (1)当1a =时,求不等式()7f x >的解集; (2)对任意m R +∈,x ∈R 恒有()49f x m m≥--,求实数a 的取值范围. 37.(2020·安徽相山淮北一中高三月考)已知函数()|2|f x ax =-. (Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围. 38.(2020·河南高三月考)已知函数()21f x x x =--+.(1)解不等式()2f x <;(2)若正实数m ,n 满足3m n +=,试比较122m n +与()32f x -的大小,并说明理由. 39.(2020·湖南衡阳市八中高三)已知实数正数x ,y 满足1x y +=.(1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪⎪⎝⎭⎝⎭. 40.(2020·湖南雨花雅礼中学高三)已知函数()33f x x a x =-++. (1)若3a =,解不等式()6f x ≤;(2)若不存在实数x ,使得()162f x a x ≤--+,求实数a 的取值范围. 41.(2020·湖北黄州黄冈中学高三)已知()3f x x x =+-. (1)求不等式()5xf x x>的解集; (2)若()f x 的最小值为M ,且22a b c M ++=(a ,b ,c ∈R ),求证:2221a b c ++≥. 42.(2020·湖北黄州黄冈中学高三)已知1()||f x x a x a=++-. (1)当1a =时,求不等式()6f x 的解集M ; (2)若a M ∈,求证:10()3f x . 43.(2020·河北桃城衡水中学高三三模)已知函数()11f x x a x =+--. (1)当2a =-时,解不等式()5f x >; (2)若()3f x a x ≤+,求a 的最小值.44.(2020·宁夏原州固原一中高三)已知函数()|3|2f x x =+-. (1)解不等式|()|4f x <;(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,求实数t 的取值范围. 45.(2020·河南郑州一中高三)已知a ,b ,c 为正实数,且满足a +b +c =1.证明:(1)|a 12-|+|b +c ﹣1|12≥; (2)(a 3+b 3+c 3)(222111a b c ++)≥3. 46.(2020·贵州贵阳一中高三)已知函数()3f x x x a =--.(1)当0a =时,求解关于x 的不等式2()10f x x +->的解集;(2)当[]2,3x ∈时,该不等式()1f x ≥-恒成立,求a 的取值范围.47.(2020·云南红河高三)已知函数()|1||1|f x x x =++-.(Ⅰ)求不等式()8f x ≤的解集M ;(Ⅱ)若m 为M 中的最大元素,正数a ,b 满足.12m a b +=,证明2142a b ab ++≥.48.(2020·重庆九龙坡高三)已知函数()f x =(1)求()f x 的最大值;(2)若关于x 的不等式()|1|f x a -有解,求实数a 的取值范围.49(2019·河北辛集中学高三月考)已知函数()43f x x x =-++.(1)解不等式()9f x <;(2)若不等式()21f x a <-+在实数R 上的解集不是空集,求正数a 的取值范围.50.(2020·河南南阳高三二模)已知a ,b ,c 均为正实数,函数222111()4f x x x a b c =+-++的最小值为1.证明:(1)22249a b c ++≥;(2)111122ab bc ac++≤. 51.(2020·河南高三)已知函数()221f x x x =-++.(1)求不等式()4f x ≤的解集;(2)若函数()1y f x x =++的最小值为k ,求()220km m m+>的最小值. 52.(2020·安徽六安一中高三)已知()()2f x x m m m R =-+∈.(1)若不等式()2f x ≤的解集为13,22⎡⎤⎢⎥⎣⎦,求m 的值; (2)在(1)的条件下,若a ,b ,c +∈R ,且4a b c m ++=,求证:4436ac bc ab abc ++≥. 53.(2020·辽宁实验中学高三)设函数()|21|f x x =-.(1)设()(1)5f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b c a b c---⋅⋅≥. 54.(2020·安徽芜湖高三一模)设,,x y z ∈R ,且1x y z ++=.(1)证明:22213x y z ++≥; (2)求()()()222111x y z -++++的最小值.55.(2020·河南高三)已知函数()2f x x a x =-++.(1)当1a =时,求不等式()7f x ≤的解集;(2)若0x R ∃∈,()03f x a ≤-,求实数a 的取值范围.56.(2020·河南开封高三二模)已知函数()2231f x x x =+--.(1)求函数()f x 的最大值M ;(2)已知0a >,0b >,4a b M +=,求2221a b a b +++的最大值. 57.(2020·福建高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.58.(2020·湖南雅礼中学高三月考)已知不等式15|2|22x x -++≤的解集为M . (1)求集合M ; (2)设集合M 中元素的最大值为t .若0a >,0b >,0c >,满足111223t a b c ++=,求2993a b c ++的最小值.59.(2020·甘肃省静宁县第一中学高三)已知函数()211f x x x =++-. (1)解不等式()3f x ≥;(2)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且122a b c m ++=,求222a b c ++的最小值. 60.(2020·广东东莞高三)已知函数1()|||3|2()2f x x k x k R =-++-∈. (1)当1k =时,解不等式()1f x ≤;(2)若()f x x 对于任意的实数x 恒成立,求实数k 的取值范围.。
北师大版八年级数学下册2.3不等式的解集同步练习1(含答案)
不等式的解集1.【17-18学年福建联考七下期中】如图所示的不等式的解集为( )A.x >-1B.x ≥-1C.x <-1D.x ≤-1 2.【17-18学年山东临沂费县七下期末】以下所给的数值中,为不等式-2x+3<0的解的是( )A.-2B.-1C. D.23.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( ) A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]4.(2016·广东省联合体联考)已知函数f (x )=⎩⎪⎨⎪⎧|3x -4|,x ≤2,2x -1,x >2,则使f (x )≥1的x 的取值范围为( )A.⎣⎢⎡⎦⎥⎤1,53 B .⎣⎢⎡⎦⎥⎤53,3 C .(-∞,1)∪⎣⎢⎡⎭⎪⎫53,+∞ D .(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3 5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]6.若不等式mx 2+2mx -4<2x 2+4x 对任意x 均成立,则实数m 的取值范围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2]7.【16-17学年辽宁丹东八下期中】在不等式ax+b >0,a 、b 是常数且a ≠0,当______时,不等式的解集是x <-.8.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________. 9.定义符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0则不等式(x +1)sgn(x )>2的解集是________.10.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围为________.11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2. (1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.12.某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择.公司A每小时收费1.5元;公司B在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP公司较省钱?参考答案1.解:由图可得:x≥-1.故选:B.由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1.本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.2.解:由不等式-2x+3<0,解得:x>,对比各选项,只有2在该范围内.故选:D.先解出不等式的解集,根据不等式的解的定义,就能得到使不等式成立的未知数的值,即可作出判断.解答此题学生一定要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.3.解析:选A.法一:当x≤0时,x+2≥x2,所以-1≤x≤0;①当x>0时,-x+2≥x2,所以0<x≤1.②由①②得原不等式的解集为{x|-1≤x≤1}.法二:作出函数y=f(x)和函数y=x2的图象如图,由图知f(x)≥x2的解集为[-1,1].4.解析:选D.不等式f (x )≥1等价于⎩⎪⎨⎪⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解之得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3,故选D. 5.解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].6.解析:选A.原不等式等价于(m -2)x 2+2(m -2)x -4<0,①当m =2时,对任意的x 不等式都成立;②当m -2<0时,Δ=4(m -2)2+16(m -2)<0,所以-2<m <2,综合①②,得m 的取值范围是(-2,2].7.解:由题意,得两边都除以a ,不等号的方向改变,得a <0,故答案为:a <0.根据不等式的性质,可得答案.本题考查了不等式的性质,利用不等式的性质是解题关键.8.解析:原不等式即(x -a )⎝⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,所以a <x <1a . 答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫a <x <1a 9.解析:由⎩⎪⎨⎪⎧x >0,x +1>2,解得x >1;由⎩⎪⎨⎪⎧x =0,0>2,解得x ∈∅;由⎩⎪⎨⎪⎧x <0,-(x +1)>2,解得x <-3,所以原不等式的解集是(-∞,-3)∪(1,+∞).答案:(-∞,-3)∪(1,+∞)10.解析:把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4), 则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立不等式解得x <1或x >3.答案:{x |x <1或x >3}11.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0,即2x 2+5x -3<0,解得-3<x <12, 即不等式ax 2-5x +a 2-1>0的解集为⎝ ⎛⎭⎪⎫-3,12.12.解:假设一次上网x(x<17)小时,则公司A收取的费用为1.5x元,公司B收取的费用为1.7+(1.7-0.1)+(1.7-0.2)+…+[1.7-(x-1)×0.1]=x(35-x)20(元).由x(35-x)20>1.5x(0<x<17),整理得x2-5x<0,解得0<x<5,故当0<x<5时,公司A收费低于公司B收费,当x=5时,A,B两公司收费相等,当5<x<17时,公司B收费低,所以当一次上网时间在5小时以内时,选择公司A的费用少;为5小时时,选择公司A与公司B费用一样多;超过5小时小于17小时时,选择公司B的费用少.。
2020-2021学年八年级数学下册北师大版第二章第3节《不等式的解集》同步练习(有答案)
3 不等式的解集一、选择题x-2<0成立的是( )1.下列各数中,能使不等式12A.6B.5C.4D.22.“不超过a的数”在数轴上表示正确的是( )3.已知关于x的不等式x+a≤1的解集如图2-3-2所示,则a的值为( )A.-1B.-2C.1D.24.若关于x的不等式x-m≥-1的解集在数轴上的表示如图所示 ,则m等于( )A.0B.1C.2D.35.如图,阴影部分表示x的取值范围,则下列表示中正确的是( )A.x>-3<2B.-3<x≤2C.-3≤x≤2D.-3<x<26.不等式3x-3≥0的解的情况是( )A.有无数个解B.有两个解C.只有一个解D.无解7.函数y=63+x 中自变量x 的取值范围在数轴上表示正确的是( )8.若实数3是关于x 的不等式2x-a-2<0的一个解,则a 可取的最小正整数为 ( )A.2B.3C.4D.5二、填空题9.在-1,23,2.5,4,5中,是不等式x+5<9的解的有 个,不等式x+5<9的解集为 .10.若关于x 的不等式x ≥m-1的解集如图所示,则m 等于 .11.方程51x=-2的解有 个,不等式51x>-2的解有 个,其中负整数解有 个.12.在数4,5,6,-1中,是不等式x-2<3的解的为 .13.若关于x 的不等式(1-a)x>2可化为x<a 12-,则a 的取值范围是 .三、解答题14.已知关于x的不等式(x-5)(ax-3a+4)≤0.(1)若x=2是该不等式的解,求a的取值范围;(2)在(1)的条件下,且x=1不是该不等式的解,求符合题意的一个无理数a.15.定义新运算“⊕”:对于任意实数a,b,都有a⊕b=ab+1,等式右边是通常的加法、减法及乘法运算.比如2⊕5=2×5+1=11.若3⊕x的值小于13,求x的取值范围,并写出满足条件的非负整数解.16.用A、B两种型号的钢丝各两根焊接成周长不小于2.4 m的长方形框架,已知每根A型钢丝的长度比每根B型钢丝长度的2倍少3 cm.(1)设每根B型钢丝长为x cm,按题意列出不等式并求出它的解集;(2)如果每根B型钢丝长度有以下四种选择:30 cm,40 cm,41 cm,45 cm,那么其中哪些钢丝合适?答案1.D2.B3.A4.D5.B6.A7.A8.D9. 3;x<410. 311. 1;无数;912. 4和-113. a>114.(1)把x=2代入(x-5)(ax-3a+4)≤0,得(2-5)(2a-3a+4)≤0,解得a≤4,所以a的取值范围是a≤4.(2)由(1)得,a≤4,取a=π,此时原不等式变为(x-5)(πx-3π+4)≤0,当x=1时,不等式的左边=(1-5)(π-3π+4)=-4(4-2π),∵4-2π<0,∴不等式的左边大于0,∴x=1不是该不等式的解,∴符合题意的无理数a可以是π.15.由已知得3⊕x=3x+1<13,解得x<4,∴所求的非负整数解为0,1,2,3.16.(1)∵每根B型钢丝的长度为x cm,∴每根A型钢丝的长度为(2x-3)cm,∴2x+2(2x-3)≥240,解得x≥41.(2)∵x≥41,∴只有长度为41 cm和45 cm的钢丝满足要求.。
八年级数学下册-2.3-不等式的解集同步练习-(新版)北师大版[5页]
2.3 不等式的解集一、选择题1.-3x ≤6的解集是( ) A B C D2.用不等式表示图中的解集,其中正确的是A . x ≥-2 B . x >-2C . x <-2D . x ≤-23.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负数解有无限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解4.下列说法正确的是( )A .x =1是不等式-2x <1的解集B .x =3是不等式-x <1的解集C .x >-2是不等式-2x <1的解集D .不等式-x <1的解集是x >-15.不等式x -3>1的解集是( )A .x >2B . x >4C .x -2>D . x >-46.不等式2x <6的非负整数解为( )A .0,1,2B .1,2C .0,-1,-2D .无数个7.下列四种说法:① x=45是不等式4x -5>0的解;② x=25是不等式4x -5>0的一个解;③ x >45是不等式4x -5>0的解集;④ x>2中任何一个数都可以使不等式4x -5>0成立,所以x >2也是它的解集,其中正确的有( )A .1个B .2个C .3个D .4个8.若(1)1a x a -<-的解集为x >1,那么a 的取值范围是( )A .a >0B .a <0C .a <1D .a >1二、填空题9.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________.10.当x_______时,代数式2x -5的值为0;当x_______时,代数式2x -5的值不大于0.11.不等式-5x ≥-13的解集中,最大的整数解是__________.12.不等式x+3≤6的正整数解为___________________. -1 9题-2 -1 0 0 -3 -1 0 2题13.不等式-2x <8的负整数解的和是______.14.直接写出不等式的解集:(1) x +3>6的解集 ;(2)2x <12的解集 ;(3) x -5>0的解集 ;(4)0.5x >5的解集 .15.一个不等式的解集如图所示,则这个不等式的正整数解是 .16.恩格尔系数n 是指家庭日常饮食开支占家庭收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的n 值如下所示:家庭类型贫困 温饱 小康 发达国家 最富裕国家 n 75%以上 50%~75% 40%~49% 20%~39% 不到20% 如用含n 的不等式表示,则贫困家庭为 ;小康家庭为 ;最富裕国家为 ;当某一家庭n =0.6时,表明该家庭的实际生活水平是 .三、能力提升17.在数轴上表示下列不等式的解集:(1)x ≥-3.5 (2)x <-1.5(3)x ≥2 (4)-1≤x <218.试写出一个不等式,使它的解集满足下列条件:(1)不等式的正整数解只有1,2,3;(2)不等式的整数解只有-2,-1,0,1.19.某种饮料重约300g ,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?1 2 3 4 0 15题20.求不等式1+x >x -1成立的x 取值范围.21.求不等式41x +1>0的解集和它的非负整数解,并把解集在数轴上表示出来.22.x 取什么值时,代数式2x -5大于代数式21(2-x)的值?23.|2a -24|+(3a -b -k )2=0,那么k 取什么值时,b 为负数.24.要使不等式-3x -a ≤0的解集为x ≥1,那么a 应满足什么条件?四、聚沙成塔一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个?1.3 不等式的解集1.A ;2.B ;3.C ;4.D ;5.B ;6.A ;7.B ;8.C ;9.答案不唯一,如x -1≤0,2x≤2等. 10.=52,≤52.11.x =2. 12.x =1,2,3 13.-6. 14.(1)x >3;(2)x <6;(3)x >5;(4)x >10. 15.x =1,2 16.n >75% 40%≤n ≤49% n <20% 温饱.17.图略.18.答案不惟一:(1)x <4; (2) -3<x ≤1.19.不少于1.5克.20.x 可取一切实数.21.非负整数为0,1,2,3.22. x >512. 23. k 大于36时b 为负数.24. a=-3聚沙成塔解:设白球有x 个,红球有y 个,由题意,得⎩⎨⎧=+60322y x x y x 由第一个不等式得:3x <3y <6x ,由第二个不等式得,3y=60-2x ,则有3x <60-2x <6x∴7.5<x <12,∴x 可取8,9,10,11.又∵2x=60-3y=3(20-y ) ∴2x 应是3的倍数∴x只能取9,y =39260⨯-= 14 答:白球有9个,红球有14个.。
高中数学 第二章 等式与不等式 2.2.3 一元二次不等式的解法练习(含解析)新人教B版必修第一册-
2.2.3 一元二次不等式的解法最新课程标准:从函数观点看一元二次不等式.①经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.②借助一元二次函数的图像,了解一元二次不等式与相应函数、方程的联系.知识点二次函数与一元二次方程、不等式的解的对应关系Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图像ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅状元随笔一元二次不等式的解法:(1)图像法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax2+bx+c=0的解;②画出对应函数y=ax2+bx+c的图像简图;③由图像得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p<q时,若(x-p)(x-q)>0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q.有口诀如下“大于取两边,小于取中间”.[基础自测]1.下列不等式中是一元二次不等式的是( )A.a2x2+2≥0 B.1x2<3C.-x2+x-m≤0 D.x3-2x+1>0解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.答案:C2.不等式x(x+1)≤0的解集为( )A.[-1,+∞) B.[-1,0)C.(-∞,-1] D.[-1,0]解析:解不等式得-1≤x≤0,故选D.答案:D3.函数y=17-6x-x2的定义域为( )A.[-7,1]B.(-7,1)C.(-∞,-7]∪[1,+∞)D.(-∞,-7)∪(1,+∞)解析:由7-6x-x2>0,得x2+6x-7<0,即(x+7)(x-1)<0,所以-7<x<1,故选B. 答案:B4.不等式1+2x+x2≤0的解集为________.解析:不等式1+2x+x2≤0化为(x+1)2≤0,解得x=-1.答案:{-1}题型一解不含参数的一元二次不等式[教材P65例1 P66例3、例4]例1 (1)求不等式x2-x-2>0的解集.(2)求不等式x2-6x-1≤0的解集.(3)求不等式-x2+2x-1<0的解集.【解析】(1)因为x2-x-2=(x+1)(x-2),所以原不等式等价于(x+1)(x-2)>0,因此所求解集为(-∞,-1)∪(2,+∞).(2)因为x2-6x-1=x2-6x+9-9-1=(x-3)2-10,所以原不等式可化为(x-3)2-10≤0,即(x-3)2≤10,两边开平方得|x-3|≤10,从而可知-10≤x-3≤10,因此3-10≤x≤3+10,所以不等式的解集为[3-10,3+10].(3)原不等式可化为x2-2x+1>0,又因为x2-2x+1=(x-1)2,所以上述不等式可化为(x-1)2>0.注意到只要x≠1,上述不等式就成立,所以不等式的解集为(-∞,1)∪(1,+∞).教材反思我们以求解可化成ax2+bx+c>0(a>0)形式的不等式为例,用框图表示其求解过程.跟踪训练1 解下列不等式: (1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)-2x 2+3x -2<0.解析:(1)因为Δ=1>0,所以方程x 2-7x +12=0有两个不等实根x 1=3,x 2=4.再根据函数y =x 2-7x +12的图像开口向上,可得不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘-1,原不等式可化为x 2+2x -3≤0.因为Δ=16>0,所以方程x 2+2x -3=0有两个不等实根x 1=-3,x 2=1.再根据函数y =x 2+2x -3的图像开口向上,可得不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)因为Δ=0,所以方程x 2-2x +1=0有两个相等的实根x 1=x 2=1.再根据函数y =x 2-2x +1的图像开口向上,可得不等式x 2-2x +1<0的解集为∅.(4)原不等式可化为2x 2-3x +2>0,因此Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图像开口向上,所以原不等式的解集为R .状元随笔化二次项系数为正―→计算相应方程的判别式Δ及两根x 1,x 2――→函数图像结果题型二 三个“二次”之间的关系[经典例题]例2 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.【解析】 方法一 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系可知b a =-5,c a =6.由a <0知c <0,b c =-56,故不等式cx 2+bx +a <0,即x 2+b c x +a c >0,即x 2-56x +16>0,解得x <13或x >12,所以不等式cx2+bx +a <0的解集为⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞. 方法二 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,所以ax 2+bx +c =a (x -2)(x -3)=ax 2-5ax +6a ⇒b =-5a ,c =6a ,故不等式cx 2+bx +a <0,即6ax 2-5ax +a <0⇒6a ⎝ ⎛⎭⎪⎫x -13⎝ ⎛⎭⎪⎫x -12<0,故原不等式的解集为⎝⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞. 状元随笔由给定不等式的解集形式→确定a<0及关于a ,b ,c 的方程组→ 用a 表示b ,c →代入所求不等式→求解cx 2+bx +a<0的解集 方法归纳一元二次不等式与其对应的函数与方程之间存在着密切的联系,在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∅,则问题可转化为恒成立问题,此时可以根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的X 围.跟踪训练2 已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.解析:因为x2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16.所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}. 状元随笔观察给定不等式的解集形式→由根与系数的关系得p ,q 的方程组→确定p ,q 的值→求不等式qx 2+px +1>0的解集题型三 含参数的一元二次不等式的解法[经典例题] 例3 解关于x 的不等式2x 2+ax +2>0.【解析】 对于方程2x 2+ax +2=0,其判别式Δ=a 2-16=(a +4)(a -4).①当a >4或a <-4时,Δ>0,方程2x 2+ax +2=0的两根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14(-a -a 2-16)或x >14(-a +a 2-16). ②当a =4时,Δ=0,方程有两个相等实根,x 1=x 2=-1, ∴原不等式的解集为{x |x ≠-1}.③当a =-4时,Δ=0,方程有两个相等实根,x 1=x 2=1, ∴原不等式的解集为{x |x ≠1}.④当-4<a <4时,Δ<0,方程无实根,∴原不等式的解集为R .状元随笔 二次项系数为2,Δ=a 2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.方法归纳含参数一元二次不等式求解步骤(1)讨论二次项系数的符号,即相应二次函数图像的开口方向; (2)讨论判别式的符号,即相应二次函数图像与x 轴交点的个数; (3)当Δ>0时,讨论相应一元二次方程两根的大小;(4)最后按照系数中的参数取值X 围,写出一元二次不等式的解集. 跟踪训练3 解关于x 的不等式x 2-(a +a 2)x +a 3>0.解析:原不等式可变形为(x -a )·(x -a 2)>0,则方程(x -a )(x -a 2)=0的两个根为x 1=a ,x 2=a 2,(1)当a <0时,有a <a 2,∴x <a 或x >a 2,此时原不等式的解集为{x |x <a 或x >a 2}; (2)当0<a <1时,有a >a 2,即x <a 2或x >a ,此时原不等式的解集为{x |x <a 2或x >a }; (3)当a >1时,有a 2>a ,即x <a 或x >a 2,此时原不等式的解集为{x |x <a 或x >a 2}; (4)当a =0时,有x ≠0;∴原不等式的解集为{x |x ∈R 且x ≠0}; (5)当a =1时,有x ≠1,此时原不等式的解集为{x |x ∈R 且x ≠1}; 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ∈R 且x ≠0}; 当a =1时,原不等式的解集为{x |x ∈R 且x ≠1}.状元随笔不等式左边分解因式→讨论a 的X 围→ 比较a 与a 2的大小→写出不等式的解集题型四 一元二次不等式的实际应用[经典例题]例4 某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x (百台),其总成本为g (x )万元(总成本=固定成本+生产成本),并且销售收入r (x )满足r (x )=⎩⎪⎨⎪⎧-0.5x 2+7x -10.5,0≤x ≤7,13.5,x >7.假定该产品产销平衡,根据上述统计规律求: (1)要使工厂有盈利,产品数量x 应控制在什么X 围?(2)工厂生产多少台产品时盈利最大?【解析】 (1)依题意得g (x )=x +3,设利润函数为f (x ),则f (x )=r (x )-g (x ),所以f (x )=⎩⎪⎨⎪⎧-0.5x 2+6x -13.5,0≤x ≤7,10.5-x ,x >7,要使工厂有盈利,则有f (x )>0,因为f (x )>0⇒⎩⎪⎨⎪⎧0≤x ≤7,-0.5x 2+6x -13.5>0或⎩⎪⎨⎪⎧x >7,10.5-x >0⇒⎩⎪⎨⎪⎧0≤x ≤7,x 2-12x +27<0或⎩⎪⎨⎪⎧x >7,10.5-x >0⇒⎩⎪⎨⎪⎧0≤x ≤7,3<x <9或⎩⎪⎨⎪⎧x >7,x <10.5.则3<x ≤7或7<x <10.5,即3<x <10.5,所以要使工厂盈利,产品数量应控制在大于300台小于1 050台的X 围内.(2)当3<x ≤7时,f (x )=-0.5(x -6)2+4.5,故当x =6时,f (x )有最大值4.5,而当x >7时,f (x )<10.5-7=3.5,所以当工厂生产600台产品时盈利最大.(1)求利润函数f(x)⇒解不等式f(x)>0⇒回答实际问题. (2)根据第(1)题所求X 围,分类讨论求函数最值⇒回答实际问题. 方法归纳解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系. (2)设:引进数学符号,用不等式表示不等关系. (3)求:解不等式. (4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.跟踪训练4 某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x ≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值X 围. 解析:(1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)依题意得,y =200a (1+2x %)(10-x )% =150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ·10%=20a (万元). 依题意得,150a (100+2x )(10-x )≥20a ×83.2%,化简得x 2+40x -84≤0, ∴-42≤x ≤2.又∵0<x <10,∴0<x ≤2. ∴x 的取值X 围是{x |0<x ≤2}.状元随笔 根据题意,列出各数量之间的关系表,如下:原计划 降税后 价格(元/担)200 200税率 10% (10-x)%(0<x<10)收购量(万担) a a(1+2x%) 收购总金额(万元) 200a 200·a(1+2x%) 税收y(万元)200a·10%200·a(1+2x%)(10-x)%课时作业 12一、选择题1.不等式3x 2-2x +1>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <1C .∅D .R解析:因为Δ=(-2)2-4×3×1=-8<0,所以抛物线y =3x 2-2x +1开口向上,与x 轴无交点,故3x 2-2x +1>0恒成立,即不等式3x 2-2x +1>0的解集为R .答案:D2.设m +n >0,则关于x 的不等式(m -x )(n +x )>0的解集是( ) A .{x |x <-n 或x >m } B .{x |-n <x <m } C .{x |x <-m 或x >n } D .{x |-m <x <n }解析:不等式(m -x )(n +x )>0可化为(x -m )(x +n )<0,方程(x -m )(x +n )=0的两根为x 1=m ,x 2=-n .由m +n >0,得m >-n ,则不等式(x -m )(x +n )<0的解集是{x |-n <x <m },故选B.答案:B 3.不等式ax2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12,则a ,c 的值分别为( ) A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6解析:由题意知,方程ax 2+5x +c =0的两根为x 1=13,x 2=12,由根与系数的关系得x 1+x 2=13+12=-5a ,x 1·x 2=13×12=ca.解得a =-6,c =-1.答案:B4.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值X 围是( )A .(2,+∞) B.(-∞,2) C .(-∞,0)∪(2,+∞) D.(0,2)解析:由题意知原不等式对应方程的Δ<0,即m 2-4×1×m2<0,即m 2-2m <0,解得0<m <2,故答案为D.答案:D 二、填空题5.不等式(2x -5)(x +3)<0的解集为________.解析:方程(2x -5)(x +3)=0的两根为x 1=52,x 2=-3,函数y =(2x -5)(x +3)的图像与x 轴的交点坐标为(-3,0)和⎝ ⎛⎭⎪⎫52,0,所以不等式(2x -5)(x +3)<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <52.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -3<x <52 6.不等式2x -12x +1<0的解集为________. 解析:原不等式可以化为(2x -1)(2x +1)<0,即⎝ ⎛⎭⎪⎫x -12⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-12<0, 故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <12. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <12 7.用一根长为100 m 的绳子能围成一个面积大于600 m 2的矩形吗?若“能”,当长=________ m ,宽=________ m 时,所围成的矩形的面积最大.解析:设矩形一边的长为x m ,则另一边的长为(50-x )m,0<x <50.由题意,得x (50-x )>600,即x 2-50x +600<0,解得20<x <30.所以,当矩形一边的长在(20,30)的X 围内取值时,能围成一个面积大于600 m 2的矩形.用S 表示矩形的面积,则S =x (50-x )=-(x -25)2+625(0<x <50).当x =25时,S 取得最大值,此时50-x =25.即当矩形的长、宽都为25 m 时,所围成的矩形的面积最大.答案:25 25三、解答题8.解下列不等式:(1)x 2+2x -15>0;(2)x 2-3x +5>0;(3)4(2x 2-2x +1)>x (4-x ).解析:(1)x 2+2x -15>0⇔(x +5)(x -3)>0⇔x <-5或x >3,所以不等式的解集是{x |x <-5或x >3}.(2)因为Δ=(-3)2-4×1×5=-11<0,再根据函数y =x 2-3x +5图像的开口方向,所以原不等式的解集为R .(3)由原不等式得8x 2-8x +4>4x -x 2.∴原不等式等价于9x 2-12x +4>0.解方程9x 2-12x +4=0,得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠23. 9.若关于x的一元二次不等式ax 2+bx +c <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <13或x >12,求关于x 的不等式cx 2-bx +a >0的解集.解析:由题意知⎩⎪⎨⎪⎧a <0,13+12=-b a ,13×12=c a ,所以⎩⎪⎨⎪⎧ a <0,b =-56a >0,c =16a <0, 代入不等式cx 2-bx +a >0中得16ax 2+56ax +a >0(a <0). 即16x 2+56x +1<0,化简得x 2+5x +6<0, 所以所求不等式的解集为{x |-3<x <-2}. [尖子生题库] 10.解关于x 的不等式x 2-ax -2a 2<0.解析:方程x 2-ax -2a 2=0的判断式Δ=a 2+8a 2=9a 2≥0,得方程两根x 1=2a ,x 2=-a .(1)若a >0,则-a <x <2a ,此时不等式的解集为{x |-a <x <2a };(2)若a <0,则2a <x <-a ,此时不等式的解集为{x |2a <x <-a };(3)若a =0,则原不等式即为x 2<0,此时解集为∅.综上所述,原不等式的解集为:当a >0时,{x |-a <x <2a };当a <0时,{x |2a <x <-a };当a =0时,∅.。
八年级数学下册 2.3 不等式的解集同步练习(含解析)北师大版(2021年整理)
八年级数学下册2.3 不等式的解集同步练习(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册2.3 不等式的解集同步练习(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册2.3 不等式的解集同步练习(含解析)(新版)北师大版的全部内容。
2.3不等式的解集一、单选题1、下列数值中不是不等式5x≥2x+9的解的是( )A 、5B 、4C 、3D 、22、不等式组的其中一个解是x=0,且a <b <0,则这个不等式组可以是( )A 、B 、C 、D 、3、如图,数轴上所表示关于x 的不等式组的解集是( )A 、x≥2B 、x >2C 、x >﹣1D 、﹣1<x≤2 4、若把不等式组⎩⎨⎧-≥--≥-2132x x 的解集在数轴上表示出来,则其对应的图形为( ) A 、长方形B 、线段C 、射线D 、直线5、已知点P (3﹣m,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )B 、C 、D 、6、若关于x 的一元一次不等式组⎩⎨⎧<-≤-402x m x 有解,则m 的取值范围是( )A 、m≥﹣8B 、m≤﹣8C 、m >﹣8D 、m <﹣87、不等式组⎩⎨⎧-≤-<-1345x x x 的解集在数轴上可表示为( )A 、B 、C 、D 、8、一次函数y=3x+b 和y=ax ﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b >ax ﹣3的解集在数轴上表示正确的是( )B 、C 、D 、二、填空题 9、用不等号“>、<、≥、≤”填空:a 2+1 ________0.10、x 与y 的平方和一定是非负数,用不等式表示为 ________11、数轴上所表示的关于x 的不等式组的解集为________12、不等式组⎩⎨⎧->≤42x x 的解集为________ 13、某中学初中生在做练习册作业上解一个一元一次不等式时,发现不等式右边的一个数被墨迹污染看不清了,所看到的不等式是1﹣3x <▇,他查看练习本后的答案知道,这个不等式的解集是x >5,那么被污染的数是________14、不等式组⎩⎨⎧><mx x 8有解,m 的取值范围是________.三、解答题(共6题;共30分)15、解不等式2(x ﹣1)﹣3<1,并把它的解集在数轴上表示出来.16、解不等式组,并把解集表示在数轴上,并写出其整数解.⎪⎩⎪⎨⎧>-+-≤-13122103x x x .17、在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?18、已知两个语句:①式子2x﹣1的值在1(含1)与3(含3)之间;②式子2x﹣1的值不小于1且不大于3,请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来,并选择一个求其解集.19、小明、小华、小刚三人在一起讨论一个一元一次不等式组.小明:其中一个不等式的解集为x≤8;小刚:其中有一个不等式在求解的过程中需要改变不等号方向;请你写出符合上述条件的不等式组,并解这个不等式组.20、定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣2)的值;(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.答案解析一、单选题题号12345678答案D B A B A C C C 解析:1、D解:移项得,5x﹣2x≥9,合并同类项得,3x≥9,系数化为1得,x≥3,所以,不是不等式的解集的是x=2.故选:D.3、A解:由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.4、B解:不等式组的解集为:﹣1≤x≤5.在数轴上解集对应的图形是线段.故选B.5、A解:已知点P(3﹣m,m﹣1)在第二象限, 3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.6、C解: , 解①得:x≤ m,解②得:x>﹣4,根据题意得:m>﹣4,解得:m>﹣8.故选:C.7、C解:不等式可化为:在数轴上可表示为:故选C.8、C解:∵由函数图象可知,当x>﹣2时,一次函数y=3x+b的图象在函数y=ax﹣3的图象的上方,∴不等式3x+b>ax﹣3的解集为x>﹣2,在数轴上表示为:.故选C.二、填空题9、〉解:根据a2≥0,∴a2+1>0,故答案为:>.10、x+y2≥0解:由x与y的平方和一定是非负数,的x+y2≥0,故答案为:x+y2≥0.11、﹣1≤x<2解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从3出发向左画出的折线且表示2的点是空心圆,表示x<2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:﹣1≤x<2.故答案为:﹣1≤x<2.12、﹣4<x≤2解:不等式组的解集是:﹣4<x≤2.故答案是:﹣4<x≤2.13、﹣14解:设被污染的数为a,不等式为1﹣3x<a.解得:x>,由已知解集为x>5,得到=5,解得:a=﹣14,故答案为:﹣1414、m<8解:由有解,得m<8.故答案为:m<8.三、解答题15、解:去括号得,2x﹣2﹣3<1,移项、合并得,2x<6,系数化为1得,x<3.在数轴上表示如下:16、解:解不等式x﹣3≤0,得:x≤3, 解不等式+ >1,得:x>,∴不等式组的解集为:<x≤3,将不等式解集表示在数轴上如图:则该不等式组的整数解为2,3.18、解:(1)一样;(2)①式子2x﹣1的值在1(含1)与3(含3)之间可得1≤2x﹣1≤3;②式子2x﹣1的值不小于1且不大于3可得不等式组解得:∴不等式组的解集为:1≤x≤2.19、解:根据题意得,这样的不等式组很多.如:解得x≤2.(此题答案不唯一,只要符合题意即可相应给分)八年级数学下册 2.3 不等式的解集同步练习(含解析)(新版)北师大版20、解:(1)∵a⊕b=a(a﹣b)+1,∴3⊕(﹣2)=3(3+2)+1=3×5+1=16;(2)∵a⊕b=a(a﹣b)+1,∴3⊕x=3(3+x)+1=10﹣3x.∵3⊕x的值小于16,∴10﹣3x<16,解得x>﹣2.在数轴上表示为:11。
2.3不等式的解集(精练)(学生版)
2.3不等式的解集一、单选题1.下列不等式组的解集,在数轴上表示为如图所示的是()A.x>-1B.-1<x≤2C.-1≤x<2D.x>-1或x≤2 2.不等式组x≥−2x<1的解集在数轴上表示为().A.B.C.D.3.x=3是下列不等式()的一个解.A.x+1<0B.x+1<4C.x+1<3D.x+1<5 4.关于x的不等式2x+m>−6的解集是x>−3,则m的值为()A.1.B.0.C.-1.D.-25.在-2,-1,0,1,2中,不等式x+3>2的解有()A.1个B.2个C.3个D.4个6.下列关于不等式的解的命题中,属于假命题的是().A.不等式x<2有唯一的正整数解B.−2是不等式2x−1<0的一个解C.不等式−3x>9的解集是x>−3D.不等式x<2的整数解有无数个7.若实数2是关于x的一元一次不等式2x-a-2<0的一个解,则a的取值范围是()A.a>2B.a<2C.a>4D.a>38.已知关于x的不等式3x-m+1>0的最小整数解为2,则实数m的取值范围是()A.4<m<7B.4≤m<7C.4<m≤7D.4≤m≤7二、填空题9.不等式3−3x>4x−2的最大整数解是.10.已知不等式3x−12a≤0的解集为x≤5,则a的值为.11.一个关于x的不等式组的解集在数轴上表示为,则这个不等式组的解集是.12.若关于x的不等式3m-2x<5的解集是x>2,则实数m的值为.13.如果不等式3x−m<0的正整数解有三个,则m的取值范围.三、解答题14.解不等式组:3x+7≥5(x−1)3x−22>x+1,并在数轴上表示不等式组的解集.15.解不等式组:3x−1>2(x+1)x−32≤1,并在数轴上表示出其解集.16.解不等式组1>x−x≥1并把解集在数轴上表示出来17.求不等式2(m−2)−3(m−1)≥−92的所有正整数解.。
不等式全章同步练习(含答案)
不等式全章同步练习(1)不等式及其解集(满分:100分,考试时间:90分钟)一、选择题:(本大题7个小题,每小题5分,共35分)1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x ;⑤a ≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.“数x 不小于2”是指( )A.x ≤2B.x ≥2C.x <2D.x >23.不等式的解集中,不包括-3的是( )A .x<-3B .x>-7C .x<-1D .x<04.不等式x <2在数轴上表示正确的是( )5. a 与-x 2的和的一半是负数,用不等式表示为( )A .12a-x 2>0B .12a-x 2<0C .12(a-x 2)<0D .12(a-x 2)>0 6. 四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是()A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>7. 下列说法中,错误的是( )A.x=1是不等式x <2的解B.-2是不等式2x-1<0的一个解C.不等式-3x >9的解集是x=-3D.不等式x <10的整数解有无数个二、填空题:(本大题5个小题,每小题4分,共20分)8. 数学表达式中:①a 2≥0 ②5p-6q<0 ③x-6=1 ④7x+8y ⑤-1<0 ⑥x≠3.不等式是________(填序号)B .D .A .C .9.比较下面两个算式结果的大小(在横线上填“>”“<”或“=”):32+42__________2×3×4, 22+22__________2×2×2,12+(34)2_________2×1×34,(-2)2+52__________2×(-2)×5, (12)2+(23)2__________2×12×23. 10.某工地实施爆破,操作人员点燃导火线后,必须在炸药爆炸前跑到m 400外安全区域,若导火线燃烧的速度为cm 1.1/秒,人跑步的速度为m 5/秒,则导火线的长x 应满足的不等式是: .11. 某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为__________.12.一个不等式的解集如图所示,则这个不等式的正整数解是________________.二、综合题:(本大题4个小题,共45分)13. (12分) 用不等式表示(1)a 的5倍加上a 的55%小于2; (2)3与x 的和的一半不小于3;(3)2131的与的n m 的和是非负数; (4)x 的2倍减去x 的41小于11.14.(10分)下列数值中哪些是不等式3x-1≥5的解?哪些不是?100,98,51,12,2,0,-1,-3,-5.15.(10分)直接写出下列各不等式的解集,并表示在数轴上:(1)x+1>0; (2)3x <6; (3)x-1≥5.16.(13分)阅读下列材料,并完成填空.你能比较2 0132 014和2 0142 013的大小吗?为了解决这个问题,先把问题一般化,比较n n+1和(n+1)n(n≥1,且n为整数)的大小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①12__________21;②23__________32;③34__________43;④45__________54;⑤56__________65;⑥67__________76;⑦78__________87;(2)归纳第(1)问的结果,可以猜想出n n+1和(n+1)n的大小关系;(3)根据以上结论,可以得出2 0132 014和2 0142 013的大小关系.参考答案一、选择题1. D【解析】①②⑤⑥是不等式,③有“=”不是,④只是式子.故选D.2. B【解析】不小于即大于等于,即x≥2,故选:B.3. A【解析】在4个选项里,只有-3<-3不成立,故选A.4. A【解析】B表示x≤2,C表示x>2,D表示x≥2,故选A.5. C6. D【解析】由图可得:S>P,R<P,PR>QS,故选D.7. C【解析】解集是一个范围,不是一个数值.故选C.二、 填空题8. ①②⑤⑥.【解析】③是等式,④是式子.9. > = > > >10. 54001.1 x 11. x ≤18.12. x<3.三、 综合题13、(1)2x-5≤1.(2)13x+12x ≥0. (3)a+3≥5.(4)20%a+a>3a.14、100,98,51,12,2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解.15、(1)x >-1;(2)x <2;(3)x ≥6.16、(1)< < > > > > >(2)当n=1或2时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n .(3)2 0132 014>2 0142 013.(2)不等式的性质(满分:100分,考试时间:90分钟)一、选择题:(本大题7个小题,每小题5分,共35分)1、若x >y ,则下列式子错误的是( )A 、x ﹣3>y ﹣3B 、﹣3x >﹣3yC 、 x+3>y+3D 、 >2、已知a <b ,下列式子中,错误的是( )A 、4a <4bB 、-4a <-4b C.、a +4<b +4 D 、a -4<b -43、已知a>b ,则下列不等式中不一定成立的是( )A. a-2>b-2B. 14a>14b C. -5a<-5b D. a2>ab4、若a<b<0,有下列不等式:①a+1<b+2;②ab>1;③a+b<ab;④1a<1b.其中正确的有()A. 1个B. 2个C. 3个D. 4个5、若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27 B.18 C.15 D.126、5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.B.C.D.以上都不对7、下列命题正确的是()A、若a>b,b<c,则a>cB、若a>b,则ac>bcC、若a>b,则ac2>bc2D、若ac2>bc2,则a>b二、填空题:(本大题5个小题,每小题4分,共20分)8.如果a<b.那么3﹣2a3﹣2b.(用不等号连接)9.设a>b,则:(1)2a2b;(2)(x2+1)a(x2+1)b;(3)3.5b+1 3.5a+1.10.下边的框图表示解不等式的流程,其中“系数化为”这一步骤的依据是.11. 如果且是负数,那么的取值范围是.12.若x<﹣y,且x<0,y>0,则|x|﹣|y| 0.二、综合题:(本大题4个小题,共45分)13. (12分)把下列不等式化成“”或“”或“”或“”的形式:Ⅰ;Ⅱ;Ⅲ;Ⅳ.14.(10分)已知a ,b ,c 是三角形的三边,求证:a b +c +b c +a +c a +b<2.15.(10分)已知a ,b ,c 在数轴上的位置如图所示.(1)求|ab|a +|b|-bc |bc|的值; (2)比较a +b ,b +c ,c -b 的大小,用“>”号将它们连接起来.16.(13分) 阅读下列材料:解答 “已知 ,且 ,,试确定 的取值范围”有如下解法:解 ,又 ,. .又 ,同理得:由得,的取值范围是.请按照上述方法,完成下列问题:Ⅰ已知,且,,则的取值范围是.Ⅱ已知,,若成立,求的取值范围(结果用含的式子表示).参考答案四、选择题13.B14.B15.D16.C【解析】①∵a<b,∴a+1<b+1,b+1<b+2,∴a+1<b+2.②∵a<b<0,∴ab>bb,即a b>1.③∵a<b<0,∴a+b<0,ab>0,∴a+b<ab.④∵a<b<0,∴ab>0,∴aab<bab,∴1b<1a.17.A【解析】解:∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2①∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;又(a﹣b)2+(b﹣c)2+(c﹣a)2=3a2+3b2+3c2﹣(a+b+c)2=3(a2+b2+c2)﹣(a+b+c)2②①代入②,得3(a2+b2+c2)﹣(a+b+c)2=3×9﹣(a+b+c)2=27﹣(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选A.18.B【解析】解:∵3a+2b=2c+3d,∵a>d,∴2a+2b<2c+2d,∴a+b<c+d,∴<,即>,故选:B.由图可得:S>P,R<P,PR>QS,故选D.19.D五、填空题20.>.【解析】解:∵a<b,两边同乘﹣2得:﹣2a>﹣2b,不等式两边同加3得:3﹣2a>3﹣2b,故答案为:>.21.(1)2a>2b;(2)(x2+1)a>(x2+1)b;(3)3.5b+1<3.5a+1.【解答】(1)根据不等式的基本性质2,不等式两边乘同一个正数2,不等号的方向不变,即2a>2b;(2)根据不等式的基本性质1,不等式两边加同一个式子(x2+1),不等号的方向不变,所以(x2+1)a>(x2+1)b;(3)a>b即b>a,不等式两边乘同一个正数3.5,不等号的方向不变,不等式两边加同一个数1,不等号的方向不变,所以3.5b+1<3.5a+1.22.不等式的两边同时乘以或除以一个负数,不等式方向改变;(或不等式的基本性质)23.24.>【解答】∵x<﹣y,且x<0,y>0,∴|x |>|y |,∴不等式的两边同时减去|y |,不等式仍成立,∴|x |﹣|y |>0.故答案是:>六、 综合题13、 (1)(2)(3)(4)14、【解】 由“三角形两边之和大于第三边”可知,a b +c ,b c +a ,c a +b 均是真分数,再利用分数与不等式的性质,得a b +c <a +a b +c +a =2a b +c +a, 同理,b c +a <2b c +a +b ,c a +b <2c a +b +c . ∴a b +c +b c +a +c a +b <2a b +c +a +2b c +a +b +2c a +b +c =2(a +b +c )a +b +c=2. 15、【解】 (1)由图知,a <0,b <0,c >0,a<b<c.∴|ab|a +|b|-bc |bc|=ab a -b -bc -bc=1. (2)c -b>b +c>a +b.(1)x >-1;(2)x <2;(3)x ≥6.16、 (1)(2) ,,,,,,同理得由得 , 的取值范围是.(3)一元一次不等式课时练习一、选择题(共15小题)1.(2015·南充)若m >n ,下列不等式不一定成立的是( )A . m +2>n +2B . 2m >2nC .2m >2n D . m 2>n 2 2.(2015·嘉定区二模)如果a >b ,那么下列不等式一定成立的是( )A . a ﹣b <0B . ﹣a >﹣bC . 21a <21b D . 2a >2b 3.(2015·广东模拟)若a >b ,则下列式子正确的是( )A . ﹣4a >﹣4bB .21a <21b C . 4﹣a >4﹣b D . a ﹣4>b ﹣4 4.(2015·浙江模拟)若x >y ,则下列式子中错误的是( ) A . x ﹣3>y ﹣3 B . x +3>y +3 C . ﹣3x >﹣3y D .3x >3y 5.(2015·西安模拟)如果a <b ,那么下列不等式中一定正确的是( )A . a ﹣2b <﹣bB . a 2<abC . ab <b 2D . a 2<b 26.(2015·绵阳模拟)下列各式中正确的是( )A . 若a >b ,则a ﹣1<b ﹣1B . 若a >b ,则a 2>b 2C . 若a >b ,且c ≠0,则ac >bcD . 若c a >c b ,则a >b7.(2015·杭州模拟)已知ab =8,若﹣2≤b ≤﹣1,则a 的取值范围是( )A . a ≥﹣4B . a ≥﹣8C . ﹣8≤a ≤﹣4D . ﹣4≤a ≤﹣28.(2015·庐阳区二模)关于x 的不等式233a x x +>-的解集在数轴上表示如图所示,则a 的值是( )A . ﹣6B . ﹣12C . 6D . 12 9.(2015·福州模拟)一元一次不等式组⎪⎩⎪⎨⎧≤->+0131112x x 的解集在数轴上表示为( ) A .B .C .D .10.(2015·河南模拟)不等式组⎩⎨⎧≥+<-01123x x 的解集在数轴上表示正确的是( )A .B .C .D .11.如图,将某不等式解集在数轴上表示,则该不等式可能是( )A . 21≤≤-xB .21<≤-xC .21≤<-xD .21<<-x12.(2015·洛阳一模)不等式组⎪⎩⎪⎨⎧≥->+020131x 的解集在数轴上可表示为( )A .B .C .D .13.(2015·台州一模)不等式组的解集在数轴上表示如图,则该不等式组是( )A .⎩⎨⎧≤-≥21x xB .⎩⎨⎧≥-≤21x xC .⎩⎨⎧<->21x xD .⎩⎨⎧≤->21x x 14.(2015·邵阳县一模)不等式x ﹣1≤1的解集在数轴上表示正确的是( )A .B .C .D . 15.关于x 的一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集是( )A . x <﹣3B . x ≤﹣3C . x <﹣1D . x ≤﹣1二、填空题(共5小题)16.(2015·杭州模拟)已知﹣2<x +y <3且1<x ﹣y <4,则z =2x ﹣3y 的取值范围是17.若关于x 的不等式(1﹣a )x >2可化为x >a-12,则a 的取值范围是 . 18.若关于x 的不等式组⎩⎨⎧〉〉m x x 2的解集是x >2,则m 的取值范围是 . 19.当m 时,不等式mx <7的解集为x >m 7 20.若a >b ,则a ﹣3 b ﹣3(填>或<)三.解答题(共5小题)21.能不能找到这样的a 值,使关于x 的不等式(1﹣a )x >a ﹣5的解集是x <2.22.若不等式(2k +1)x <2k +1的解集是x >1,求k 的取值范围.23.已知a <b ,试比较21﹣3a 与21﹣3b 的大小.24.已知不等式32x ﹣1>x 与x ﹣2>﹣mx 的解集相同,求m 的值. 25.已知不等式组⎩⎨⎧〉〉m x x 3的解集是x >3,求m 的取值范围.(3)参考答案一、选择题1.答案:D2.答案:D3.答案:D4.答案:C5.答案:A6.答案:D7.答案:C8.答案:B 9.答案:D 10.答案:D 11.答案:B 12.答案:A 13.答案:D 14.答案:C 15答案:A二、填空题答案:﹣4<z <16答案:a <1答案:m ≤2答案:<0答案:>答案:a =37答案:k <﹣21. 三、答案:∵a <b ,∴﹣3a >﹣3b ,∴21﹣3a >21﹣3b . 答案:32x ﹣1>x ,得x <﹣3,答案:由不等式组⎩⎨⎧〉〉mx x 3的解集是x >3,得m ≤3.(4)一元一次不等式组课时练习一、选择题(共15小题)1.(2015•福州)不等式组12x x ≥-⎧⎨<⎩解集在数轴上表示正确的是( ) A .B .C .D .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+>-+x t x x x 235352恰有5个整数解,则t 的取值范围是( ) A . ﹣6<t <211- B ﹣6≤t <211-C . ﹣6<t ≤211-D . ﹣6≤t ≤211- 3.不等式组⎩⎨⎧>≥-6202x x 的解集为( )A . x ≥2B . x >3C . 2≤x <3D . x >24.不等式组⎩⎨⎧+〈+≥-742513x x x 的解集为( )A . x ≥2B . x <3C . 2≤x <3D . x >35.(2015•宛城区模拟)若不等式组⎩⎨⎧<->+0421x a x 有解,则a 的取值范围是( ) A . a ≤3 B . a <3 C . a <2 D . a ≤26.不等式组⎩⎨⎧-≥<-123x x 的解集是( )A . x ≥﹣1B . x <5C . ﹣1≤x <5D . x ≤﹣1或x >57.若关于x 的不等式组⎩⎨⎧≤-<-1270x m x 的整数解共有5个,则m 的取值范围是( )A . 7≤m ≤8B . 7≤m <8C . 7<m ≤8D . 7<m <88.关于x 的不等式组⎩⎨⎧>-≥-125x a x 只有五个正整数解,则实数a 的取值范围是( )A . ﹣4<a <﹣3B . ﹣4≤a ≤﹣3C . ﹣4≤a <﹣3D . ﹣4<a ≤﹣39.不等式组⎩⎨⎧<=≥+0201x x 的整数解是( )A . ﹣1B . ﹣1,1,2C . ﹣1,0,1D . 0,1,210.(2015春•阳谷县期中)若关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 无解,则m 的取值范围为()A . m >﹣B . m ≤C . m <﹣D . m ≥﹣11.把不等式组⎩⎨⎧>-≥-3642x x 的解集表示在数轴上,正确的是( )A .B .C .D .12.若不等式组⎩⎨⎧>-<+mx x x 346的解集是x >3,则m 的取值范围是( )A . m >3B . m =3C . m ≤3D . m <313.不等式组⎩⎨⎧≥-<0162x x 的解集为( )A . 1≤x <3B . ﹣1≤x <3C . 1<x ≤3D . ﹣3≤x <114.不等式组⎩⎨⎧-≥->-201x x 的解集正确的是( )A . 1<x ≤2B . x ≥2C . x <1D . 无.15定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.如果[a ]=﹣3,则a 的取值范围为( )A . ﹣4<a ≤﹣3B . ﹣4≤a <﹣3C . ﹣3<a ≤﹣2D . ﹣3≤a <﹣2二.填空题(共5小题)16.不等式组⎩⎨⎧<-<+4232x x 的解集为 . 17.不等式组⎩⎨⎧>-+≥+xx x 33)3(211的解集是 .18.(2015•惠安县一模)不等式组⎩⎨⎧<->+0201x x 的解集是 . 19.不等式组⎩⎨⎧->>-42301x x x 的非负整数解是 .20.若关于x 的不等式组⎩⎨⎧>-≤-052a x x 无解,则a 的取值范围是 .三.解答题(共5小题)21.解不等式组:⎩⎨⎧>-+-≤-0)3()1(202x x x ,并把它的解集在数轴上表示出来.22.解不等式组:⎩⎨⎧->+>+)2(41512x x x .23.解不等式组⎪⎩⎪⎨⎧-<--+≥+-xx x x 8)1(311323,并把解集在数轴上表示出来.24.(2015•北京校级模拟)解不等式组⎪⎩⎪⎨⎧<-+≤+x x x x 321)2(542,并求它的整数解.25.解不等式组:⎪⎩⎪⎨⎧+<-->-425)1(312x x x x .(4)参考答案一、选择题(共15小题)1.答案:A 2.答案:C 3.答案:B 4.答案:C 5.答案:B 6.答案:C7.答案:C 8.答案:D 9.答案:C 10.答案:Bs 11.答案:A 12.答案:C13.答案:A 14.答案:A 15答案:D二.填空题(共5小题)16. 答案:﹣2<x <1 17.答案:0≤x <3 18.答案:﹣1≤x ≤2 19.答案:0 20.答案:a ≥7三.解答题(共5小题)21.答案:解集为:﹣1<x ≤2. 22.解不等式组:⎩⎨⎧->+>+)2(41512x x x . 答案:不等式组的解集是2<x <323.答案:不等式组的解集为:﹣2<x ≤1.在数轴上表示不等式组的解集为:24. 答案:原不等式组的整数解为﹣2,﹣1,0,1,2.25.答案:不等式组的解集为﹣1<x <2。
不等式与不等式组(压轴题综合测试卷)(人教版)(原卷版)
专题9.4 不等式与不等式组(满分100)学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人得 分一.选择题(本大题共10小题,每小题3分,满分30分) 1.(2023春·四川达州·八年级校考阶段练习)若不等式2x+53−1≤2−x 的解集中x 的每一个值,都能使关于x 的不等式3(x ﹣1)+5>5x +2(m +x)成立,则m 的取值范围是( ) A .m >−35B .m <−15C .m <−35D .m >−152.(2023春·福建泉州·七年级晋江市第一中学校考期中)若关于x 的不等式mx - n >0的解集是x <15,则关于x 的不等式(m +n)x >n −m 的解集是( ) A .x >−23B .x <−23C .x <23D .x >233.(2022秋·八年级课时练习)已知方程|x|=ax+1有一个负根而且没有正根,那么a 的取值范围是( ). A .a >-1B .a =1C .a≥1D .非上述答案4.(2023春·江苏·七年级专题练习)已知关于x 的不等式组{3a −2x ≥02a +3x >0 恰有3个整数解,则a 的取值范围是( ) A .23≤a ≤32B .43≤a ≤32C .43<a <32D .43≤a <325.(2023春·江苏·七年级期末)关于x 的不等式组{a −x >32x +8>4a有解且每一个x 的值均不在−2≤x ≤6的范围中,则a 的取值范围是( ) A .a <1B .a ≤1C .1<a ≤5D .a ≥56.(2022春·山西运城·八年级统考期末)若不等式组{2x −a <1x −2b >3的解 为−3<x <1,则(a +1)(b −1)值为( ) A .−6B .7C .−8D .97.(2023春·四川资阳·七年级四川省安岳中学校考期中)若整数a 使关于x 的不等式组{x+13≤2x+59x−a2>x−a+13至少有1个整数解,且使关于x ,y 的方程组{ax +2y =−4x +y =4的解为正整数,那么所有满足条件的a 值之和为( )A .﹣17B .﹣16C .﹣14D .﹣128.(2022春·重庆渝北·八年级校联考阶段练习)如果关于x 的不等式组{x−43−x <−4x −m >0的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x ,y 均为整数),则不符合条件的整数m的有( ) A .-4B .2C .4D .109.(2023春·江苏·七年级专题练习)若关于x 的一元一次不等式组{−2x+3m4≥2x2x +7≤4(x +1)有解,且最多有3个整数解,且关于y 的方程3y −2=2m−3(8−y)2的解为非负整数,则符合条件的所有整数m 的和为( ) A .23B .26C .29D .3910.(2022春·重庆綦江·七年级统考期末)如果关于x 、y 的方程组{3x +2y =m +12x +y =m −1 中x >y ,且关于x 的不等式组{x−12<1+x35x +2≥x +m 有且只有4个整数解,则符合条件的所有整数m 的和为( ) A .8 B .9C .10D .11评卷人得 分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022春·江苏连云港·七年级统考期末)对非负实数x “四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n +12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x =_____. 12.(2023春·江苏·七年级专题练习)若不等式|x −2|+|x +3|+|x −1|≥a 对一切数x 都成立,则a 的取值范围是________.13.(2023春·全国·七年级专题练习)若6a =3b +12=2c ,且b ≥0,c ≤9,设t =2a +b −c ,则t 的取值范围为______.14.(2022春·重庆南川·八年级统考期中)某公司急需生产一批不超过10000套的工装服(一套工装服含领带、衬衣、裙子各一件)该公司计划将员工分为甲、乙、丙三个组,分别生产领带、衬衣、裙子,他们于某天零时同时开工,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零时甲完成任务,再几天后(不少于一天)的中午12时乙完成任务,再过几天(不少于一天)后的8时丙完成了任务,已知三个组每天完成的任务分别是500件,400件,300件,则该公司甲组完成任务工作了______天.15.(2023春·江苏·七年级专题练习)将长为4,宽为a (a 大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图①所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当n =3时,a 的值为 ___________.评卷人得 分三.解答题(本大题共9小题,满分55分)16.(4分)(2023春·全国·七年级专题练习)解下列不等式: (1)解不等式6x ﹣4>5(x ﹣1)+3; (2)解不等式1-0.1x+10.4>1-0.15x 0.5,并把不等式的解在数轴上表示出来.17.(8分)(2022秋·江西景德镇·七年级景德镇一中校考期中)根据要求解不等式或答题 (1){2x +5≤3(x +2)1−2x 3+15>0 ; (2)若关于x 的不等式组{2x <3(x −3)+13x+24>x +a有四个整数解,则a 的取值范围是? (3)mx +1>2x +n ; (4)2|x +1|−|x |>3|2−x |.18.(6分)(2022秋·全国·七年级专题练习)已知2x−13−1≥x −5−3x 2,求|x −1|−|x +3|的最大值和最小值.19.(6分)(2022·安徽·九年级专题练习)某商场计划拨款9万元从厂家购买50台电视机,已知该厂家生产三种不同型号的电视机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,商场销售一台甲种电视机可获利150元,销售乙种电视机每台可获利200元,销售丙种电视机每台可获利250元. (1)若同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案; (2)经市场调查这三种型号的电视机是最受欢迎的,且销售量乙种是丙种的3倍.商场要求成本不能超过计划拨款数额,利润不能少于8500元的前提,购进这三种型号的电视机共50台,请你设计这三种不同型号的电视机各进多少台?20.(6分)(2022春·湖北武汉·七年级校考阶段练习)如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果) (2)若k 使得方程组{3x +2y =k +14x +3y =k −1中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组{2x−63>x −3x+32≤x −a的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.21.(6分)(2022秋·浙江宁波·八年级校考期中)(1)阅读下面的材料并把解答过程补充完整. 问题:在关于x ,y 的二元一次方程组{x −y =2x +y =a中,x >1,y <0,求a 的取值范围.分析:在关于x 、y 的二元一次方程组中,用a 的代数式表示x ,y ,然后根据x >1,y <0列出关于a 的不等式组即可求得a 的取值范围.解:由{x −y =2x +y =a 解得{x =a+22y =a−22又因为x >1,y <0所以{a+22>1a−22<0解得a 的取值范围是 . 因为x +y =a ,所以a 的取值范围就是x +y 的取值范围. (2)请你按照上述方法,完成下列问题:①已知x ﹣y =4,且x >3,y <1,求x +y 的取值范围;①已知a ﹣b =m ,在关于x ,y 的二元一次方程组{2x −y =−1x +2y =5a −8中,x <0,y >0,请直接写出a +b 的取值范围.22.(6分)(2023春·江苏·七年级专题练习)我们把关于x 的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”. (1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由; ①{2x −4=05x −2<3;①{x−53=2−3−x 2x+32−1<3−x 4. (2)若关于x 的组合{5x +15=03x−a2>a 是“有缘组合”,求a 的取值范围;(3)若关于x 的组合{5a−x2−3=2x −3a x−a 2+1≤x +a是“无缘组合”;求a 的取值范围.23.(6分)(2022春·四川资阳·七年级校考期中)使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x−3=1与不等式x+3>0,当x=2时2x−3=2×2−3=1,x+3=2+3=5>0同时成立,则称“x=2”是方程2x−3=1与不等式x+3>0的“理想解”.(1)已知①x−12>32,①2(x+3)<4,①x−12<3,试判断方程2x+3=1的解是否为它与它们中某个不等式的“理想解”;(2)若{x=x0y=y0是方程x−2y=4与不等式{x>3y<1的“理想解”,求x0+2y0的取值范围;(3)当实数a、b、c满足a<b<c且a+b+c=0时,x=m恒为方程ax=c与不等式组{x−1≥t+s4x−4≤2t+s 的“理想解”,求t、s的取值范围.24.(7分)(2022春·江苏南通·七年级校考期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程x−1=3的解为x=4,而不等式组{x−1>1x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x−1=3是不等式组{x−1>1x−2<3的“相依方程”.(1)在方程①6(x+2)−(x+4)=23;①9x−3=0;①2x−3=0中,不等式组{2x−1>x+13(x−2)−x≤4的“相依方程”是________;(填序号)(2)若关于x的方程3x−k=6是不等式组{3x+12>xx−1 2≥2x+13−1的“相依方程”,求k的取值范围;(3)若关于x的方程x−3m2=−2是关于x的不等式组{x+1>mx−m≤2m+1的“相依方程”,且此时不等式组有5个整数解,试求m的取值范围.。
北师大版八年级下册数学 第二章 一元一次不等式与一元一次不等式组 同步课时练习题(含答案)
北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组同步课时练习题2.1不等关系01基础题知识点1不等式的意义1.(2017·太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是(A)A.两种客车总的载客量不少于500 人B.两种客车总的载客量不超过500 人C.两种客车总的载客量不足500人D.两种客车总的载客量恰好等于500人2.有下列数学表达式:①3<0;②4x+5>0;③x=3;④x+x;⑤x≠-4;⑥x+2>x+1.其中是不等式的有4 个.2知识点2列不等式3.某电梯标明“载客不超过13人”,若载客人数为x,x 为自然数,则“载客不超过13人”用不等式表示为(C)A.x<13 C.x≤13 B.x>13 D.x≥134.如图为一隧道入口处的指示标志牌,图1 表示汽车的高度不能超过3.5 m,由此可知图2 表示汽车的宽度l(m)应满足的关系为l≤3.限制高度限制宽度图1 图25.用适当符号表示下列关系:(1)x的绝对值是非负数;解:|x|≥0.15(2)a的3倍与b的的和不大于3;1解:3a+b≤3.5(3)x与17的和比它的5 倍小.解:x+17<5x.02中档题6.小新买了一罐八宝粥,看到外包装标明:净含量为330±10 g,那么这罐八宝粥的净含量x 的范围是(D)A.320<x<340 C.320<x≤340 B.320≤x<340 D.320≤x≤3407.下列叙述:①a是非负数,则a≥0;②“a减去10不大于2”可表示为a-10<2;③“x 的倒数超过10”可表2 21x示为>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是(C)A.1 C.3 B.2 D.48.在数轴上,点A 表示2,点B 表示-0.6,点C 在线段A B 上,点C 表示的数为a,则用不等关系表示为-0.6≤a≤2.9.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5 分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式为10n-5(20-n)>90.03 综合题10.请设计不同的实际背景来表示下列不等式:(1)x>y ;(2)2.0≤x ≤2.6;(3)3a +4b ≤560.解:答案不唯一,如:(1)八年级(1)班的男生比女生多,其中男生 x 人,女生 y 人.(2)某班级男生立定跳远成绩 x 在 2.0 米到 2.6 米之间.(3)3 条长裤和 4 件上衣的总价不超过 560 元,其中长裤单价 a 元,上衣单价 b 元.2.2 不等式的基本性质01 基础题知识点 1 不等式的基本性质1.若 a<b ,则下列各式中一定成立的是(B)A .-3a<-3b C .a +c>b +cB .a -3<b -3D .2a>2b2.(2017·成都期末)若 x>y ,则下列式子中错误的是(D)x y A .x -3>y -3 C .x +3>y +3B. > 3 3D .-3x>-3y 3.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A .a >bB .a +2>b +2D .2a >3bC .-a <-b 4.下列说法不一定成立的是(C)A .若 a >b ,则 a +c >b +cB .若 a +c >b +c ,则 a >bC .若 a >b ,则 ac >bc 2 2D .若 ac >bc 则 a >b2 2, 5.由不等式 a >b 得到 am <b m 的条件是 m <0.6.已知 m <n ,下列关于 m ,n 的命题:①6m >6n ;②-3m <-3n ;③m -5<n -5;④2m +5>2n +5.其中正确命 题的序号是③.7.小燕子竟然推导出了 0>5 的错误结论.请你仔细阅读她的推导过程,指出问题到底出在哪里.已知 x >y ,两边都乘 5,得 5x >5y .①两边都减去 5x ,得 0>5y -5x .②即 0>5(y -x).③两边都除以(y -x),得 0>5.④解:错在第④步.∵x >y ,∴y -x <0.不等式两边同时除以负数(y -x),不等号应改变方向才能成立.知识点 2 将不等式化为“x >a ”或“x <a ”的形式8.(2017·太原期中)下列不等式的变形过程中,正确的是(D)A .不等式-2x >4 的两边同时除以-2,得 x >2B .不等式 1-x >3 的两边同时减去 1,得 x >2C .不等式 4x -2<3-x 移项,得 4x +x <3-2x 3 x 2D .不等式 <1- 去分母,得 2x <6-3x 9.将下列不等式化成“x>a”或“x<a”的形式.(1)x -5<1; (2)2x>x -2;解:x<6. 解:x>-2.12(3)x>-3;(4)-5x<-2.2解:x>-6.解:x>.502中档题10.若点P(x-2,y-2)在第二象限,则x与y的关系正确的是(D)A.x≥y C.x≤y B.x>y D.x<y11.设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为(C)A.■●▲C.■▲●B.▲■●D.●▲■12.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-c C.ac>bc B.a+c<b+c a cD.<b b13.已知x-y=3,若y<1,则x的取值范围是x<4.14.下列变形是怎样得到的?1 21 2(1)由x>y,得x-3>y-3;1 21 2解:两边都除以2,得x>y.1 21 2两边都减去3,得x-3>y-3.1 21 2(2)由x>y,得(x-3)>(y-3);解:两边都减去3,得x-3>y-3.1 21 2两边都除以2,得(x-3)>(y-3).(3)由x>y,得2(3-x)<2(3-y).解:两边都除以-1,得-x<-y.两边都加上3,得3-x<3-y.两边都乘2,得2(3-x)<2(3-y).15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.。
不等式的性质与解集练习题5套(含答案)
不等式的解集与性质练习题5套(含答案)(1)一、选择题1.m 与5的和的一半是正数,用不等式表示( ) A.025>+m B.0)5(21≥+m C. 0)5(21>+m D. 0)5(21<+m 2.下列x 的值能使212->+x 成立的有( )-1,2,1,4,3,21--- A.1个 B.2个 C.3个 D.4个3.当x =1时,下列不等式成立的是( )A.75>+xB.452<+-xC.4213>+x D.56>x 4. (2008内蒙古赤峰市)用 ○a 、○b 、○c 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么○a 、○b 、○c 这三种物体按质量从大到小的顺序排列应为( )A .B .C .D . 5.由n m >到kn km >成立的条件为( )A.0>kB. 0<kC. 0≤kD. 0≥k6.在数轴上,到原点的距离小于3的点对应的x 值应满足( )A. 3<xB.33->>xC. 3≤xD. 3-≥x7.62+a 是负数,则a 的值应为( )A. 3->aB. 3-<aC. 0>aD.0<a8.不等式063≤-a 的整数解为( )A.2个B.3个C.4个D.5个9.若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )A.m <p <0B.m <pC.m <0,p <0D.p <m10.已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x>yB.a 2x>a 2yC.a -x<a -yD.x>-y二、填空题11. 判断下列各式①x +y ②3x >7 ③5=2x +3 ④x 2≥0 ⑤2x -3y =1 ⑥52是不等式的有 .12. 用适当符号表示下列关系.①a 的7倍与15的和比b 的3倍大;②a 是非正数; .13. 填上适当的不等号.①4x 2+1__________0 ②-x 2__________0③2x 2+2y +1__________x 2+2y ④a 2__________014.若b a <,用“>,<”填 a b c a b c a b c ab c①2a 2b ;②若0≠c ,则2a -c 2b -c;③c-2a c-2b ;15.三个连续奇数的和小于27,则有 组这样的正奇数.三、解答题16. 已知a >0,b <0,且a +b <0,试将a ,-b ,-|a |,-|b |用“<”号按从小到大的顺序连接起来.17.用不等式表示下列语句①m 的2倍不小于n 的31; ②x 的51与y 的和是非负数; 18.解不等式:142117->+x x 19. 通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约3 cm.这棵树至少生长多少年其树围才能超过2.4 m ?请你列出关系式.20. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m 以外的安全区域.已知导火线的燃烧速度为0.02 m/s ,人离开的速度为4 m/s ,导火线的长x (m)应满足怎样的关系式?请你列出.21.某次数学测验中,共有20道选择题.评分办法是:每答对1道题得5分,答错1道题扣1分,不答不给分.若某学生只有1道题没答,那么他至少要答对多少道题,成绩才不会低于80分.请根据题意列出正确的不等式(不求解)22.用甲、乙两种原料配制某种饮料,已知这两种原料的维生素C 含量分别为甲种600单位/千克,乙种100单位/千克..现要配制这种饮料10千克,要求至少含有4200单位的维生素C,请写出所需要甲种原料的质量x 千克应满足的不等式.答案:一、1.C,提示:m 与5的和可表示为5+m ,和的一半可表示为)5(21+m ,正数即大于0,所以应选择C ;2.C ,提示:把每个数代入不等式成立的有-1,,1,21故选C ;3.B ,提示:把x =1分别代到各不等式中去逐一验证成立的只有B ;4.A ;5.C,提示:由于从n m >到kn km >,不等号方向没变,并且两边同时扩大k 倍,所以根据不等式的性质2,两边同时乘以一个非负数,故选C ;6.B ,提示:到原点的距离小于3的点可以记作333<<-∴<x x ,故选B ;7.B ,提示:由题意得,,062<+a 根据不等式的性质得3-<a ;8.D ;9.C ;10.C;二、11. ②④;12.①7a +15>3b ;② a ≤0;13.①>,②≤,③>,④ ≥;14.①<;②<;③>;15.3提示:设这3个连续奇数分别为32,12,12++-k k k (k 为大于0的整数)由题意得4,27321212<<++++-k k k k ,又k 为大于0的整数,故k 为1或2或3所以有3组这样的正奇数,分别为1,3,5;3,5,7;5,7,9;三、16. -|b |<-|a |<a <-b17.①n m 312≥,②051≥+y x 18.解:将不等式两边都减去11+2x ,得255->x ,两边都除以5得,5->x19. 解:设这棵树至少要生长x 年其树围才能超过2.4 m.根据题意得,3x +5>2.4.20.解:41002.0>x . 21.解:设他至少要答对x 道题,根据题意列出正确的不等式80)19(5≥--x x .22.4200)10(100600≥-+x x .c a o b (2)一、选择题1,a 、b 两数在数轴上的位置如图所示,下列结论中,正确的是( )A .a<0,b>0B .a>0,b<0C .ab>0D .│a│>│b│2,设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”, “△”这样的物体,按质量由小到大的顺序排列为( )A .○□△B .○△□C .□○△D .△□○3,已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中,正确的是(• )A .cb<abB .ac>abC .cb>abD .c+b>a+b4,若a<0,b>0且│a│<│b│,则a-b=( )A .│a│-│b│B .│b│-│a│C .-│a│-│b│D .│a│+│b│5,若0<a<1,则下列四个不等式中正确的是( )A .a<1<1aB .a<1a <1C .1a <a<1D .1<1a<a 6,已知x>y ,且xy<0,│x│<│y│,a 为任意有理数,下列式子正确的是( )A .-x>-yB .a 2x>a 2yC .-x+a<-y+aD .x>-y二、填空题7,规定一种新的运算:a △b=a·b-a+b+1加3△4=3×4-3+4+1,•请比较(-3)•△5______5△(-3)(填“<”“=”“>”).8,若│a -3│=3-a ,则a 的取值范围是_________.9,有理数a 、b 在数轴上的位置如图所示,用不等式表示:①a+b_____0 ②│a│____│b│ ③ab_____ ④a-b____0.10,设a ,b ,c 为有理数,且满足用a ,b ,c 分别去乘不等式的两边,•会使不等号依次为不变方向,变成等号,改变方向,则a ,b ,c 的大小关系是______.11,不等式m-5<1的正整数解是_______.12,若3a-2b<0,化简│3a -2b-2│-│4-3a+2b│的结果是_______.三、解答题13,若方程(a+2)x=2的解为x=2想一想不等式(a+4)x>-3的解集是多少?•试判断-2,-1,0,1,2,3这6个数中哪些数是该不等式的解.14,已知2(1-x )<-3x ,化简│x+2│-│-4-2x│.15,已知关于x 的不等式2x-m>-3的解集如图所示求m 值.16,(2008新疆建议兵团)某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:种类单价(元) 成活率 甲60 88% 乙 80 96%(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?17,某童装加工企业今年五月份每个工人平均加工童装150套,•最不熟练的工人加工童装套数为平均套数的60%,为了提高工人的劳动积极性,•按时完成外商订货任务,企业计划从今年六月起进行工资改革,改革后每个工人的工资分两部分:•一部分为每人每月基本工资200元;另一部分为每加工一套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低标准450元,按五月份工人加工的童装套数的计算,工人每加工1•套童装企业至少应该奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元,•工人小张争取六月份工资不少于1200元.问小张六月份应至少加工多少套童装?答案一、1,B.解析:数轴上原点右边的数是正数,原点左边的数是负数,故选项B正确,而选项C中ab<0,故C错误,选项D中│a│<│b│故选项D错误.2,D.解析:由第一个图可知1个○的质量大于1个□的质量,由第二个图可知1个□的质量等于2个△的质量,因此1个□质量大于1个△质量,故选D.3,C.解析:由数轴可知c<b<0<a,当c<b两边同乘以a,则由不等式基本性质2,ca<ab;同理当c<a两边都乘以b则由不等式基本性质3,cb>ab则已经c<a,两边都加上1,•则由不等式基本性质1,c+b<a+b,因此四个选项只有C正确.4,C.解析:利用绝对值性质│a│=00a aaa a>⎧⎪=⎨⎪-<⎩,从而将四个选项中代数式化简看哪一个结果为a-b.5,A .正确:因为0<a<1,设a=12,1a=2,所以a<1<1a,另外由0<a<1中a<1•利用不等式基本性质2,两边都除以a得1<1a,∴a<1<1a,故答案选A.6,C.解析:x>y利用不等式基本性质3,两边都乘以-1得-x<-y则A错误,而-x<-y,利用不等式基本性质1,两边都加上a,得-x+a<-y+a,因此选项C正确,而A错误,另外由x>y,xy<0,则x>0,y<0又│x│<│y│可得x<-y,不是x>-y故D错误;又x>y•利用不等式基本性质2,两边都乘以a2(a≠0)可得a2x>a2y,而这里没有确定a是≠0的,故a2x>a2y•不一定成立,因此B错误.二、7,<.解析:依据新运算a△b=a·b-a+b+1计算-3△5,5△(-3)再比较结果大小.8,a≤3.解析:根据│a│=-a时a≤0,因此│a-3│=3-a,则a-3≤0,a≤3.9,①<②<③>④> 解析:由数轴上的数可知:a<0,b<0且│b│>│a│,因此a+b<0,ab>0,a-b>0.10,a>b>c.解析:由不等式基本性质②和③可知a>0,b=0,c<0,所以a>b>c11,1,2,3,4,5.解析:不等式m-5<1,利用不等式基本性质1,两边都加上5得m<6,其中正整数解1,2,3,4,512,-2.解析:由3a-2b<0则3a-2b-2<0故│3a-2b-2│=-(3a-2b-2),同理│4-3a+2b│=4-3a+2b,原式=-(3a-2b-2)-(4-3a+2b)=-3a+2b+2-4+3a-2b=-2.三、13,解:把x=2代入方程(a+2)x=2得2(a+2)=2,a+2=1,a=-1,然后把a=-1代入不等式(a+4)x>-3得3x>-3,把x=-2代入左边3x=-6,右边=-3,-6<-3,∴x=-2不是3x>-3的解;同理把x=-1,x=0,x=1,x=2,x=3分别代入不等式,可知x=0,x=1,x=2,x=3这4个数为不等式的解.14,解:2(1-x)<-3x,2-2x<-3x,根据不等式基本性质1,两边都加上3x,2+x<0,根据不等式基本性质1,两边都减去2,x<-2,∴x+2<0,-2x>4,∴-4-2x>0,∴│x+2│-│-4-2x│=-(x+2)-(-4-2x)=-x-2+4+2x=x+2.点拨:先利用不等式基本性质化简得x<-2,再根据代数式中要确定x+2,-4-2x•的正负性,从而将x<-2不等式利用不等式基本性质变形可得:x+2<0,-4-2x<0•最后化简得出结果.15,解:2x-m>-3,根据不等式基本性质1,两边都加上m,2x>m-3,根据不等式基本性质2,两边都除以2,x>32m -,又∵x>-2,∴32m -=-2,∴m=-1.点拨:解不等式x>32m -,再根据解集得32m -=-2,本题将一元一次方程和一元一次不等式有机地结合起来,同时还利用了数形结合的方法,从数轴上观察一元一次不等式的解集x>-2.16,解:(1)设最多可购买乙树苗x 棵,则购买甲树苗(600 x -)棵60(600)8044000x x -+≤400x ≤.答:最多可购买乙树苗400棵.(2)设购买树苗的费用为y则60(600)80y x x =-+2036000y x =+根据题意 0.88(600)0.960.9600x x -+⨯≥150x ≥∴当150x =时,y 取最小值.min 2015036000y =⨯+39000=.答:当购买乙树苗150棵时费用最低,最低费用为39000元.17,解:(1)设工人每加工1套童装企业至少要奖励x 元,依题意可得:200+150×60%·x≥450,解这个不等式得x≥2.78,所以工人每加工1套童装企业至少应奖励2.78元.(2)设小张在六月份加工x 套童装,依题意可得200+5x≥1200,解这个不等式得x≥200,所以小张在六月份应至少加工200套童装.(3)一、选择题1,下列不等式,不成立的是( )A .-2>-12B .5>3C .0>-2D .5>-1 2,a 与-x 2的和的一半是负数,用不等式表示为( )A .12a-x 2>0B .12a-x 2<0C .12(a-x 2)<0D .12(a-x 2)>0 3,用不等式表示如图所示的解集,其中正确的是( )A .x>-2B .x<-2C .x≥-2D .x≤-24,不等式的解集中,不包括-3的是( )A .x<-3B .x>-7C .x<-1D .x<05,已知a<-1,则下列不等式中,错误的是( )A .-3a>+3B .1-4a>4+1C .a+2>1D .2-a>36,(2008年广州市数学中考试题)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是()A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>二、填空题7,数学表达式中:①a 2≥0 ②5p-6q<0 ③x-6=1 ④7x+8y ⑤-1<0 ⑥x ≠3.不等式是________(填序号)8,若m>n ,则-3m____-3n ;3+13m____3+13n ;m-n_____0. 9,若a<b<0,则-a____-b ;│a│_____│b│;1a ____1b . 10,组成三角形的三根木棒中有两根木棒长为3cm 和10cm ,•则第三根棒长的取值范围是_______,若第三根木棒长为奇数,则第三根棒长是_______.11,在下列各数-2,-2.5,0,1,6中是不等式23x>1的解有______;•是-23x>1•的解有________. 12,x≥7的最小值为a ,x≤9的最大值为b ,则ab=______.三、解答题13,用不等式表示:①x 的2倍与5的差不大于1;②x 的13与x 的12的和是非负数; ③a 与3的和的30%不大于5;④a 的20%与a 的和不小于a 的3倍与3的差.14,说出下列不等式变形依据:①若x+2005>2007,则x>2;②若2x>-13,则x>-16; ③若-3x>2,则x<-23;④若-7x >-3,则x<21. 15,利用不等式的基本性质求下列不等式的解集,并在数轴上表示出来:①x+13<12;②6x-4≥2;③3x-8>1;④3x-8<4-x. 16,若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%•的售价打折出售,问售货员最低打几折出售此商品?设最低打x 折,用不等式表示题目中的不等关系.17,比较下列算式结果的大小(在横线上填“>”“<”“=”)42+32_____2×4×3; (-2)2+12_____2×(-2)×1; (164)2+(12)2______2×164×12; (-3)2+(-3)2______2×(-3)×(-3). 通过观察归纳,写出能反映规律的一般性结论.参考答案:一、1,A.解析:此题主要依据有理数的大小比较,正数大于所有负数,零大于所有负数,两个负数大小比较时,绝对值大的反而小,因此-2<-12故选项A 这个不等式是不成立的,所以答案为A . 2,C.解析:先表示a 与-x 2的和即是a-x 2,再表示和的一半即12(a-x 2),依题意12(a-x 2)负数,用不图3等式表示即为12(a-x 2)<0. 3,C.4,A.解析:可以把这些解集用数轴表示出来,通过观察可以确定-3不包括在x<-3中,所以选A . 5,C.解析:可以把这些不等式的解集求出,从而发现a+2>1的解集为a>-1,不是a<-1,故应该选C . 6,D二、7,①②⑤⑥.8,<、>、<.9,>、>、>.解析:由a<b<0,则a ,b 都为负数,设a=-3,b=-2,则1a =-13,1b =-12,所以1a >1b ,同理-a ,-b ,•及│a││b│大小都可以确定.10,7<第三根木棒<13;9,11.解析:根据三角形的边长关系定理,•三角形第三边大于两边之差而小于两边之和,可得第三边的取值范围.11,6,-2,-2.5.解析:分别把这些数代入不等式中看是否使不等式成立就可判断是否为不等式的解. 12,63.解析:x ≥7时x 的最小值就是7,而x≤9中x 的最大值就是x=9,故a=7,b=9,所以ab=63. 三、13,①2x-5≤1.②13x+12x≥0.③30100(a+3)≤5.④20100a+a≥3a -3.解:①不大于即“≤”.②非负数即正数和0也即大于等于0的数.③不小于即“≥”. 14,①若x+2005>2007,则x>2.变形依据:由不等式基本性质1,两边同减去2005;②若2x>-13,则x>-16.变形依据:由不等式基本性质2,两边都同除以2或(同乘以12);③若-3x>2则x<-23.变形依据:利用不等式基本性质3,两边都除以-3或(同乘以-13);④若-7x >-3则x<21.变形依据:利用不等式基本性质3,两边都除以-17或(同乘以-7). 15,①x+13<12.解:根据不等式基本性质1,两边都减去得:x+13-13<12-13即x<16.②6x-4≥2.解:根据不等式基本性质1,两边都加上4得:6x≥6.根据不等式基本性质2,两边都除以6得,x≥1.③3x-8>1.解:根据不等式基本性质1,两边都加上8得:3x>9.根据不等式基本性质2,两边都除以3得:x>3.④3x-8<4-x.解:根据不等式基本性质1,两边都加上8,得3x<12-x.根据不等式基本性质1,两边都加上x 得4x<12,根据不等式基本性质2,两边都除以4得:x<316,解:设最低打x 折,列不等式为:750×10x -500≥500×5100.解析:依据不等式关系售价-进价≥500×5100列不等式,不低于就是大于等于.17,解:> > > = a 2+b 2≥2ab .解析:前面那些具体算式左边都是a 2+b 2的形式;而右边对应都是2ab ,•因此由比较大小结果可发现规律性质的结论是a 2+b 2≥2ab .(4)一、选择题1.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个A 、2B 、3C 、4D 、52.下列不等关系中,正确的是( )A 、 a 不是负数表示为a >0;B 、x 不大于5可表示为x >5C 、x 与1的和是非负数可表示为x +1>0;D 、m 与4的差是负数可表示为m -4<03.若m <n ,则下列各式中正确的是( )A 、m -2>n -2B 、2m >2nC 、-2m >-2nD 、22n m > 4.下列说法错误的是( )A 、1不是x ≥2的解B 、0是x <1的一个解C 、不等式x +3>3的解是x >0D 、x =6是x -7<0的解集5.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x +3>2成立的数有( )个.A 、2B 、3C 、4D 、56.不等式x -2>3的解集是( )A 、x >2 B 、x >3 C 、x >5 D 、x <57.如果关于x 的不等式(a +1)x >a +1的解集为x <1,那么a 的取值范围是( )A 、a >0B 、a <0C 、a >-1D 、a <-18.已知关于x 的不等式x -a <1的解集为x <2,则a 的取值是( )A 、0B 、1C 、2D 、39.满足不等式x -1≤3的自然数是( )A 、1,2,3,4B 、0,1,2,3,4C 、0,1,2,3D 、无穷多个10.下列说法中:①若a >b ,则a -b >0;②若a >b ,则ac 2>bc 2;③若ac >bc ,则a >b ;④若ac 2>bc 2,则a >b .正确的有( )A 、1个B 、2个C 、3个D 、4个11.下列表达中正确的是( )A 、若x 2>x ,则x <0B 、若x 2>0,则x >0C 、若x <1则x 2<xD 、若x <0,则x 2>x12.如果不等式ax <b 的解集是x <ab ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0二、填空题1.不等式2x <5的解有________个.2.“a 的3倍与b 的差小于0”用不等式可表示为_______________.3.如果一个三角形的三条边长分别为5,7,x ,则x 的取值范围是______________.4.在-2<x ≤3中,整数解有__________________.5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x +3=0的解;_______是不等式x +3>0的解;___________________是不等式x +3>0.6.不等式6-x ≤0的解集是__________.7.用“<”或“>”填空:(1)若x >y ,则-2_____2y x -; (2)若x +2>y +2,则-x______-y ; (3)若a >b ,则1-a ________ 1-b ;(4)已知31x -5<31y -5,则x ___ y . 8.若∣m -3∣=3-m ,则m 的取值范围是__________.9.不等式2x -1>5的解集为________________.10.若6-5a >6-6b ,则a 与b 的大小关系是____________.11.若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.12.三个连续正整数的和不大于12,符合条件的正整数共有________组.13.如果a <-2,那么a 与a1的大小关系是___________. 14.由x >y ,得ax ≤ay ,则a ______0三、解答题1.根据下列的数量关系,列出不等式(1)x 与1的和是正数(2)y 的2倍与1的和大于3(3)x 的31与x 的2倍的和是非正数 (4)c 与4的和的30%不大于-2(5)x 除以2的商加上2,至多为5(6)a 与b 的和的平方不小于22.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x +3<3x (2)4-x ≥4 (3) 2x -4≥0 (4)-31x +2>53.已知有理数m 、n 的位置在数轴上如图所示,用不等号填空.(1)n -m ____0; (2)m +n _____0; (3)m -n ____0;(4)n +1 ____0; (5)mn ____0; (6)m -1____0.4.已知不等式5x -2<6x +1的最小正整数解是方程3x -23ax =6的解,求a 的值.5.试写出四个不等式,使它们的解集分别满足下列条件:(1) x =2是不等式的一个解;(2) -2,-1,0都是不等式的解;(3) 不等式的正整数解只有1,2,3;(4) 不等式的整数解只有-2,-1,0,1.6.已知两个正整数的和与积相等,求这两个正整数.解:不妨设这两个正整数为a 、b ,且a ≤b ,由题意得:ab =a +b ①则ab =a +b ≤b +b =2b ,∴a ≤2∵a 为正整数,∴a =1或2.(1) 当a =1时,代入①式得1·b =1+b 不存在(2) 当a =2时,代入①式得2·b =2+b ,∴b =2.因此,这两个正整数为2和2.仔细阅读以上材料,根据阅读材料的启示,思考:是否存在三个正整数,它们的和与积相等?试说明你的理由.7.根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A -B >0,则A >B ;若A -B =0,则A =B ;若A -B <0,则A <B ,这种比较大小的方法称为“作差比较法”,试比较2x 2-2x 与x 2-2x 的大小.(5)1.(黑龙江校级月考)下列式子:①1x <y +5;②1>-2;③3m -1≤4;④a +2≠a -2中,不等式有(C ) A .2个 B .3个 C .4个 D .1个2.“数x 不小于2”是指(B )A .x ≤2B .x ≥2C .x <2D .x >23.(陕西校级期末)若m 是非负数,则用不等式表示正确的是(D )A .m <0B .m >0C .m ≤0D .m ≥04.2016年2月1日武汉市最高气温是8 ℃,最低气温是-2 ℃,则当天武汉市气温变化范围t(℃)是(D )A .t >8B .t <2C .-2<t <8D .-2≤t ≤85.用适当的符号表示下列关系:(1)a -b 是负数:a -b <0;(2)a 比5大:a >5;(3)x 是非负数:x ≥0;(4)m 不大于-3:m ≤-3.6.“b 的12与c 的和是负数”用不等式表示为12b +c<0. 7.下列说法中,错误的是(C )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个8.用不等式表示如图所示的解集,其中正确的是(C )A .x>-2B .x<-2C .x ≥-2D .x ≤-29.以下所给的数值中,是不等式-2x +3<0的解的是(D )A .-2B .-1C .32D .210.(长春中考改编)不等式x <-2的解集在数轴上表示为(D )11.在下列各数:-2,-2.5,0,1,6中,不等式23x>1的解有6;不等式-23x>1的解有-2,-2.5. 12.把下列不等式的解集在数轴上表示出来.(1)x ≥-3;(2)x >-1;(3)x ≤3;(4)x<-32. 解:(1)(2)(3)(4) 13.不等式的解集x<3与x ≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.解:x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈;而x ≤3的解集是小于且等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数,把它们表示在数轴上为:14.x 与3的和的一半是负数,用不等式表示为(C )A .12x +3>0 B .12x +3<0 C .12(x +3)<0 D .12(x +3)>015.(桂林中考)下列数值中不是不等式5x ≥2x +9的解的是(D )A .5B .4C .3D .216.(潍坊中考)对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是(C ) A .40 B .45 C .51 D .5617.某饮料瓶上有这样的字样:Eatable Date 18 months .如果用x(单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为x ≤18.18.用不等式表示:(1)a 与5的和是非负数;解:a +5≥0.(2)a 与2的差是负数;解:a -2<0.(3)b 的10倍不大于27.解:10b ≤27.19.下列数值中哪些是不等式3x -1≥5的解?哪些不是?100,98,51,12,2,0,-1,-3,-5.解:100,98,51,12,2是不等式3x -1≥5的解;0,-1,-3,-5不是不等式3x -1≥5的解.20.直接写出下列各不等式的解集:(1)x +1>0;解:x >-1.(2)3x <6.解:x <2.21.由于小于6的每一个数都是不等式12x -1<6的解,所以这个不等式的解集是x <6.这种说法对不对? 解:这种说法是错的.22.学校要购买2 000元的图书,包括名著和辞典,名著每套65元,辞典每本40元,现已购买名著20套,问最多还能买几本辞典?(列式即可)解:设还能买x 本辞典,得20×65+40x ≤2 000.综合题23.阅读下列材料,并完成填空.你能比较2 0152 016和2 0162 015的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n (n ≥1,且n 为整数)的大小.然后从分析n=1,n =2,n =3…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出n n +1和(n +1)n 的大小关系;(3)根据以上结论,可以得出2 0162 017和2 0172 016的大小关系.解:(2)当n =1或2时,n n +1<(n +1)n ;当n ≥3时,n n +1>(n +1)n .(3)2 0162 017>2 0172 016.。
2.3二次函数与一元二次方程不等式(第2课时)(导学案)(原卷版)
2.3 二次函数与一元二次方程不等式(第2课时)导学案一、学习目标1.熟练掌握分式不等式的解法;2.理解一元二次方程、二次函数、一元二次不等式之间的关系;3.构建一元二次函数模型,解决实际问题.二、重点难点重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用.三、导入新知同学们,数学是和生活联系非常紧密的学科,我们学习数学,也是为了解决生活中的问题,比如:“水立方”是2008年北京奥运会标志性建筑之一,在2022年成功改造成冬奥会历史上体量最大的冰壶场馆“冰立方”.如图为水立方平面设计图,已知水立方地下部分为钢筋混凝土结构,该结构是大小相同的左、右两个矩形框架,两框架面积之和为18 000 m2,现地上部分要建在矩形ABCD 上,已知两框架与矩形ABCD之间空白的宽度为10 m,两框架之间的中缝空白宽度为5 m,请问作为设计师的你,应怎样设计矩形ABCD,才能使水立方占地面积最小?要解决这个问题,还得需要我们刚学习过的基本不等式哦,让我们开始今天的探究之旅吧!四、应用新知利用一元二次不等式可以解决一些实际问题,下面看两个例子.例4 一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间有如下的关系:2202200y x x =-+.若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?【变式】某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式.(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?例5 某种汽车在水泥路面上的刹车距离s (单位:m )和汽车刹车前的车速v (单位:km/h )之间有如下关系:21120180s v v =+. 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的车速至少为多少(精确到1 km/h )?距离)s m和汽车刹车前的车速x km/h有如下关系:s=-2x+118x2.在一次交通事故中,测得这种车的刹车距离不小于22.5 m,那么这辆汽车刹车前的车速至少为多少?五、能力提升题型一:简单方式不等式的解法【练习1】解下列不等式:(1)x+1x-3≥0;(2)5x+1x+1<3.【练习2】已知关于x的不等式x2+ax+b<0的解集为{x|1<x<2},求关于x的不等式bx2+ax+1>0的解集.题型三:一元二次不等式的实际应用【练习3】某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调整后,不少于原计划税收的83.2%,试确定x 的取值范围.题型四:一元二次不等式恒成立问题【练习4】(1). 如果方程20ax bx c ++=的两根为2-和3且0a <,那么不等式20ax bx c ++>的解集为____________.(2).已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤B .01k <≤C .k 0<或1k >D .0k ≤或1k >跟踪练习:已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤B .01k <≤C .k 0<或1k >D .0k ≤或1k >六、课堂总结1.知识清单:(1)简单的分式不等式的解法.(2)二次函数与一元二次方程、不等式间的关系及应用.(3)一元二次不等式的实际应用.2.方法归纳:转化法、恒等变形法.3.常见误区:(1)解分式不等式要等价变形.(2)利用一元二次不等式解决实际问题时,应注意实际意义.(2)利用一元二次不等式解决实际问题时,应注意实际意义.七、作业设计(1)整理本节课的题型;(2)课本P54的练习1~3题;(3)课本P55的习题2.3的5~6题.附教材P54练习练习(第54页)1.x 是什么实数时,212x x +-有意义?2.如图,在长为8 m ,宽为6 m 的矩形底面的四周种植花卉,中间种植草坪.如果要求花卉带的宽度相同,且草坪的面积不超过总面积的一般,那么花卉带的宽应为多少米?3.某网店销售一批新款削笔器,每个削笔器的最低售价为15元.若按最低售价销售,每天能卖出30个;若一个削笔器的售价每提高1元,日销售量将减少2个.为了使这批削笔器每天获得400元以上的销售收入,应怎样制定这批削笔器的销售价格?习题2.3复习巩固6. 求下列不等式的解集:(1)21340x ->; (2)()()370x x --<;(3)23100x x -->; (4)23540x x -+->.7. x 是什么实数时,下列各式有意义?(1 (2.综合运用8. 已知{}244150M x x x =-->,{}2560B x x x =-->,求M N ⋂,M N ⋃.9. 一名同学以初速度012m/s v =竖直上抛一排球,排球能够在抛出点2m 以上的位置最多停留多长时间(精确到0.01s )?若不计空气阻力,则竖直上抛的物体距离抛出点的高度h 与时间t 满足关系满足关系2012h v t gt =-,其中210m/s g ≈.10. 已知集合2160A x x =-<,2430B x x x =-+>,求A B .拓广探索11. 如图,据气象部门预报,在距离某码头南偏东45°方向600km 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响.据以上预报估计,从码头现在起多长时间后,该码头将受到热带风暴的影响,影响时间大约为多长(精确到0.1h )?。
高中数学 第二章 等式与不等式 2.2 不等式 2.2.2 不等式的解集精品练习(含解析)新人教B版
2.2.2 不等式的解集必备知识基础练进阶训练第一层知识点一解一元一次不等式(组)1.不等式组⎩⎪⎨⎪⎧2x +1≤3,-x -2>0的解集是( )A .{x |x <-2}B .{x |-2<x ≤1}C .{x |x ≤-2}D .{x |x ≥-2}2.已知不等式组⎩⎪⎨⎪⎧x -2<0,x +1≥0,其解集在数轴上表示正确的是( )3.x 取哪些整数值时,不等式5x +2>3(x -1)与12x -1≤7-32x 都成立?知识点二解绝对值不等式4.不等式|4-x |≥1的解集为( ) A .[3,5]B .(-∞,3]∪[5,+∞)C .[-4,4]D .R5.不等式1<|x +1|<3的解集为( ) A .(0,2)B .(-2,0)∪(2,4)C .(-4,0)D .(-4,-2)∪(0,2)6.关于x 的不等式|x |+|x -1|≥3的解集是( ) A .(-∞,-1] B .[2,+∞)C .(-∞,-1]∪[2,+∞)D .[-1,2]7.不等式|x +1|-|x -3|≥0的解集是________.8.设数轴上点A 与数3对应,点B 与数x 对应,已知线段AB 的中点到原点的距离不大于5,则x 的取值X 围为________.关键能力综合练进阶训练第二层一、选择题1.不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18的解集为( )A .(-∞,-12) B.⎝ ⎛⎦⎥⎤-125,72C.⎝ ⎛⎦⎥⎤-125,12D.⎝ ⎛⎦⎥⎤-12,12 2.不等式组⎩⎪⎨⎪⎧1-2x <3,x +12≤2的正整数解的个数是( )A .5B .4C .3D .23.不等式3≤|5-2x |<9的解集为( ) A .(-∞,-2)∪(7,+∞) B .[1,4]C .[-2,1]∪[4,7]D .(-2,1]∪[4,7)4.|2x +1|-|x -4|>2的解集是( )学科素养升级练进阶训练第三层1.(多选)已知关于x 的不等式组⎩⎪⎨⎪⎧x >2a -3,2x ≥3x -2+5仅有三个整数解,则a 的可能取值为( )A.12B.23C.34D .1 2.不等式|x -1|+|x +2|≥a 恒成立,则a 的取值X 围为________. 3.(学科素养—运算能力)若|x +1|+2|x -a |的最小值为5,某某数a 的值.2.2.2 不等式的解集必备知识基础练1.解析:⎩⎪⎨⎪⎧2x +1≤3,①-x -2>0,②解①,得x ≤1,解②,得x <-2,∴不等式组的解集为{x |x <-2},故选A. 答案:A 2.答案:D3.解析:解不等式组⎩⎪⎨⎪⎧5x +2>3x -1,①12x -1≤7-32x .②将①式去括号,得5x +2>3x -3.移项、合并同类项,得2x >-5.系数化为1,得x >-52.将②式移项,合并同类项,得2x ≤8.系数化为1, 得x ≤4.所以不等式组的解集为⎝ ⎛⎦⎥⎤-52,4, 所以x 可取的整数值是-2,-1,0,1,2,3,4.4.解析:|4-x |≥1⇒x -4≥1或x -4≤-1,即x ≥5或x ≤3.所以所求不等式的解集为(-∞,3]∪[5,+∞).故选B.答案:B5.解析:由1<|x +1|<3,得1<x +1<3或-3<x +1<-1,所以0<x <2或-4<x <-2.所以所求不等式的解集为(-4,-2)∪(0,2).答案:D6.解析:x ≥1时,x +x -1≥3,解得x ≥2, 0<x <1时,x +1-x ≥3,不成立,x ≤0时,-x +1-x ≥3,解得x ≤-1,综上,不等式的解集是(-∞,-1]∪[2,+∞), 故选C. 答案:C7.解析:解法一 不等式等价转化为|x +1|≥|x -3|,两边平方,得(x +1)2≥(x -3)2,解得x ≥1,故所求不等式的解集为[1,+∞).解法二 不等式等价转化为|x +1|≥|x -3|,根据绝对值的几何意义可得数轴上点x 到点-1的距离大于等于到点3的距离,到两点距离相等时x =1,故所求不等式的解集为[1,+∞).答案:[1,+∞)8.解析:因为AB 的中点对应的数为3+x 2,所以由题意可知⎪⎪⎪⎪⎪⎪3+x 2≤5,即|3+x |≤10,因此-10≤3+x ≤10,所以-13≤x ≤7,因此x 的取值X 围是[-13,7].答案:[-13,7]关键能力综合练1.解析:不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18可化为⎩⎪⎨⎪⎧2x +15>3-3x ,①8x -8≤6x -1.②解不等式①,得x >-125.解不等式②,得x ≤72.所以原不等式组的解集为⎝ ⎛⎦⎥⎤-125,72.故选B.答案:B2.解析:解不等式1-2x <3,得x >-1, 解不等式x +12≤2,得x ≤3,则不等式组的解集为(-1,3],所以不等式组的正整数解有1,2,3这3个, 故选C. 答案:C3.解析:不等式等价于⎩⎪⎨⎪⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得-2<x ≤1或4≤x <7.所以原不等式的解集为(-2,1]∪[4,7).故选D. 答案:D4.解析:∵当x <-12时,|2x +1|-|x -4|>2⇔-5-x >2,解得x <-7,∴x <-7;当-12≤x ≤4时,|2x +1|-|x -4|>2⇔3x -3>2,解得x >53,∴53<x ≤4; 当x >4时,|2x +1|-|x -4|>2⇔x +5>2, 解得x >-3, ∴x >4.综上所述,不等式|2x +1|-|x -4|>2的解集是(-∞,-7)∪⎝ ⎛⎭⎪⎫53,+∞. 故选B. 答案:B5.解析:不等式整理,得⎩⎪⎨⎪⎧x >1,x >m +1,由不等式组的解集为x >1,得到m +1≤1,解得m ≤0.故选D.答案:D6.解析:由|x -a |<1,得a -1<x <a +1.由|x -b |>2,得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2,即a -b ≥3或a -b ≤-3,∴|a -b |≥3.故选D.答案:D7.解析:原不等式可转化为-1≤|x -2|-1≤1,故0≤|x -2|≤2,解得0≤x ≤4,故所求不等式的解集为[0,4].答案:[0,4]8.解析:∵关于x 的不等式|ax -2|<3的解集为⎝ ⎛⎭⎪⎫-53,13,∴-53和13是|ax -2|=3的两个根且a ≠0,∴将|ax -2|=3,两边平方得a 2x 2-4ax -5=0,即⎩⎪⎨⎪⎧-53+13=4a ,⎝ ⎛⎭⎪⎫-53×13=-5a 2,得a =-3. 答案:-39.解析:原不等式等价于-2<ax +b <2.①当a >0时,解得-2+b a<x <2-ba,与1<x <5比较,得⎩⎪⎨⎪⎧-2+b a=1,2-b a =5解得⎩⎪⎨⎪⎧a =1,b =-3.②当a <0时,解得2-b a <x <-2+ba , 与1<x <5比较,得⎩⎪⎨⎪⎧2-ba =1,-2+ba =5,解得⎩⎪⎨⎪⎧a =-1,b =3.所以点(a ,b )的坐标为(1,-3)或(-1,3). 答案:(1,-3) (-1,3)10.解析:(1)⎩⎪⎨⎪⎧x -1≤2-2x ,①2x 3>x -12,②解不等式①得x ≤1, 解不等式②得x >-3,所以不等式组的解集为(-3,1]. (2)x ≥12时,2x -1<x ,解得12≤x <1,x <12时,1-2x <x ,解得13<x <12,∴不等式的解集是⎝ ⎛⎭⎪⎫13,1.(3)原不等式可化为⎩⎪⎨⎪⎧x ≥32,2x -3+x -1≥5或⎩⎪⎨⎪⎧1<x <32,3-2x +x -1≥5或⎩⎪⎨⎪⎧x ≤1,3-2x +1-x ≥5,解得x ≤-13或x ≥3.故不等式的解集为⎝⎛⎦⎥⎤-∞,-13∪[3,+∞). 学科素养升级练1.解析:由x >2a -3和2x ≥3(x -2)+5, 解得2a -3<x ≤1, 由关于x 的不等式组⎩⎪⎨⎪⎧x >2a -3,2x ≥3x -2+5仅有三个整数解,解得-2≤2a -3<-1, 解得12≤a <1,故选ABC.答案:ABC2.解析:由于|x -1|+|x +2|表示数轴上的x 对应点到1和-2对应点的距离之和, 故距离最小值为3.所以a ≤3. 答案:(-∞,3] 3.解析:当a ≤-1时,|x +1|+2|x -a |=⎩⎪⎨⎪⎧-3x +2a -1x ≤a ,x -2a -1a <x ≤-1,3x -2a +1x >-1,所以(|x +1|+2|x -a |)min =-a -1, 所以-a -1=5,所以a =-6.当a >-1时,|x +1|+2|x -a |=⎩⎪⎨⎪⎧-3x +2a -1x ≤-1,-x +2a +1-1<x ≤a ,3x -2a +1x >a ,所以(|x +1|+2|x -a |)min =a +1, 所以a +1=5,所以a =4. 综上可知,a =-6或a =4.。
《不等式的解集》习题含解析北师大八年级下数学
《不等式的解集》习题一、选择题1.下列数值中不是不等式5x≥2x+9的解的是()A.5B.4C.3D.22.如果关于+1的解集为<0 B.m<﹣1C.m>1 D.m>﹣1 3.下列说法错误的是()A.2x<﹣8的解集是x<﹣4B.x<5的正整数解有无穷个C.﹣15是2x<﹣8的解D.x>﹣3的非负整数解有无穷个4.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2B.x>2 C.x>﹣1 D.﹣1<x≤25.不等式3x﹣1>x+1的解集在数轴上表示为()A.B.C.D.6.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.7.关于>2的解集为x>1,则m的值为()A.0B.1 C.2 D.3二、填空题8.不等式x2≥0的解集是.9.一个关于x的不等式的解集为一切实数,这个不等式可以是.10.关于x的不等式﹣2x+a≤2的解集如图所示,则a的值是.11.某不等式的解集如图,则这个解集用不等式表示为.三、解答题12.下列各数中,是不等式x+1<4解的数有哪些?哪些不是不等式的解?8、7、5.5、4、2、1、0、2.5、﹣6.13.解不等式:﹣x>1,并把解集在数轴上表示出来.14.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)15.请用不等式表示如图的解集.参考答案一、选择题1.答案:D解析:【解答】移项得,5x﹣2x≥9合并同类项得,3x≥9系数化为1得,x≥3所以,不是不等式的解集的是x=2.故选:D.【分析】根据一元一次不等式的解法,移项、合并,系数化为1求出不等式的解集,再确定答案.2.答案:B解析:【解答】∵不等式(m+1)x>m+1的解集为<﹣1故选:B.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的取值范围.3.答案:B解析:【解答】A、两边同时除以2,即可得到,故原说法正确;B、x<5的正整数解有1,2,3,4共有4个,故原说法错误;C、解2x<﹣8得:x<﹣4,﹣15是不等式的解,故原说法正确;D、原说法正确.故选B.【分析】利用等式的性质,以及不等式的解集.4.答案:A解析:【解答】由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.【分析】根据在数轴上表示不等式组解集的方法进行解答.5.答案:C解析:【解答】由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选:C.【分析】首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.6.答案:C解析:【解答】x﹣1<0解得:x<1,故选:C.【分析】解不等式x﹣1<0得:x<1,即可解答.7.答案:B解析:【解答】解不等式,根据题意得:2﹣m=1,解得:m=1.故选B.【分析】首先解关于x的不等式,然后根据不等式的解集是的方程,从而求解.二、填空题8.答案:一切实数.解析:【解答】x2≥0,x是任意实数.【分析】根据解不等式的方法,可得答案.9.x2+1>0.解析:【解答】∵一个关于x的不等式的解集为一切实数,∴这个不等式可以是x2+1>0.【分析】根据不等式的解集的定义,任意写出一个不等式符合提出的条件即可.10.答案:0.解析:【解答】∵﹣2x+a≤2∴22ax-≥∵x≥﹣1∴22a-=﹣1解得:a=0.【分析】先用a表示出x的取值范围,再根据数轴上x的取值范围求出a的值即可.11.答案:x≤3解析:【解答】根据图示知,该不等式的解集是:x≤3;【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题12.答案:8、7、5.5、4不是不等式的解.解析:【解答】∵x+1<4,∴x<3.∴2、1、0、2.5、﹣6是不等式的解.8、7、5.5、4不是不等式的解.【分析】利用不等式的基本性质,将不等式左边的常数项1改变符号以后移到右边,再合并同类项,解出x的解集,即可求解.13.答案:x<﹣1.解析:【解答】不等式﹣x>1,解得:x<﹣1,【分析】不等式x系数化为1,求出解集,表示在数轴上.14.答案:见解答过程.解析:【解答】5x﹣2>3x+3,2x>5,∴52x>.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.15.答案:见解答过程.解析:【解答】(1)由数轴表示的不等式的解集,得x<﹣1;(2)由数轴表示的不等式的解集,得x≥1;(3)由数轴表示的不等式的解集,得x≤﹣1;(4)由数轴表示的不等式的解集,得x>3.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,可得答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3不等式的解集
1.【2020·株洲】下列哪个数是不等式2(x-1)+3<0的一个解?( )
A.-3 B.-1
2
C.
1
3
D.2
2. 下列说法中错误的是( C )
A.不等式x<2的正整数解只有一个
B.-2是不等式2x-1<0的一个解
C.不等式-3x>9的解集是x>-3
D.不等式x<5的整数解有无数个
3. (2020·广东模拟)用不等式表示图中的解集,其中正确的是( )
A.x≥-2 B.x≤-2
C.x<-2 D.x>-2
4. [2019海南模拟]在下列所表示的不等式的解集中,不包括-5的是 ( )
A.x≤-4
B.x≥-5
C.x≤-6
D.x≥-7
5.不等式ax>a的解集为x<1,则a的取值范围是( )
A.a>0 B.a≥0 C.a<0 D.a≤0
6. 给出下列四个结论,其中正确的是 ( )
①x=4是不等式x-3>0的解集;②x>4是不等式x-3>0的解集;③x=3是不等式x+3≥6的解;④x≥3是不等式x-3≥0的解集.
A.①②
B.②③
C.③④
D.①③④
7 [2020吉林长春期中]解集是x≥5的不等式是 ( )
A.x+5≥0
B.x-5≥0
C.-x-5≤0
D.5x-2≤-9
8.若(m-1)x>m-1的解集是x<1,则m的取值范围是( )
A.m>1 B.m≤-1 C.m<1 D.m≥1
9.函数y=x+2中,自变量x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
10. 【2020·苏州】不等式2x-1≤3的解集在数轴上表示正确的是( )
11 [2020北京顺义区模拟]若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是( )
12 [2020山东菏泽二模]若x=3是关于x的不等式2x-a-2<0的一个解,则a可取的最小正整数为( )
A.2
B.3
C.4
D.5
13.若关于x的不等式(a-5)x>2a-10的解集是x<2,则a的取值范围是 ( )
A.a<5
B.a>5
C.a<0
D.a>0
14.如图所示是不等式2x-a>0的解集,则下列结论正确的是( )
A.a>6 B.a=3
C.a=6 D.a>3
15. 下列四种说法:①x=5
4
是不等式4x-5>0的解;②x=
5
2
是不等式4x-5>0的一个解;③x>
5
4
是
不等式4x-5>0的解集;④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
16 不等式2x-1≥0是最小整数解是.
17.不等式x-6≤0的解有____________个,解集为________.
18.已知x=1是关于x的不等式ax+3<2x的一个解,则a的取值范围是.
19.若关于x的不等式3m-2x<5的解集是x>3,则实数m的值为_______________.
20.若关于x的方程3x-(2a-3)=4x+(3a+6)的解是负数,求a的取值范围_________
21 .“x<2中的每一个数都是不等式x+2<5的解,所以不等式x+2<5的解集是x<2.”这句话是否正确?请你判断,并说明理由.
22 .已知关于x的不等式x<a的正整数解为1,2,3,求a的取值范围.
23.若关于x的方程(m+2)x=2的解为x=2.
(1)求m的值;
(2)判断-2,-1,0,1,2,3这6个数中,哪些数是不等式(m+4)x>-3的解,并把不等式的
解集在数轴上表示出来.
24.关于x的两个不等式:①x<a+2;
②2x-2<0.
(1)若两个不等式的解集相同,求a的值;
(2)若不等式①的解都是②的解,求a的取值范围.
25.阅读理解:我们把称为二阶行列式,规定它的运算法则为=ad-bc,如
=2×5-3×4=-2.如果有>0,求x
已知x>0,符号[x]表示大于或等于x的最小正整数,如:[0.3]=1,[3.2]=4,[5]=5,⋯.
(1)[]= ;[6.01]= ;若[x]=3,则x的取值范围是;
(2)某市的出租车收费标准如下:2 km以内(包括2 km)收费6元,超过2 km的,每1 km加收1.2元(不足1 km的按1 km计算).用x(km)表示所行驶的路程,y(元)表示行驶x km应付的车费,则乘车费可按如下的公式计算:
当0<x≤2时,y=6;当x>2时,y=6+1.2×[x-2].
某乘客乘车后付费21.6元,求所行驶的路程x(km)的取值范围.。