家用电脑ATX电源拆解图详解维修
菜鸟教你维修长城ATX
菜鸟教你维修长城ATX同事的长城电源,型号是:ATX-3000,故障原因是短接绿黑两根线不启动,拆开后发现保险管烧了,以为后面的整流管跟功率管肯定也不能幸免了,结果测试是好的。
然后目测看到有一个7脚IC炸飞了,连型号都看不清楚了,百度搜这个型号的电源,得知这个IC的型号为:P1014AP06,功能好像是辅助电源管理芯片。
去附近的电子店问了一下这个IC,居然要5块钱一个,果断不要,到淘宝花了4块多包邮买了5个回来。
买回来后我并没有急着换上去,首先检查一下IC旁边的元件是否有损坏,一般来说,IC是不会无故炸了的,肯定是附近的电路出现短路才会炸IC。
测量后也没有发现有坏的元件,但是有一个电容被炸得连型号都看不到了,为了安全起见,我直接更换了这块电容。
然后在保险处接了一个100W的灯泡后通电试机,刚接上电的时候,灯泡闪一下就黑了,没有常亮,说明没有短路了。
没启动电源之前,测量绿色5V 待机启动线,结果只有3.5V,偏低了点,短接后能正常启动,测量各组电压也都正常,现在接到电脑上测量,一切正常使用。
淘宝4块多包邮买的,坑爹的实体店要收我5块钱一个,靠!炸飞了的IC,要拆了两颗大电容,功率管跟散热片才好拆IC。
IC旁边的这颗电容,为了安全起见,一起换了。
这个电源使用的是339+7500方案的。
拆大电容的时候,不小心把旁边的电阻弄断了一个脚,找不到同型号的,只能这样接上去了。
测试没问题后,装上保险管,没有找到小一点的,从其它坏电源上拆了一个过来,只能这样装了。
测量绿线只有3.5V。
紫色线有5V。
测试没问题后,装好电源。
吐槽一下,电源进线跟风扇线,没有接头真的很不方便。
烧坏的元件。
转载于数码之家,如有侵权请联系删除!。
ATX开关电源原理图、维修讲解
一、概述ATX开关电源的主要功能是向计算器系统提供所需的直流电源。
一般计算器电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和内部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V (0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存的电荷,从而避免电击。
2、高压尖峰吸收电路如图5所示,D18、R004和C01组成高压尖峰吸收电路。
当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。
ATX电脑电源维修实例与经验分享
ATX电脑电源维修实例与经验分享ATX电源板一块如何维修ATX电源的先要清理一下第一步看先看看板子上有哪些值得怀疑的地方红圈处这是我怀疑的地方下图是200V330U电容旁边的两个100K电阻大家都看得清楚吧一个(没有阻值了)一个算正常了我的万能表是老东西了不是很准自己用自己懂就行了怀孕电容不用说了还剩30.2U拆下 3.3V肖特基整流这个没问题短路红圈处(220V扼流圈插头)还有别忘了灯泡大法以前的帖子介绍过:上电 100W灯泡闪一下正常测量紫色线看看是否有5V电压显示5.1V 说明辅助电源正常这样就可以启动电源了方法大家都知道吧绿色线和任意一根黑色线短接方法如下然后测量看看12V端是否有电压有了12.57V到了这里并不能代表全部正常这回是听了我听到有细细的自激声唧唧唧唧.....这样要是接上负载试机的话电源肯定保护所以我就再找问题开关电源有示波器的话就很好修先测TL494 5脚正常再测494出来的两个三极管一边干扰很大一边算正常我找到一个704胶覆盖下的一个电阻(经过修这么多电源704胶覆盖下或者沾到的电阻用久了很容易出现问题)就先测一下这个电阻图片有点模糊我就不重拍了挑起电阻的其中一个脚测量竟然是无穷大没有阻值完全拆出来再测量一次电阻是3.3K的现在没阻值了没找到3.3K的用4.7K的换上试机两边都正常了····我用个灯泡来做负载 24V 120W (大货车灯泡)接到12V 正常因为我是用4.7K代换了3.3K 所以大家修的时候要两边一起换这个电阻只是一个下拉的偏置电阻电阻值两边对称就可以了偏差一些没关系不要偏差太大就行了电源启动的时候风扇转一下就停就是起保护了我见过的故障一般有几种1)电容怀孕2)整流肖特基短路3)辅助电源功率下降4)就是这里说的推动部分的问题推动部分有二极管软失效电容失效电阻失效三极管失效5)还没碰到的故障。
碰到了再说电源通电启动都没反应1)保险丝烧(这个高压部分肯定有问题了)功率管烧功率管附近的小零件也要测过或者是辅助电源这边烧功率管还有旁路的零件都要检查2)保险丝没烧这个一般是辅助电源有问题先检查有没有+5V 和正+19V(+19这是给494和推动管用的电源)我说的这个+19V不是准确的根据不同的电源有高有低一般+15------+19为正常要是辅助电源没问题就可以检查494和推动部分了···保险丝不烧的情况一般主高压部分是没问题要是有问题也就是辅助电源的高压部分要是都没检查出494问题也没示波器可以短路494第4脚要是短路4脚就有电压了接上负载也能正常工作那就是339这边的问题了 339电路问题很少见我就不说了要是短路有电压带负载就保护那问题还是在494这边。
ATX电源维修(2)
ATX电源维修(2)ATX技术的采用,电源为主板上提供了3.3V电压,同以前使用+5V电压相比,降低了从电源电压转换到CPU所需的各种电压时的损耗,另外,现代主板上也普遍采用了开关电源技术,进一步降低了损耗,回忆老主板上的电压转换,是采用线性稳压电源降压的,线性稳压电源是一种低价低性能的电源供给方式,只能提供约2.5A的额定电流,通常情况下,功率管是处于超额工作的状态,因而会产生巨大的热量,其上散热片的温度有时高达114℃,同时,消耗在调整管上的功率也实在可观,一块PII233,其标称功率为34.8W,内核电压为2.8V,最大工作电流为11.8A,消耗在调整管上的功率就有(5-2.8)*11.8=26W之多,而采用开关电源,则可以大幅度提高效率,降低这部分无谓的损耗。
与线性稳压电源相比,开关电源的温度也降了很多,手触到开关管上基本感觉不到温升。
如果我们用钳式电流表测出微机的输入电流,根据公式:功率=电流*电压,可以计算出整台微机的实际功率。
经过实测,一台带MODEN卡、网卡、声卡、光驱、硬盘的PⅡ多媒体主机,其输入电流为0.51A,即功率=0.51*220,从而证明其实际功率不足110W。
这还只是电源的输入功率,考虑上开关电源70%的的转换效率,除电源以外的整机的实际耗散功率只有80W左右。
按照惯例,我们需要为整机保留一定的余量,将此值乘以170% ,一是为了满足日后添加新设备之需;二是因为在计算机启动时需要的功率比平时要大一些。
因此,对于普通用户,200W的电源绰绰有余了。
实际上,真正世界级的著名厂商,它们所追求的并不是一味地提高电源的功率,而是想方设法降低整机的功耗,像Compaq公司的个人电脑,满额功率也就大约120W,它的电源的功率平时保持在150W左右。
在选购电源时,没有必要刻意追求电源功率的大小,关键是要看电源的性能和质量,只要是质量合格,通过了安全和电磁方面认证的电源都可以满足多数用户的需要。
电脑ATX电源电路故障检修精要
电脑ATX电源电路故障检修精要一、概述电脑硬件更新换代快,而主机电源更新较慢,十几年的发展,就是由AT结构变化为ATX电源。
它一旦损坏,由于各种原因的影响,用户一般用新的更换,其实,只要我们熟练掌握它的电路结构,工作原理及维修技巧,修复ATX电源很有必要。
二、电路结构三、工作原理1.整流输出的+300V分别通过两个脉冲变压器加到主电源、辅助电源的功率管集电极,辅助电源开始工作,输出(1)+12V供电TL494;(2)+5VSB、PS-ON到20脚排插。
2.TL49412脚得到+12V,开始工作,它的131415输出+5V,但它被④脚死区控制。
当PS-ON 端为低电平时,④脚电压跳变,解除控制,从⑧、11输出推挽波形,推动小功率对管工作,通过变压器耦合,使主电源功率对管工作,由主脉冲变压器另一端后续电路输出各型电压。
3.TL494输出的+5V,供电LM339③脚,它由四个比较器构成,一般两个用来完成启动控制,一个用来形成power-good信号,一个用来空载检测。
四、维修技巧1.TL494注意:12脚Vcc端有的为20V,甚至高达40V。
2.LM339(如图3)②脚通过二极管(IN4148)等控制TL494④脚;⑥脚通过电阻等联接20针排插PS-ON端;还可以分别测各比较器的输入(+,-)和输出端电压值,判断其逻辑功能是否正常。
3.易损部件:(1)保险、电解电容、开关管、整流桥堆;(2)与开关管联接的启动电阻、限流电阻;(3)开关管附近的快恢复二极管、IN4148和稳压管、小功率三极管;(4)TL494、LM339。
4.常见配件型号:(1)主电源的功率对管为E13007、C4242、C4161;(2)辅助电源管为C5027、C3866,有的为N型场效应管;(3)集成块有两片,一片为TL494,有的型号尽管不含494字样,但功能相同,另一片为LM339,有的用LM393(8脚),但周围一定有多个小功率三极管。
金河田劲霸ATX-S350电源拆解详图
金河田劲霸ATX-S350电源拆解详图金河田劲霸ATX-S350电源是金河田7606机箱的配机电源,不单独零售,属金河田传奇系列,额定输出功率250W,最大输出功率320W。
下图是该电源标牌上的各项参数:1、电源拆开全图:2、电源主要元件位置图:3、金河田电源电路结构图:4、一级EMI电路图:这个电源的一级EMI电路是不完整的,只有一个0.47U电容,直接接在220V交流电源上。
5、二级EMI电路和被动PFC电路。
6、完整的二级EMI电路示意图:ATX-S350的EMI电路缺少L1和C2,所以是不完整的。
寻修网/提示:EMI滤波器主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰的作用。
7、PFC电路示意图:PFC电路称为功率因素校正电路,功率因素越高,电能利用率就越大,寻修网/说明:目前PFC电路有两种方式:无源PFC(也称作被动式PFC)和有源PFC(主动式PFC)。
无源PFC:通过一个笨重的工频电感来补尝交流输入的基波电流与电压的相位差,强逼电流与电压相位一致。
无源PFC效率较低,一般只有65%—70%,且所用工频电感又大又笨重,但由于其成本低,许多ATX电源都采用这种方式(参见上图)。
有源PFC:有源PFC由电子元器件组成,体积小重量轻,通过专通的IC去调整电流波形的相位,效率大大提高,电路的功率因素能够达到95%以上。
采用有源PFC的电源通常输入端只有一只高压滤波电容,同时由于有源PFC本身可作辅助电源,因而可省去待机电源,而且采用有源PFC的电源输出电压纹波极小。
由于有源PFC成本较高,所以通常只有在额定400W 以上的电源才能见到。
8、高压全桥整流和滤波电路:220V交流电经过第一、二级EMI滤波后变成较纯净的50Hz交流电,经全桥整流和滤波后输出300V的直流电压。
300V直流电压同时加到主开关管、主开关变压器、待机电源(也叫副电源)开关管、待机电源开关变压器。
ATX电源工作原理以及检修详解
ATX电源工作原理以及检修详解ATX电源作用是把交流220V的电源转换为计算机内部使用的直流5V,12V,24V的电源。
检修ATX开关电源,从+5VSB、PS-ON 和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。
那么店铺将分类讨论ATX电源的工作原理及检修方法。
一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。
+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。
PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。
当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。
PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX 插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。
脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB 外,不输出其它电压。
其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。
上述操作亦可作为选购ATX开关电源脱机通电验证的方法。
二、控制电路的工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
电脑ATX电源工作原理及检修
电脑ATX电源工作原理及检修(附带图纸)ATX电源工作原理及检修检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。
一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON 控制信号的组合来实现电源的开启和关闭。
+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。
PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、、各不相同。
当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。
PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。
脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。
其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+、±5V、±12V有输出,开关电源风扇旋转。
上述操作亦可作为选购ATX开关电源脱机通电验证的方法。
二、控制电路的工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
atx微机开关电源维修教程1
1).打开电源盒,发现两个最大的电解电容有一个顶部发生爆浆现象,也就是示意电路图中的C1或者C2损坏一个,将这两个电容一起同时更换成相同规格的电容(耐压200V以上容量越大越好),故障排除。
故障的原因是C1或C2任意损坏一个,主功率开关变压器就不能形成交流电流,所以就不能供电了。
2).打开电源盒,发现内部电路板外观良好,没有明显的损坏痕迹,没有电容发泡现象。
测量两个主功率开关三极管都正常,带电测量C1和C2上都有160V左右电压,正常。
顺着向下检查时发现电容C3发生虚焊的现象,重焊后电源修复。
C3是厚片状涤纶电容在外力的作用下容易发生晃动的现象而产生虚焊,估计是在生产的时候就已经轻微虚焊加上焊脚的锡量不足,后来能自己表现出虚焊来也就不足为怪了。
3).打开电源盒,发现内部电路板外观良好,没有明显的损坏痕迹,没有电容发泡现象,但仔细观察主功率开关三极管,发现有一只象有轻微裂痕。
经过测量,发现损坏,用两只MJE13007或两只BU508A(508A容易购得,彩电电源上用的电源管)将原来的两只主功率开关三极对管更换,根据经验故障应该排除,但将Pin14和15短接仍然是没有+5和+12V供电,不能正常工作。
限于手头的工具只有万用表没有示波器等高级工具,维修只得动脑筋认真分析电路了。
我手头上没有相关的资料,只有对照电路板进行绘制主电路图了,绘制的电路图就是上面的示意图了,后来网上下载的有ATX电路图但都没有这个我自己绘制的电路示意图简单明了好用,所以在这特地再用电脑绘制下来供大家使用。
现在+5VSB有,各个电容都正常,主功率开关三极管已经正常,看来故障应该是主功率开关三极管的基极没有驱动信号或者是驱动激励不足。
加电并短接Pin14和15实验没有什么动静,断电后摸主功率开关三极管的散热片还是常温,所以排除基极激励不足的可能性。
确定下来故障的原因是基极没有驱动信号。
可是目测主功率开关三极管的外围电路完全正常,主工作IC TL494有没有送出驱动主功率开关三极管的激励信号呢?给电源板正常通上电并短接Pin14和15使电源处于正常工作状态,使用万用表的DB交流档,将两表针跨接在如图所示的推动变压器的冷端推动的AB两端上,测量竟然有将近10V≈的交流信号。
ATX电源拆解
交流电感(双向滤波器)4角硅钢片,E型,蜂鸣档测量通断。
共模电感(两个线圈绕个一骨架上。
匝数相同)
旁通电容CY
跨接电路电容器CX
COM接头
PDF(功率因数修正)有源主动式、无源被动式(电感补偿方式提高功率因数)
注:电感+硅钢片
全桥整流二极管(交流正弦电压整流为正向电压)四个二极管封装
AC间不通,AC同+间580左右正向导通AC同–间无穷大为反向截止,AC到+极,-极到AC(应用二极管原理测量)
高压滤波电容2K档测量250W 470微法300W 680微法
隔离平衡电阻与地形成回路,释放大电容储存电荷
J表示短接线
电感必须同负载串联,电容必须同负载并联
贴片电阻用20K档测量。
电脑ATX开关电源工作原理及维修技巧
电脑AT*开关电源工作原理与维修技巧一、原理分析1.待机电源待机电源又称辅助电源,电路见附图。
自激振荡局部由Q03,T3,C14,D04,2R21,2R22,2R4等元件组成;稳压局部由IC5〔电压基准源〕,IC1〔光祸〕,Q4(PWM)等元件组成;保护和尖峰吸收局部由Q4,2823、2R10,C02及2R5、C05A,D06等元件组成。
可见待机电源的构成与局部彩电开关电源〔带光祸的〕根本一致,详细工作过程也大致一样。
T3次级,一路由DOIA和C09整流滤波输出十22V,为驱动电路T2初级和IC2 (TIA94 )⑩脚提供工作电压。
一路由DOf、C03、IA, C05整流滤波输出+5VSB (Stand By),由一根紫色导线经AT*插头送到主板上“电源监控部件〞电路,为该电路提供待机电压。
别对待机电源构造简单,在微机系统中却占据着重要地位,一方面它给主控PWM 电路和担任多种信号处理的四比拟器供电,保障AT*开关电源自行运转;另一方面,它又像永不熄灭的“火种〞,向主机提供待机电压。
2.主开关电源(1〕主控PWM型集成电路TL494简介TLA94部由振荡器、“死区〞比拟器、PWM比拟器、两个误差放大器1和2、触发器、逻辑门、三极管Q1,Q2,基准电压调节器以及由两个滞回比拟(器施密特触发器〕组成的欠压封锁电路等局部组成。
其中⑤脚、⑥脚外接定时电容和定时电阻;由触发器和逻辑门构成的逻辑电路由⑩脚控制输出方式,在电脑AT*开关电源中(13)脚接5V基准电压,使部三极管QI,Q2工作在推挽输出方式;基准电压调节器将待机电源经(12)脚提供的22V工作电压转换为5V基准电压,由(14)脚输出。
(2)脉宽调制与驱动电路得到主机启动指令后IC2(TL494)立刻由待机状态转人工作状态,⑧脚、⑧脚输出相位差为1800的PWM信号,使17初级一侧的Q1,Q2轮流导通或截止,并经T2次级L3 ,LA绕组的藕合,驱动QO1,Q02也为轮流导通或截止,共处于“双管推挽〞工作方式。
ATX2.31电源知识拆解介绍
ATX2.31电源知识拆解介绍电脑性能已经进入了一个飞速发展时代,从早期的奔腾133和K7/K8平台到如今的酷睿i7和速龙64平台,性能提升了数倍之多,同时电脑对于功率的要求也逐步提升,电源也就随着电脑平台的更新换代逐步演变,从早期的ATX1.3、ATX2.0演变到如今最新的ATX2.31版本。
电源是电脑上不可或缺的配件揭开电源神秘面纱看的清楚明白电脑电源的重要性,现在虽然大多数用户以及有所了解,不过要检测一个电源的真实性能,最可靠的办法就是通过专门的示波器和负载仪测试它的稳定性和负载能力,这个显然是普通消费者无法做到的。
而通过实际测试平台模拟真实使用环境,不断增加平台负载测试电源的真实性能也不并不是很容易就能做到的,毕竟大家家里用的平台谁也舍不得拿来做实验吧。
电脑电源的各个组成部分图解所以借此机会通过也些简单易懂的图文为大家揭示电脑电源的简单工作原理以及购买时的注意事项,借此让您可以简单的判断一款电源的真实性能。
电源简单工作原理电脑电源其实只是一个电能转换器而已,它没有独立产生电能的作用,它只是把来自外界的高压交流电帮我们转换为电脑可以使用的低压直流电。
“电源”也只是我们习惯上对它的称谓而已,这里大家需要有个必要的了解。
高压滤波部分其基本原理就是通过一个变压器将高压交流电转换为低压交流电,然后通过一个二极管“全桥”或者是“拓扑式半桥”将低压交流电转换为脉冲直流电(由于二极管具有单向导电的特点,所以交流电的“负周期”被完全截止,从而变成直流电),然后通过一组滤波电容将脉冲直流电转换为普通的恒流直流电(电容在脉冲的上升段被充电,在下降段放电,从而将脉冲“摸平”)。
开关电路部分由于市电的频率只有50Hz用来转换的变压器元件体积较大,工作效率低、而且发热量也很高,所以在对体积、发热量以及工作效率有苛刻要求的电脑电源中采用并不合适。
既然变压器在50Hz下的工作效率不高,能否将频率提高呢?这就是电脑电源设计的中心思想:提高工作频率来减少变压器的体积和重量。
ATX电脑开关电源维修图解
一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块超酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块发烧级的声卡更能带领我们进入那美妙的音乐殿堂,一个强劲而稳定工作的电脑电源,则是我们的计算机能出色工作的必要保证。
计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
首先,我们要知道计算机开关电源的工作原理。
电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。
图1图2图3此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。
接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。
其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。
在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。
通过对多台电源的维修,总结出了对付电源常见故障的方法。
图4一、在断电情况下,“望、闻、问、切”由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。
因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。
首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。
电脑ATX电源电路原理分析与维修教程整理
ATX电源电路结构较复杂,各局部电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当那么电路不能正常工作。
下面以市面上使用较多的银河、世纪之星ATX电源为例,讲述ATX电源的工作原理、使用与维修。
其主电路整机原理图见图13-10,从图中可以看出,整个电路可以分成两大局部:一局部为从电源输入到开关变压器T3之前的电路(包括辅助电源的原边电路),该局部电路和交流220V电压直接相连,触及会受到电击,称为高压侧电路;另一局部为开关变压器T3以后的电路,不和交流220V直接相连,称为低压侧电路。
二者通过C2、C3高压瓷片电容构成回路,以消除静电干扰。
其原理方框图见图13-1,从图中可以看出整机电路由交流输入回路与整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制及推动电路、PS-ON控制电路、自动稳压与保护控制电路、多路直流稳压输出电路和PW-OK信号形成电路组成。
弄清各局部电路的工作原理及相互关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成局部的工作原理。
主机电源方框原理图1、交流输入、整流、滤波与开关电源电路交流输入回路包括输入保护电路和抗干扰电路等。
输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指电脑电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡高次谐波进入电网对其它设备及显示器的干扰和对电脑本身的干扰。
通常要求电脑对通过电网进入的干扰信号抑制能力要强,通过电网对其它电脑等设备的干扰要小。
推挽开关电路由Q1、Q2、C7及T3,组成推挽电路。
推挽开关电路是ATX开关电源的主要局部,它把直流电压变换成高频交流电压,并且起着将输出局部与输入电网隔离的作用。
推挽开关管是该局部电路的核心元件,受脉宽调制电路输送的信号作鼓励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作他激工作方式。
ATX电源电路原理分析与维修教程整理
ATX电源结构简介ATX电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。
下面以市面上使用较多的银河、世纪之星ATX电源为例,讲述ATX电源的工作原理、使用与维修。
其主电路整机原理图见图13-10,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入到开关变压器T3之前的电路(包括辅助电源的原边电路),该部分电路和交流220V电压直接相连,触及会受到电击,称为高压侧电路;另一部分为开关变压器T3以后的电路,不和交流220V直接相连,称为低压侧电路。
二者通过C2、C3高压瓷片电容构成回路,以消除静电干扰。
其原理方框图见图13-1,从图中可以看出整机电路由交流输入回路与整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制及推动电路、PS-ON控制电路、自动稳压与保护控制电路、多路直流稳压输出电路和PW-OK信号形成电路组成。
弄清各部分电路的工作原理及相互关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成部分的工作原理。
图13-1主机电源方框原理图1、交流输入、整流、滤波与开关电源电路交流输入回路包括输入保护电路和抗干扰电路等。
输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指电脑电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡高次谐波进入电网对其它设备及显示器的干扰和对电脑本身的干扰。
通常要求电脑对通过电网进入的干扰信号抑制能力要强,通过电网对其它电脑等设备的干扰要小。
推挽开关电路由Q1、Q2、C7及T3,组成推挽电路。
推挽开关电路是ATX开关电源的主要部分,它把直流电压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。
推挽开关管是该部分电路的核心元件,受脉宽调制电路输送的信号作激励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作他激工作方式。
ATX电源维修与结构原理
第二节 他激半桥式开关电源电路原理分析
3)PS-ON高电平 待机状态,ATX主板启闭控制电路的电子开关断开,IC1的14脚5V基准电压,
经 R61、R62、IC10精密稳压调节器WL431控制端R、阳极A至直流地,组成PSON控制信号的直流分压电路,PS-ON信号为高电平(3.6V)。
停止提供+3.3V、±5V、±12V直流电源 PS-ON信号控制IC1的4脚死区电位,ICl0控制端R与阴极K之间的控制信号呈反相调节特
2.计算机开关电源的基本结构 目前,计算机电源大多采用他激双管半桥定频调宽式开关电源。电源中 还输出一个特殊的“POWER GOOD”信号。电源开启后PG信号为低电平,送给 系统时钟电路,由该信号产生一个复位信号(RESET)用于系统复位。经100~ 500ms的延时后,PG信号由低电平变成高电平,系统复位结束,主机启动并开 始正常运行。PG信号作用就是当电源输出的直流电压均稳定后,才使系统初 始化复位,以保证计算机系统状态的稳定与可靠。由此可见,当电源正常时, PG信号也正常,系统能够正常启动,否则系统无法进入启动状态。 他激式脉宽调制ATX开关电源电路主要由交流输入整流滤波电路、辅助电源电 路、TL494脉宽调制电路、半桥式功率变换电路、PS-ON和PW-OK产生电路、自 动稳压与保护控制电路、多路直流稳压输出电路等组成。他激式开关稳压电 源原理结构框图如图12-1所示。
性,待机时PS-ON为高电平,UR高电位,UK电位下降,VT7导通。5V基准电压由VT7的 e、 c极,经R100、R101加至VT20的b极。VT20导通,c极接地,经VD51钳位,将IC5的3脚输 入电位拉至低电平,使PW-OK变为零电平。另一路经R80、VD25、C50、C40送人IC1的4 脚,当4脚电位超过3V时,封锁8、11脚的调制脉宽输出。T2推动变压器原边绕组VT3、 VT4推动管,由于导通,T2付方无感应电压。VT1、VT2开关管截止,T1开关变压器无输 出,停止提供+3.3V、±5V、±12V直流电源输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整机的功能大家一般只在乎CPU,主板,内存,硬盘,在意电源的不太多,但是随着配件的功耗越来越大,电源供应器扮演的角色就更重要了,下面的文章就要掀起电源供应器的神秘面纱,了解内部的组件种类及功能。
常见的计算机用电源供应器的功能是将输入的交流市电(AC110V/220V),经过隔离型交换式降压电路转换出各装置所需的各种低压直流电:3.3V、5V、12V、-12V及提供计算机关闭时待命用的5V St andby(5VSB)。
所以电源供应器内部同时具备了耐高压、大功率的组件以及处理低电压及控制信号的小功率组件。
电源转换流程为交流输入→EMI滤波电路→整流电路→功率因子修正电路(主动或是被动PFC)→功率级一次侧(高压侧)开关电路转换成脉流→主要变压器→功率级二次侧(低压侧)整流电路→电压调整电路(例如磁性放大电路或是DC-DC转换电路)→滤波(平滑输出涟波,由电感及电容组成)电路→电源管理电路监控输出。
方块图如下图所示:以下从交流输入端EMI滤波电路常见的组件开始介绍。
交流电输入插座:此为交流电从外部输入电源供应器的第一道关卡,为了阻隔来自电力在线干扰,以及避免电源供应器运作所产生的交换噪声经电力线往外散布干扰**用电装置,都会于交流输入端安装一至二阶的EMI(电磁干扰)Filter(滤波器),其功能就是一个低通滤波器,将交流电中所含高频的噪声旁路或是导向接地线,只让6 0Hz左右的波型通过。
上面照片中,中央为一体式EMI滤波器电源插座,滤波电路整个包于铁壳中,能更有效避免噪声外泄;右方的则是以小片电路板制作EMI滤波电路,通常使用于无足够深度安装一体式EMI滤波器的电源供应器,少了铁皮外壳多少会有噪声泄漏情形;而左边的插座上只加上Cx与Cy电容(稍后会介绍),使用这类设计的电源,其EMI滤波电路通常需要做在主电路板上,若是主电路板上的EMI电路区空空如也,就代表该区组件被省略掉了。
目前使用12公分风扇的电源供应器内部空间都不太能塞下一体式EMI滤波器,所以大多采用照片左右两边的做法。
X电容(Cx,又称为跨接线路滤波电容):这是EMI滤波电路组成中,用来跨接火线(L)与中性线(N)间的电容,用途是消除来自电力线的低通常态噪声。
外观如照片所示为方型,上方会打上X或X2字样。
Y电容(Cy,又称为线路旁通电容器):Y电容为跨接于浮接地(FG)和火线(L)/中性线(N)之间,用来消除高通常态及共态噪声。
而计算机用电源供应器中的FG点与金属外壳、地线(E)及输出端0V/GND共接,所以未连接接地线时,会经由两颗串联的Cy电容分压出输入电源一半的电位差(Vin/2),人体碰触到后就有可能产生感电现象。
Y电容的外观如照片,呈圆饼状。
共态扼流圈(交连电感):共模态扼流圈在滤波电路中为串联在火线(L)与中性线(N)上,用来消除电力在线低通共态以及射频噪声。
有些电源的输入端线路,会有缠绕在磁芯上的设计,也可以当作是简单的共态扼流圈。
其外观有环形与类似变压器的方形,部分可以见到外露的线圈。
PS:所谓共态噪声,代表是L/N线对于地线E间的噪声,而常态噪声,则是L与N线之间的噪声,E MI滤波器功能主要是消除及阻挡这两类噪声。
在EMI滤波电路之后的是瞬时保护电路及整流电路,常见的组件如下。
保险丝:保险丝就是当其流过其上的电流值超出额定限度时,会以熔断的方式来保护连接于后端电路,一般使用于电源供应器中的保险丝为快熔型,比较好的会使用防爆式保险丝,其与一般保险丝最大的差别是外管为米色陶瓷管,内填充防火材质避免熔断时产生火花。
其安装于电路板上的方式有如图片上方的固定式(两端直接套上导线座并焊于电路板上)以及图片中央的可拆卸式(使用金属夹片固定)。
下方的方形组件是温度保险丝,这类保险丝固定于大功率水泥电阻或是功率组件的散热片上,主要是用于超温保护,避免组件过热而损坏或发生火灾,这类保险丝也有与电流保险丝结合的版本,对电流及温度进行双重保护。
负温度系数电阻(NTC):因为电源供应器接通电源瞬间,其内的高压端电解电容属于无电状态,充电瞬间将产生过大电流突波以及线路压降,可能使桥式整流器等组件超出其额定电流而烧坏。
NTC使用时串联于L或N线路上,启动时其内部阻抗值可以限制充电瞬间的电流值,而负温度系数的定义是其电阻会随其温度上升而降低,所以随着电流流过本体使温度逐渐升高后,其阻值会随着降低,避免造成不必要功率消耗。
但其缺点是电源处于热机状态下启动时,其保护效果会打上折扣,且即使阻抗可随温度降低,仍会消耗些许功率,所以目前高效率电源大多采用更进阶的瞬时保护电路。
其外观大多为黑色及墨绿色的圆饼状元件。
金氧变阻器(MOV):变阻器跨接于保险丝后端的火线与地线间,其动作原理为当其两端电压差低于其额定电压值时,本体呈现高阻抗;当电压差超出其额定值,本体电阻会急速下降,L-N间呈现近似短路状态,前端的保险丝因短路而升高的电流将会使其熔断,以保护后端电路,有时本体承受功率过大时,亦以自毁方式来警告用户该装置已经出现问题。
通常用于电源供应器交流输入端,当输入交流发生过电压时能及时让保险丝熔断,避免使内部组件损坏。
其颜色与外观与Cy电容很接近,不过可以从组件上面的字样及型号来分别其不同。
桥式整流器:内部由四颗二极管交互连接所构成的桥式整流器,其功用是将输入交流进行全波整流后,供后端交换电路使用。
其外观与大小会随着组件额定电压及电流的不同而有所差异,部分电源供应器会将其固定于散热片上,协助其散热,以利稳定的长时间运作。
经过整流后,便进入功率级一次侧的交换电路,这里的组件决定了电源供应器的各路最大输出能力,是电源供应器相当重要的一部份。
开关晶体管:在交换电路中作为无接点快速电子开关,依控制信号导通及截止,决定电流是否流过,于主动功率因子修正电路以及功率级一次侧电路扮演重要角色。
随着开关组件的电路组成方式,可构成双晶顺向式、半桥式、全桥式、推挽式等等不同的功率级拓墣,在讲求高效率的电源供应器内,也有使用开关晶体构成同步整流电路以及DC-DC降压电路的应用。
照片中上方为电源内常见的N MOSFET(N型金氧半导体场效晶体管),下方则是NPN BJT(NPN型双接面晶体管)。
变压器:为何称为隔离型交换式降压电源供应器,就是因为使用变压器作为高低电压分隔,并利用磁能进行能量交换,不仅可以避免高低压电路故障时的漏电危险,也能简单产生多种电压输出。
因其运作频率较高,变压器体积较一般交流变压器要来得小。
因为变压器为功率传递路径之一,目前大输出电源供应器有使用多变压器的设计,避免单一变压器发生饱和现象而限制功率的输出。
照片中上方较小的变压器为辅助电源电路以及信号传递用的脉冲变压器,下方较大者为主要功率变压器以及环形的二次侧调整用变压器。
以变压器作为隔离分界,二次侧的输出电压已经比一次侧要低上许多,不过还需要经过整流、调整以及滤波平滑等电路,才会变成计算机零件所需的各电压直流电。
二极管:电源供应器内部,随着各部电路要求及输出大小而使用不同种类以及规格,除了一般的硅二极管外,还有肖特基障壁二极管(SBD)、快速回复二极管(FRD)、齐纳二极管(ZD)等种类。
FRD主要用于主动功率因子修正以及功率级一次侧电路;SBD用于功率级二次侧,将变压器输出进行整流;ZD则是作为电压参考用。
图片中为二极管常见的封装形式。
电感器:电感器随着磁芯结构、感抗值、电路上安装位置的不同,可以作为交换电路中的储能组件、磁性放大电路的电压调整组件以及二次侧整流后输出滤波使用,于电源供应器中广泛使用。
图片中电感形状有环形及圆柱型,随着感值及电流承受力而有不同的圈数以及漆包线粗细。
电容器:如电感器般,电容器同样也作为储能组件以及涟波平滑使用。
为了承受整流后的高压直流,高耐压电解电容用于电源供应器一次侧电路;为了降低输出下电解电容连续充放电时造成的损失,二次侧电路则大量使用高耐温长寿低阻抗电解电容。
因电容内有化学物质(电解液)的关系,工作温度对电解电容的寿命有相当影响,所以长时间下运作,除了维持电源供应器的良好散热外,其使用的电解电容厂牌及系列也决定电源供应器稳定运作的可靠度及寿命。
图片中下方较大者为用于一次侧的高耐压电解电容,上方较低耐压则使用于二次侧及外围控制电路。
电阻器:电阻器用于限制电路上流过的电流,并于电源供应器关闭后释放电容器内所储存的电荷,避免产生电击事故。
图片中左方为大功率水泥电阻,可承受较大功率超额,右方则为一般常见的电阻,其上的色码标示出其阻值及误差。
上述组件构成的电路若是没有搭配控制电路的话,是无法发挥其功能的,而各路输出也需要随时监视管理,当发生任何异常时就要立即切断输出,以保护计算机零组件的安全。
各种控制IC:电源供应器内的控制IC,依其安装位置及用途来分,有作为PFC电路用、功率级一次侧PWM电路用、PFC/PWM整合控制用、辅助电源电路用整合组件、电源监控管理IC等等。
PFC电路用:作为主动功率因子修正电路控制,使电源供应器可维持一定的功率因子,并减少高次谐波产生。
功率级一次侧PWM电路用:作为功率级一次侧开关晶体驱动用PWM(脉宽调变)信号产生,随着电源输出状态对其任务周期(Duty Cycle)的控制。
一般常见的有UC3842/3843系列等PWM控制IC。
PFC/PWM整合控制用:将上述两种控制器结合于单一IC中,可使电路更为简化,组件数目减少,缩小体积外也降低故障率。
例如常见的CM680X系列,就是PFC/PWM整合控制IC。
辅助电源电路用整合组件:因为电源关闭后,辅助电源电路仍需持续输出,所以必须自成一独立系统,因其输出瓦数不需太高,所以使用业界小功率整合组件作为其核心,例如PI的TOPSwitch系列。
电源监控管理IC:进行各路输出的UVP(低电压保护)、OVP(过电压保护)、OCP(过电流保护)、SCP(短路保护)、OTP(过温度保护)监视及保护,当超出其设定值后,便会关闭并锁定控制电路,停止电源供应器输出,待故障排除后才可重新启动。
除了上述组件外,**还有厂商视需要自行加上的IC,例如风扇控制IC等等。
光耦合器:光耦合器主要是用于高压电路与低压电路的信号传递,并维持其电路隔离,避免发生故障时高低压电路间产生异常电流流动,使低压组件损坏。
其原理就是使用发光二极管与光敏晶体管,利用光来进行信号传递,且因为两者并无电路上的链接,所以可以维持两端电路的隔离。