离子晶体及其性质

合集下载

高中化学离子晶体知识点总结

高中化学离子晶体知识点总结

离子晶体知识点总结一、离子晶体1.概念由阳离子和阴离子通过离子键结合而成的晶体。

(1)构成粒子:阳离子和阴离子。

(2)作用力:离子键。

2.决定晶体结构的因素3.离子晶体的性质熔、沸点熔、沸点较高,难挥发硬度硬度较大,难以压缩溶解性一般在水中易溶,在非极性溶剂中难溶导电性固态时不导电,熔融状态或在水溶液中能导电4.常见的离子晶体晶体晶胞详NaCl ①Na 晶中Na 的位为6,Cl 的位为②Na (C -距且近Na (C -12个③个CsClCaF21.离子晶体中的“不一定”(1)离子晶体中不一定都含有金属元素,如NH4NO3晶体。

(2)离子晶体的熔点不一定低于原子晶体,如MgO的熔点(2 800 ℃)高于SiO2的熔点(1 600 ℃)。

(3)离子晶体中除含离子键外不一定不含其他化学键,如CH3COONH4中除含离子键外,还含有共价键、配位键。

(4)由金属元素和非金属元素组成的晶体不一定是离子晶体,如AlCl3是分子晶体。

(5)含有阳离子的晶体不一定是离子晶体,也可能是金属晶体。

(6)离子晶体中不一定不含分子,如CuSO4·5H2O晶体。

2.四种晶体结构和性质的比较导电性不良导体(熔化后或溶于水时导电)不良导体(个别为半导体)不良导体(部分溶于水发生电离后导电)良导体溶解性多数易溶一般不溶相似相溶一般不溶于水,少数与水反应机械加工性不良不良不良优良延展性差差差优良二、晶格能1.概念气态离子形成1 mol离子晶体释放的能量,通常取正值,单位为kJ/mol。

2.影响因素3.晶格能对离子晶体性质的影响晶格能越大,形成的离子晶体越稳定,而且熔点越高,硬度越大。

化学,。

离子晶体,分子晶体

离子晶体,分子晶体

离子晶体,分子晶体1. 离子晶体与分子晶体的定义离子晶体是由阴阳离子通过离子键结合形成的晶体,其结构非常规整、紧密,具有高度的硬度和脆性。

分子晶体是由分子通过弱范德华力、氢键等相互作用力结合而成的晶体,具有较低的硬度和脆性,并且其结构相对不太稳定和松散。

2. 离子晶体的结构特点离子晶体的结构具有以下特点:(1)阴离子和阳离子的离子键结合非常强,因此结构十分紧密且有序,一般不会发生形变;(2)离子晶体具有高度的硬度和脆性,因为它们的克氏硬度大约在6.5-7之间;(3)离子晶体的固体都是化学反应的产物,并且它们的组成及结构都是由元素的离子及其价电子排列而成的,因此离子晶体的特性往往被元素的性质所支配。

3. 离子晶体的种类和应用离子晶体又分为简单离子晶体和复杂离子晶体。

简单离子晶体常见的有NaCl、KCl等。

复杂离子晶体常见的有SiO2等。

离子晶体广泛应用于材料学、电子学、光学等领域。

比如,NaCl晶体可以用于制造光学器件、传感器等,同时还能产生广泛的光学现象。

4. 分子晶体的结构特点分子晶体的结构特点有:(1)受到分子的相互作用力而形成,这些力一般是弱的范德华力、氢键等;(2)分子晶体的结构相对不太稳定和松散,比较容易发生形变;(3)分子晶体的硬度和脆性比较低,因为没有强的化学键固定分子位置和方向,分子可以比较容易地相互滑移。

5. 分子晶体的种类和应用分子晶体有机晶体、金属-有机框架材料(MOF)晶体、聚合物晶体等,这些晶体广泛应用于医药、化工、材料等多个领域。

其中,一些药物如硝酸甘油、维生素C等都是分子晶体。

此外,MOF材料由于其具有高度的孔隙率和选择性吸附性,被广泛用于催化、气体吸附、分子存储等方面。

6. 离子晶体和分子晶体的比较离子晶体和分子晶体之间具有很大的异同:(1)从结构上看,离子晶体中阴离子和阳离子之间的相互作用比分子晶体中分子之间的相互作用力更强;(2)从特性上看,离子晶体硬度和脆性大,而分子晶体硬度和脆性都比较低;(3)从应用领域来看,离子晶体广泛应用于电子、材料等领域,而分子晶体则主要应用于医药、化工等领域。

高三化学离子晶体苏教版知识精讲

高三化学离子晶体苏教版知识精讲

高三化学离子晶体苏教版【本讲教育信息】一. 教学内容:离子晶体二. 教学目标1、掌握离子晶体的概念,能识别氯化钠、氯化铯、氟化钙的晶胞结构。

2、学会离子晶体的性质与晶胞结构的关系。

3、通过探究知道离子晶体的配位数与离子半径比的关系。

4、通过分析数据和信息,能说明晶格能的大小与离子晶体性质的关系。

三. 教学重点、难点1、离子晶体的物理性质的特点;离子晶体配位数及其影响因素2、晶格能的定义和应用四. 教学过程:(一)离子晶体的结构与性质:电负性较小的金属元素原子和电负性较大的非金属元素原子相互接近到一定程度而发生电子得失,形成阴阳离子,阴阳离子之间通过静电作用而形成的化学键称为离子键。

由离子键构成的化合物称为离子化合物。

阴阳离子间通过离子键相互作用,在空间呈现有规律的排列所形成的晶体叫做离子晶体。

离子晶体以紧密堆积的方式排列,阴阳离子尽可能接近,向空间无限延伸,形成晶体。

阴阳离子的配位数(指一个离子周围邻近的异电性离子的数目)都很大,故晶体中不存在单个的分子。

离子晶体中,阴、阳离子间有强烈的相互作用,要克服离子间的相互作用(离子键)使物质熔化或沸腾,就需要很高的能量。

离子晶体具有较高的熔沸点,难挥发、硬度大,易脆等物理性质。

离子晶体在固态时不导电,在熔融状态或水溶液中由于电离而产生自由移动的离子,在外加电场的作用下定向移动而导电。

大多数离子晶体易溶于水等极性溶剂,难溶于非极性溶剂。

离子晶体的性质还取决于该晶体的结构,下面是几种常见的离子晶体的结构:(1)NaCl型晶体结构(面心立方)每个Na+周围最邻近的Cl-有6个,每个Cl-周围最邻近的Na+有6个,则Na+、Cl-的配位数都是6。

因此整个晶体中, Na+、Cl-比例为1:1,化学式为NaCl,属于AB型离子晶体。

同时,在NaCl晶体中,每个Cl-周围最邻近的Cl-有12个,每个Na+周围最邻近的Na+也有12个。

(2)CsCl型晶体结构(体心立方)每个Cs+周围最邻近的Cl-有8个,每个Cl-周围最邻近的Na+有8个,则Cs+、Cl-的配位数都是8。

化学选修第章第节离子晶体

化学选修第章第节离子晶体

第四节离子晶体一、离子晶体1.离子晶体中阴、阳离子交替出现,层与层之间如果滑动,同性离子相邻而使斥力增大导致不稳定,所以离子晶体无延展性;2.离子晶体不导电,但在熔融状态或水溶液中能导电;3.离子晶体难溶于非极性溶剂而易溶于极性溶剂;4.离子晶体的熔、沸点取决于构成晶体的阴、阳离子间离子键的强弱,而离子键的强弱,又可用离子半径衡量,通常情况下,同种类型的离子晶体,离子半径越小,离子键越强,熔、沸点越高;5.离子晶体中不一定含有金属阳离子,如NH4Cl为离子晶体,不含有金属阳离子,但一定含有阴离子;6.几种晶体的比较晶体类型金属晶体离子晶体分子晶体原子晶体基本微粒金属阳离子、自由电子阴离子、阳离子分子原子物质类别金属单质离子化合物多数的非金属单质和共价化合物金刚石、碳化硅SiC、晶体硅、二氧化硅等少数的非金属单质和共价化合物物理性质硬度和密度较大,熔、沸点较高,有延展性,有光泽硬度和密度较大,熔、沸点较高硬度和密度较小,熔、沸点较低硬度和密度大,熔、沸点高决定熔、沸点高低的因素金属键强弱离子键强弱或晶格能大小范德华力或氢键的强弱共价键的强弱导电性固态就可导电熔融或溶于水能导电某些溶于水能导电均不导电7.通常情况下各种晶体熔、沸点高低顺序为原子晶体>离子晶体>分子晶体,金属晶体熔、沸点有的很高,有的很低;但也有些离子晶体的熔、沸点比原子晶体高,如MgO的熔、沸点比SiO2的高;二、晶格能1.晶格能的影响因素离子电荷数越大,核间距越小,晶格能越大;2.岩浆晶出规则的影响因素1晶格能主要:晶格能越大,越早析出晶体;2浓度:越早达到饱和,越易析出;在医院施行外科手术时,常用HgCl2的稀溶液作为手术刀的消毒剂;已知HgCl2有如下性质:①HgCl2晶体熔点较低;②HgCl2在熔融状态下不能导电;③HgCl2在水溶液中可发生微弱的电离;下列关于HgCl2的叙述正确的是A.HgCl2属于共价化合物B.HgCl2属于离子化合物C.HgCl2属于非电解质D.HgCl2属于强电解质解析分子晶体一般熔、沸点较低,熔化后不能导电,符合共价化合物的特点,溶于水后可微弱电离则说明是弱电解质;答案 A此类习题主要考查不同类型晶体的物理性质的特点;正确解答这类习题,要全面比较并记忆四种类型晶体的物理性质各个方面的异同点;离子晶体熔点的高低决定于阴、阴离子之间的距离、晶格能的大小,据所学知识判断KCl、NaCl、CaO、BaO四种晶体熔点的高低顺序是A.KCl>NaCl>BaO>CaO B.NaCl>KCl>CaO>BaOC.CaO>BaO>KCl>NaCl D.CaO>BaO>NaCl>KCl解析对于离子晶体来说,离子所带电荷数越多,阴、阳离子核间距离越小,晶格能越大,离子键越强,熔点越高;阳离子半径大小顺序为:Ba2+>K+>Ca2+>Na+;阴离子半径:Cl->O2-,比较可得只有D项是正确的;答案 DNaCl晶体模型如下图所示,在NaCl晶体中,每个Na+周围同时吸引________个Cl-,每个Cl-周围也同时吸引着________个Na+;在NaCl晶胞中含有________个Na+、________个Cl-,晶体中每个Na+周围与它距离最近且相等的Na+共有________个;解析在氯化钠晶体中,一个Na+位于晶胞的中心,12个Na+分别位于晶胞的12条棱上,则属于该晶胞的Na+相当于3个错误!×12=3,棱边上的每个Na+同时被4个晶胞共用,属于该晶胞的Na+仅占错误!,因此一个晶胞中共含有4个Na+;8个Cl-分别位于晶胞的8个顶点上,则属于该晶胞的Cl-相当于1个错误!×8=1,顶点上的每个Cl-同时被8个晶胞共用,属于该晶胞的Cl-仅占错误!,6个Cl-分别位于晶胞的6个面心上,则属于该晶胞的Cl-相当于3个错误!×6=3,面心上的每个Cl-同时被2个晶胞共用,属于该晶胞的Cl-仅占错误!,所以一个晶胞中共含有4个Cl-;可见NaCl晶体中Na+、Cl-的个数比为1∶1;图中位于晶胞中心的Na +实际上共有3个平面通过它,通过中心Na+的每个平面都有4个Na+位于平面的四角,这4个Na+与中心Na+距离最近且距离相等;所以在NaCl晶体中,每个Na+周围与它距离最近且距离相等的Na+共有12个,按相似的方法可推出每个Cl-周围与它最近且距离相等的Cl-也共有12个;答案664412充分理解分摊法并熟练应用是计算晶胞中微粒数目的关键,同时也应具备一定的空间想象能力;1.离子晶体中离子的配位数缩写为.是指一个离子周围最邻近的异电性离子的数目;CsCl、NaCl的阳离子和阴离子的比例都是1∶1,同属AB型离子晶体;参考课本图3-27、图3-28,数一数这两种离子晶体中阳离子和阴离子的配位数,它们是否相等NaCl和CsCl晶体中的阴、阳离子的配位数离子晶体阴离子的配位数阳离子的配位数NaClCsCl提示NaCl中,Na+和Cl-的配位数均为6,在CsCl中,Cs+和Cl-的配位数均为8;由此可见,两种离子晶体中阳离子的配位数等于阴离子的配位数,但就两种晶体而言,它们离子的配位数是不相等的;显而易见,NaCl和CsCl是两种不同类型的晶体结构;2.你认为是什么因素决定了离子晶体中离子的配位数利用下表的数据进行计算,把计算结果填入下表,可能有助于你推测为什么NaCl、CsCl晶体中离子的配位数不同;几种离子的离子半径离子Na+Cs+Cl-离子半径/pm 95 169 181NaCl、CsCl中的正、负离子的半径比和配位数NaCl CsClr+/r-=r+/r-=.=6 .=8提示由以上可见,正负离子半径比是决定离子的配位数的重要因素;氯化钠、氯化铯晶体中,正负离子的半径比是不同的,配位数也不同,它们是两种不同类型的晶体;1.B4.NaCl和CsCl的化学式可以用同一通式AB型表示,但晶体结构却不相同,原因是确定晶体结构的因素与晶体中正负离子的半径比有关;NaCl晶体中,正负离子的半径比r+/r-=,CsCl晶体中,正负离子的半径比r+/r-=,由于r+/r-值不同,因而晶体中离子的配位数不同,导致晶体结构不同;6.略7.食盐和石英属于不同的晶体类型;石英属于原子晶体,而原子晶体的硬度与共价键的键能有关;食盐属于离子晶体,而离子晶体的硬度与离子晶体的晶格能的大小有关;8.由数据知Na+、Mg2+、Al3+的晶格能逐渐增大,这是因为晶格能与离子所带的电荷数成正比,而与离子半径的大小成反比;Na+、Mg2+、Al3+所带电荷数依次增多,离子半径依次减小,因而晶格能逐渐增大;1.离子晶体中一定不会存在的相互作用是A.离子键B.极性键C.非极性键D.范德华力答案 D解析离子化合物中一定含有离子键,也可能含有共价键,主要是OH-和含氧酸根中的极性共价键,还有O错误!中的非极性共价键;只有分子晶体中才含有范德华力,离子晶体中一定不会有范德华力;因此选D项;2.下列说法错误的是A.非金属元素的两原子之间不可能形成离子键B.离子化合物不可能全部由非金属元素组成C.含有非极性键的分子不一定是共价化合物D.离子化合物中一定含有离子键答案 B解析离子化合物是阴、阳离子通过离子键形成的一类化合物;非金属元素的电负性差别不大,所以两个非金属元素的原子之间可以形成共价键但不会形成离子键,但是,离子化合物却可以全部由非金属元素组成,例如铵盐;含有非极性键的分子可能是非金属单质,如氢气、氧气、氮气,也可以是共价化合物,如H2O2中的O—O,还可能是离子化合物,如Na2O2中的O—O;3.下列不属于影响离子晶体结构的因素的是A.晶体中正、负离子的半径比B.离子晶体的晶格能C.晶体中正、负离子的电荷比D.离子键的纯粹程度答案 B解析影响离子晶体结构的因素是几何因素即晶体中正、负离子的半径比、电荷因素、键性因素即离子键的纯粹程度,晶格能的大小是最能反映离子晶体稳定性的数据,而不是影响离子晶体结构的因素;所以,只有B选项符合题意;4.下列物质中,属于含有极性共价键的离子晶体的是A.CsCl B.KOH C.H2O D.Na2O2答案 B解析水是共价化合物,形成的晶体是分子晶体;CsCl、KOH、Na2O2都是离子晶体,但是CsCl中只有离子键;KOH由K+和OH-组成,OH-存在极性共价键;Na2O2存在的是非极性共价键O—O,B项符合题意;5.为了确定SbCl3、SbCl5、SnCl4是否为离子化合物,可以进行下列实验,其中合理、可靠的是A.观察常温下的状态,SbCl5是苍黄色液体,SnCl4为无色液体;结论:SbCl5和SnCl4都是离子化合物B.测定SbCl3、SbCl5、SnCl4的熔点依次为73.5℃、2.8℃、-33℃;结论:SbCl3、SbCl5、SnCl4都不是离子化合物C.将SbCl3、SbCl5、SnCl4溶解于水中,滴入HNO3酸化的AgNO3溶液,产生白色沉淀;结论:SbCl3、SbCl5、SnCl4都是离子化合物D.测定SbCl3、SbCl5、SnCl4的水溶液的导电性,发现它们都可以导电;结论:SbCl3、SbCl5、SnCl4都是离子化合物答案 B解析离子化合物一般熔、沸点较高,熔化后可导电;分子晶体溶于水后也可发生电离而导电,如HCl等,同样也可电离产生Cl-,能与HNO3酸化的AgNO3溶液反应,产生白色沉淀,故A、C、D都不可靠;6.下列关于金属晶体和离子晶体的说法中错误的是A.都可采取“紧密堆积”结构B.都含离子C.一般具有较高的熔点和沸点D.都能导电答案 D解析金属晶体和离子晶体都可采取紧密堆积,离子晶体的熔、沸点较高,金属晶体的熔、沸点虽然有较大的差异,但是大多数的熔、沸点还是比较高的,所以,A、C两选项的叙述是正确的;金属晶体由金属阳离子和自由电子组成,离子晶体由阳离子和阴离子组成,所以二者都含有离子,因此B选项也是正确的;金属晶体中有自由电子,可以在外加电场的作用下定向移动,而离子晶体的阴、阳离子不能自由移动,因此不具有导电性,所以应该选择D选项;7.下列说法中一定正确的是A.固态时能导电的物质一定是金属晶体B.熔融状态能导电的晶体一定是离子晶体C.水溶液能导电的晶体一定是离子晶体D.固态不导电而熔融态导电的晶体一定是离子晶体答案 D解析四种晶体在不同状态下的导电性区别如下:对于8.判断下列有关化学基本概念的依据正确的是A.氧化还原反应:元素化合价是否变化B.共价化合物:是否含有共价键C.强弱电解质:溶液的导电能力大小D.金属晶体:晶体是否能够导电答案 A解析本题是一道基本概念的判断题;氧化还原反应的特征是元素化合价变化,A项正确;含有共价键的化合物不一定是共价化合物,如NaOH含有共价键,但是离子化合物;强弱电解质,是根据溶于水后是否完全电离,不是根据溶液的导电能力,溶液的导电能力主要由离子浓度的大小决定;导电的晶体不一定是金属,如石墨;9.共价键、离子键和范德华力是构成物质粒子间的不同作用方式,下列物质中,只含有上述一种作用的是A.干冰B.氯化钠C.氢氧化钠D.碘答案 B解析干冰是分子晶体,分子内存在共价键,分子间存在范德华力;NaCl是离子晶体,只存在离子键;NaOH是离子晶体,不仅存在离子键,还存在H—O共价键;碘也是分子晶体,分子内存在共价键,分子间存在分子间作用力;10.下列有关化学键与晶体结构说法正确的是A.两种元素组成的分子中一定只有极性键B.离子化合物的熔点一定比共价化合物的高C.非金属元素组成的化合物一定是共价化合物D.含有阴离子的化合物一定含有阳离子答案 D解析由两种元素组成的双原子分子只含极性键,但多原子分子就不一定,如H2O2中就含有O—O非极性键,所以A错;共价化合物中有些熔点很高如原子晶体,B错;由非金属元素组成的化合物不一定全是共价化合物,如NH4Cl是离子化合物,C错;根据物质所含正、负电荷相等判断D正确;11.下列式子中能表示物质分子组成的是A.NaCl B.SiO2C.MgSO4D.P4答案 D解析NaCl、MgSO4是离子晶体,SiO2是原子晶体,它们的化学式只表示晶体中各元素原子的个数比;只有分子晶体的化学式才能表示物质的分子组成,所以把分子晶体的化学式称为分子式;所以选D项;12.下列说法错误的是A.原子晶体中只存在非极性共价键B.分子晶体的状态变化,只需克服分子间作用力C.金属晶体通常具有导电、导热和良好的延展性D.离子晶体在熔化状态下能导电答案 A解析本题考查四种晶体的组成、结构及性质;原子晶体是原子间以共用电子对所形成的空间网状结构,原子间的共价键可以是同种原子间的非极性共价键如金刚石、晶体硅等,也可是不同原子间的极性共价键如SiO2、SiC等,故A项不正确;其他三项对分子晶体、金属晶体和离子晶体的描述皆正确;教材复习题解答1.A9.在HF晶体中,HF分子之间存在着氢键10.根据分子晶体具有熔点低、易溶于有机溶剂等性质,可判断硫粉属于分子晶体;11.干冰熔化或升华时,只是改变了CO2分子之间的距离,从而破坏了分子间作用力,而CO2分子内的C=O键并未被破坏;12.在水分子之间,主要作用力是氢键,在冰的晶体中,每个水分子周围只有4个紧邻的水分子;氢键跟共价键一样具有方向性,氢键的存在迫使在四面体中心的每个水分子与四面体顶角方向的4个相邻水分子相互吸引;这一排列使冰晶体中的水分子的空间利用率不高,留有相当大的空隙,当冰刚刚融化为液态水时,热运动使冰的结构部分解体,水分子间的空隙减小,密度反而增大,当在4℃时,水分子间空隙最小,密度最大,超过4℃时,水由于热运动加剧,分子间距离加大,密度逐渐减小;水的这种特殊性使水结冰时密度减小,使冰浮在液态水的表面上,便于在寒冷的冬天水中生物的生存;13.钠的卤化物形成的晶体是离子晶体,而离子晶体的熔点较高;硅的卤化物形成的晶体是分子晶体,而分子晶体的熔点很低,因此钠的卤化物的熔点比相应的硅的卤化物的熔点高很多;14.略1.下列各类物质中,固态时只能形成离子晶体的是A.非金属氧化物B.非金属单质C.强酸D.强碱答案 D解析根据分类标准,纯净物可分为单质和化合物,单质又可分为金属单质与非金属单质,化合物可以分为离子化合物和共价化合物;在这四类物质中,金属单质形成的晶体一定是金属晶体,离子化合物形成的晶体一定是离子晶体,非金属单质与共价化合物形成的晶体可能是分子晶体,也可能是原子晶体;非金属氧化物、强酸都属于共价化合物,强碱属于离子化合物;2.下列化学式表示的物质中,属于离子晶体并且含有非极性共价键的是A.CaCl2B.Na2O2C.N2D.NH4Cl答案 B解析题中有两个限制条件:属于离子晶体,含有非极性共价键;属于离子晶体的有CaCl2、Na2O2和NH4Cl,只有Na2O2中含有非极性共价键,电子式为Na+∶错误!∶错误!∶2-Na+;3.①NaF、②NaI、③MgO均为离子化合物,根据表中数据,推知这三种化合物的熔点高低顺序是物质①②③离子电荷数 1 1 2键长10-10mA.①>②>③B.③>①>②C.③>②>①D.②>①>③答案 B解析离子化合物的熔点高低主要取决于离子键的强弱或晶格能的大小,而离子键的强弱或晶格能的大小与离子所带的电荷的乘积成正比,与离子间距离成反比;4.下列性质中,可以证明某化合物形成的晶体一定是离子晶体的是A.可以溶于水B.具有较高的熔点C.水溶液能导电D.熔融状态能导电答案 D解析某些分子晶体也能溶于水,故A错;原子晶体也具有较高的熔点,故B错;某些分子晶体的水溶液也能导电,故C错;将化合物加热至熔融状态能导电,该晶体肯定是离子晶体,而不会是分子晶体或原子晶体;5.为什么Al2O3和MgO常作耐火材料答案因为二者晶格能大、熔点沸点高;6.比较NaF、MgF2、AlF3的晶格能大小、熔点高低;答案因为Na+、Mg2+、Al3+三种离子所带电荷逐渐增多,离子半径r Na+>r Mg2+>r Al3+,离子键强度:AlF3>MgF2>NaF,所以晶格能大小顺序为:AlF3>MgF2>NaF,熔点由高到低顺序为:AlF3>MgF2>NaF;1.下列叙述中正确的是A .熔融状态下能导电的物质一定是离子化合物B .P 4和NO 2都是共价化合物C .在氧化钙中不存在单个小分子D .离子化合物中一定不存在单个的分子答案 CD解析 金属晶体在熔融状态下也导电,故A 项不正确;P 4不是化合物,是单质;2.离子晶体不可能具有的性质是A .较高的熔、沸点B .良好的导电性C .溶于极性溶剂D .坚硬而易粉碎答案 B解析 离子晶体是阴、阳离子通过离子键结合而成的,在固态时,阴、阳离子受到彼此的束缚不能自由移动,因而不导电;离子晶体只有在溶于水或熔融后,电离成可以自由移动的阴、阳离子,才可以导电;3.碱金属和卤素形成的化合物大多具有的性质是①固态时不导电,熔融状态导电 ②能溶于水,其水溶液导电 ③低溶点 ④高沸点 ⑤易升华A .①②③B .①②④C .①④⑤D .②③④答案 B解析 卤素、碱金属形成的化合物为典型的离子化合物,具备离子晶体的性质;4.下列关于晶格能的说法中正确的是A .晶格能指形成1 mol 离子键放出的能量B .晶格能指破坏1 mol 离子键所吸收的能量C .晶格能指气态离子结合成1 mol 离子晶体时所放出的能量D .晶格能的大小与晶体的熔点、硬度都无关答案 C5.氧化钙在2 973 K 时熔化,而氯化钠在1 074 K 时熔化,两者的离子间距离和晶体结构都类似,有关它们熔点差别较大的原因叙述不正确的是A .氧化钙晶体中阴、阳离子所带的电荷数多B .氧化钙的晶格能比氯化钠的晶格能大C .氧化钙晶体的结构类型与氯化钠晶体的结构类型不同D .在氧化钙与氯化钠的离子间距离类似的情况下,晶格能主要由阴、阳离子所带电荷的多少决定答案 C解析 CaO 和NaCl 都属于离子晶体,熔点的高低可根据晶格能的大小判断;晶格能的大小与离子所带电荷多少、离子间距离、晶体结构类型等因素有关;CaO 和NaCl 的离子间距离和晶体结构都类似,故晶格能主要由阴、阳离子所带电荷的多少决定;6.如图是氯化铯晶体的晶胞晶体中最小的重复结构单元,已知晶体中2个最近的Cs +核间距为a cm,氯化铯CsCl 的相对分子质量为M ,N A 为阿伏加德罗常数,则氯化铯晶体的密度为A . g·cm-3 g·cm -3 g·cm -3 g·cm -38MN A a 3答案 C解析ρ=错误!=错误!g·cm-3=错误!g·cm-37.下列关于物质熔点的排列顺序,不正确的是A.HI>HBr>HCl>HF B.CI4>CBr4>CCl4>CF4C.NaCl>NaBr>KBr D.金刚石>碳化硅>晶体硅答案 A解析A中全是分子晶体,但由于HF分子间存在氢键,故HF的熔点最高,排序应为HF>HI>HBr>HCl;B中也全是分子晶体,按相对分子质量由大到小排列,正确;C中全是离子晶体,离子半径r Cl-<r Br-,故熔点NaCl>NaBr,而阳离子r Na+<r K+,故熔点NaBr>KBr,正确;D 中全是原子晶体,按键长可知正确;8.下列7种物质:①白磷P4;②水晶;③氯化铵;④氢氧化钙;⑤氟化钠;⑥过氧化钠;⑦石墨,固态下都为晶体,回答下列问题填写序号:1不含金属离子的离子晶体是______,只含离子键的离子晶体是______,既有离子键又有非极性键的离子晶体是______,既有离子键又有极性键的离子晶体是______;2既含范德华力又有非极性键的晶体是________,熔化时既要克服范德华力又要破坏化学键的是______,熔化时只破坏共价键的是________;答案1③⑤⑥③和④2①⑦②解析1属于离子晶体的有③④⑤⑥,其中③只含非金属元素,NaF中只含离子键,Na2O2中有离子键和非极性共价键,NH4Cl和CaOH2有离子键和极性共价键;2分子晶体中含范德华力,只有白磷、石墨晶体中既有范德华力又有共价键,水晶中只含共价键;9.1 mol气态钠离子和1 mol气态氯离子结合生成1 mol氯化钠晶体所释放出的热能为氯化钠晶体的晶格能;1下列热化学方程式中,能直接表示出氯化钠晶体晶格能的是________;A.Na+g+Cl-g===NaClsΔHB.Nas+错误!Cl2g===NaClsΔH1C.Nas===NagΔH2D.Nag-e-===Na+gΔH3Cl2g===Clg ΔH4F.Clg+e-===Cl-g ΔH52写出ΔH1与ΔH2、ΔH3、ΔH4、ΔH5之间的关系式:________________________________________________________________________ ________________________________________________________________________;答案1A或ΔH2ΔH1=ΔH2+ΔH3+ΔH4+ΔH5解析1根据晶格能的定义:气态离子生成1 mol离子晶体释放的能量,故应为A或ΔH;2根据方程式的叠加原理:B=C+D+E+F,故ΔH1=ΔH2+ΔH3+ΔH4+ΔH5;10.A、B为两种短周期元素,A的原子序数大于B,且B原子的最外层电子数为A原子最外层电子数的3倍;A、B形成的化合物是中学化学常见的化合物,该化合物熔融时能导电;试回答下列问题:1A、B的元素符号分别是________、________;2用电子式表示A、B元素形成化合物过程:________________________________________________________________________ ________________________________________________________________________;3A、B所形成的化合物的晶体结构与氯化钠晶体结构相似,则每个阳离子周围吸引了________个阴离子;晶体中阴、阳离子数之比为:________;4A、B所形成化合物的晶体的熔点比NaF晶体的熔点________,其判断的理由是________________________________________________________________________ ________________________________________________________________________;答案1Mg O2错误!Mg错误!+错误!错误!错误!―→Mg2+错误!错误!错误!2-361∶14高离子半径相差不大,MgO中离子所带电荷较多,离子键强8,B原子的最外层电子数是A原子的3倍,且A、B能形成常见的化合物,则B原子的最外层电子数只能为6,A是2;短周期元素分别为:A是Be或Mg,B是O或S,又因为原子序数A>B,则A是Mg,B为O;→8,B原子的最外层电子数是A原子的3倍,且A、B能形成常见的化合物,则B原子的最外层电子数只能为6,A是2;短周期元素分别为:A是Be或Mg,B是O或S,又因为原子序数A>B,则A是Mg,B为O;2电子式表示形成过程:错误!Mg错误!+错误!错误!错误!―→Mg2+错误!错误!错误!2-3MgO晶体结构与NaCl相似,则每个Mg2+周围有6个O2-,阴、阳离子数之比为1∶1;4因为Mg2+、O2-所带电荷比Na+、F-所带电荷多,且r Mg2+<r Na+,r O2->r F-,总体比较,离子半径相差不大,但MgO中离子电荷多,离子键强;。

高考化学晶体结构:晶体类型与性质比较

高考化学晶体结构:晶体类型与性质比较

高考化学晶体结构:晶体类型与性质比较在高考化学中,晶体结构是一个重要的知识点,其中晶体类型与性质的比较更是常考的内容。

理解和掌握不同晶体类型的特点及其性质差异,对于我们解决相关问题、提高化学成绩具有关键作用。

晶体,是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体物质。

根据构成晶体的粒子种类以及粒子间相互作用力的不同,晶体可以分为离子晶体、分子晶体、原子晶体和金属晶体这四大类型。

首先来看看离子晶体。

离子晶体是由阴、阳离子通过离子键结合而成的晶体。

常见的离子晶体有氯化钠、氯化铯等。

离子晶体具有较高的熔点和沸点,因为离子键是一种较强的化学键,要破坏离子键需要消耗大量的能量。

例如氯化钠,在通常情况下是固体,需要加热到 801℃才会熔化。

而且离子晶体在熔融状态或水溶液中能够导电,这是因为离子可以自由移动。

但在固态时,由于离子被束缚在晶格中,不能自由移动,所以不能导电。

接下来是分子晶体。

分子晶体是由分子通过分子间作用力(范德华力或氢键)结合而成的晶体。

像干冰(固态二氧化碳)、冰等都是典型的分子晶体。

分子晶体的熔点和沸点通常较低,因为分子间作用力相对较弱。

例如干冰,在常温常压下就会直接升华变成气体。

分子晶体一般不导电,除非其溶于水后形成了能够自由移动的离子。

再说说原子晶体。

原子晶体是由原子通过共价键结合而成的空间网状结构的晶体。

金刚石、晶体硅、二氧化硅等是常见的原子晶体。

原子晶体具有很高的熔点和沸点,硬度大。

这是因为共价键的强度很大,要破坏共价键需要很高的能量。

比如金刚石,是自然界中最硬的物质之一,其熔点高达 3550℃。

最后是金属晶体。

金属晶体是由金属阳离子和自由电子通过金属键结合而成的晶体。

大多数金属单质都属于金属晶体,如铁、铜、铝等。

金属晶体具有良好的导电性、导热性和延展性。

这是因为自由电子能够在金属阳离子之间自由移动。

金属晶体的熔点和沸点差异较大,这取决于金属键的强弱。

在性质方面,除了熔点、沸点和导电性有所不同外,晶体的硬度和溶解性也各有特点。

分子晶体和离子晶体

分子晶体和离子晶体

分子晶体和离子晶体
晶体是一种具有高度有序结构的物质形态,又分为分子晶体和离子晶体两种,两者具有不同的构成和性质。

一、分子晶体
分子晶体由分子按规则方式排列而成,通常具有较低熔点和易溶于溶剂的特点。

其分子之间通过分子间相互作用力进行结合,包括分子分子之间的相互作用和分子与周围环境的相互作用,例如氢键、范德华力、静电作用等。

分子晶体比较常见的有冰、石英、石蜡等。

二、离子晶体
离子晶体由带正或负电荷的离子按一定比例和规则排列而成,通常具有高熔点和难溶于溶剂的特点,其稳定性也相对较高。

离子之间通过静电作用结合,包括同性离子之间的相互作用和异性离子之间的相互作用,例如氧化物、硫化物、氯化物等。

离子晶体比较常见的有氯化钠、氧化铁、碳酸钙等。

三、分子晶体与离子晶体的比较
1.构成成分:分子晶体由分子按规则方式排列,离子晶体由带正或负电荷的离子按一定比例和规则排列。

2.相互作用力:分子晶体的分子之间通过分子间相互作用力进行结合,包括分子分子之间的相互作用和分子与周围环境的相互作用;离子晶体之间通过静电作用结合,包括同性离子之间的相互作用和异性离子之间的相互作用。

3.性质特点:分子晶体通常具有较低熔点和易溶于溶剂的特点;离子晶体通常具有高熔点和难溶于溶剂的特点,其稳定性也相对较高。

四、结语
分子晶体和离子晶体是晶体结构的两种重要类型,其结构和性质上存在明显的差异。

分子晶体的特点在于分子间相互作用,方便有机物的制备和应用,离子晶体的特点在于其稳定性和高熔点,对于物质的性质和研究有着重要的意义。

对比两者,可以更全面了解晶体结构与物理性质之间的关系,为物质研究和制备提供更多的思路和方法。

第四节离子晶体

第四节离子晶体

7、几种常见离子晶体: 、几种常见离子晶体:
配位数: 离子晶体中离子的配位数 离子晶体中离子的配位数:一个离子周围最邻 近的异电性离子的数目。 异电性离子的数目 近的异电性离子的数目。缩写为 C.N.

NaCl晶胞 NaCl晶胞
注意Na+、Cl-离 注意 子的排布位置
(1)每个晶胞含( 4 ) 个”NaCl”? NaCl”? 每个晶胞含( NaCl晶体中 晶体中, 配位数是( (2)在NaCl晶体中,Na+配位数是( 6 ) 配位数是( );Na 周围的Cl Cl-配位数是( 6 );Na+周围的Cl-在空间构 成的几何构型为( 正八面体 ) 成的几何构型为( (3)在NaCl晶体中,每个Na+周围与之 NaCl晶体中,每个Na 晶体中 距离最近且相等的Na 距离最近且相等的Na+ 共有 个; 12
规律总结 题型二:物质的熔沸点与晶体类型的关系 题型二 物质的熔沸点与晶体类型的关系
1、常温下的状态: 、常温下的状态: 熔点:固体> 熔点:固体>液体 沸点:液体> 沸点:液体>气体 2、若晶体类型不同,一般情况下: 、若晶体类型不同,一般情况下: 原子晶体>离子晶体> 原子晶体>离子晶体>分子晶体 3、若晶体类型相同,构成晶体质点间的作用大,则熔 、若晶体类型相同,构成晶体质点间的作用大, 沸点高,反之则小。 沸点高,反之则小。 离子晶体中,结构相似时,离子半径越小, ⑴离子晶体中,结构相似时,离子半径越小, 离子电荷越高,离子键就越强,熔沸点就越高。 离子电荷越高,离子键就越强,熔沸点就越高。 原子晶体中,结构相似时,原子半径越小, ⑵原子晶体中,结构相似时,原子半径越小, 键长越小、键能越大,熔沸点越高。 键长越小、键能越大 熔沸点越高。 熔沸点越高

离子晶体的结构和性质

离子晶体的结构和性质

O2-:140pm S2-:184pm Se2-:198pm
这是因为较高价的负离子以及和它配位的正离子吸引力 增加,部分抵消了负电价增加引起的离子半径的增加。
(c) 同一主族元素,离子半径自上而下增加
Li+ Na+ K+ Rb+ Cs+ F- Cl- Br- I-
0.78 0.98 1.33 1.49 1.65 1.33 1.81 1.96 2.20
碱金属离子最外价电子层虽然相同,但随着核外电 子层的增加,半径亦增加。同族负离子(如卤素离子) 也是如此。
(d)周期表中对角线方向的离子半径相近:
(1) Goldschmidt半径(哥希密德半径)
Goldschmidt 以F- 和O2- 的离子半径为基准, 根据实验测定离子晶体中,正负离子接触 半径的数据,确定了80多种离子的半径, 至今仍在应用。
NaCl型离子晶体面心立方点阵结构,正、负离子相间排 列。考察NaCl型晶体晶胞某一个面上正、负离子相对大 小,有以下三种情况:
某一电子层的屏蔽常数计算:
外面各层 s=0; 同一组内 s=0.35(但 1s 的 s=0.30) 相邻内一组s=0.85 (d 电子的s=1.00,f 电子的s=0.98); 更内各组 s=1.00。
例1:Ne型离子如O2-、Mg2+、Na+屏蔽常数的估算:
其核外电子排列为1s2|2s22p6|,因此其外层电子的屏蔽常
• 以配位数为 6 时的原子半径作为单位 1,配 位数为 12, 8, 4 时的原子半径则分别为 1.12, 1.03 和 0.94
离子半径与周期表
离子半径变化与其在周期表位置密切相关。 (a) 同一周期的正离子半径随原子序数增加而减小。
Na+ 0.98Å

结晶

结晶

10) 如果其他条件相同,试比较下列铸造条件下铸件晶粒的大小: < (1) 金属型与砂型浇注 < (2) 变质处理与不变质处理 < < (3) 铸成薄件与厚件 (4) 浇注时振动与不振动
夹杂物:与基体要求成分和组织都不相同多余颗粒,外来夹杂物有浇铸中冲 入的其它固体物,如耐火材料、破碎铸模物等。
成分偏析:在多组元材料中,不同位置材料的成分不均匀叫做偏析。按其区 域分为宏观偏析(不同区域的成分不同)和微观偏析(各区域平均成分相同, 在微观位置如一个晶粒的内部或更小的范围看成分有差别)。
晶体
结晶时的过冷现象
各种纯金属如Fe、Cu等都有一定的结晶温度。Fe: 1539℃,Cu:1083℃等等,这是指理论结晶温度,也叫平衡 结晶温度,是指液体的结晶速度与晶体的熔化速度相等时的温 度。

实际上的结晶温度总是低于 这ห้องสมุดไป่ตู้平衡结晶温度,原因在
结晶的能量条件上。

金属的结晶过程用热分析方法测定,具体做法: 先将纯金属加热熔化为液体,然后缓慢冷却下来,同时每隔一定 时间测一次温度,并把记录的数据绘在温度-时间坐标中,得到温度 与时间的曲线,即:冷却曲线。
二、共价晶体 定义: 原子间以共价键相结合而形成的空间网状结构的晶体。 性质:熔沸点高,硬度大,难溶于一般溶剂。
常见的共价晶体:金刚石,硅、锗、锡的同素异构体或化合物
金刚石的结构
Si2O的结构
三、结晶型高分子聚合物
第四节 金属的结晶 结晶过程的宏观现象 凝固: 液体 --> 固体(晶体 或 非晶体) 结晶: 液体 --> 晶体 液体
第三节 非金属晶体
一、离子晶体
定义: 离子间通过离子键结合而成的晶体。 性质:硬度较高,密度较大,,难挥发,熔沸点较高, 但脆性大。 常见的离子晶体:强碱(NaOH、KOH)、活泼金属氧化物 (Na2O、MgO)、大多数盐类(NaCl、CsCl等)。

离子晶体知识点总结

离子晶体知识点总结

离子晶体知识点总结一、离子晶体的结构离子晶体的结构是由正负离子通过静电相互作用形成的,其晶胞结构可以用晶体学的方法进行描述。

一般来说,离子晶体的结构可以分为六种类型:1. 离子节构这种结构由大部分阳离子和阴离子相互交错排列组合而成。

其中阳离子通常占据晶格的交叉点,而阴离子则占据空隙。

这种结构常见于氯化钠、氧化镁等物质中。

2. 离子面心结构在这种结构中,阳离子和阴离子分别占据晶格的面心位置,形成一种规则的排列方式。

这种结构常见于氧化铝、氟化钙等物质中。

3. 离子体心结构在这种结构中,阳离子占据晶格的体心位置,而阴离子则占据晶格的角落位置。

这种结构常见于氧化锌、氯化钠等物质中。

4. 同心柱状结构这种结构由阳离子和阴离子分别沿晶轴的方向排列组合而成。

这种结构常见于氯化铵等物质中。

5. 同心层状结构这种结构由阳离子和阴离子分别沿晶轴的垂直方向排列组合而成。

这种结构常见于氧化镁、氯化铜等物质中。

6. 同心环状结构这种结构由阳离子和阴离子分别沿晶轴的环状方向排列组合而成。

这种结构常见于氧化铝、氟化钙等物质中。

以上这几种结构都是离子晶体常见的结构类型,通过这些结构,我们可以更好地理解离子晶体的排列方式和性质特点。

二、离子晶体的性质离子晶体具有一些特殊的性质,其中包括:1. 高熔点和硬度由于离子晶体中离子之间的静电作用力非常强大,因此离子晶体通常具有较高的熔点和硬度。

这也使得离子晶体可以在高温和高压下稳定存在。

2. 良好的导电性由于离子晶体中包含正负离子,因此在一定条件下,离子晶体可以导电。

但在晶格结构稳定的情况下,离子晶体通常是绝缘体,不导电。

3. 显著的光学效应在一些特殊的条件下,离子晶体可以表现出显著的光学效应,如双折射、自旋光等。

这些光学效应使得离子晶体在光学器件和光学应用方面有着重要的应用价值。

4. 良好的热稳定性由于离子晶体中存在强大的离子键,使得离子晶体具有良好的热稳定性。

即使在高温和高压条件下,离子晶体的晶格结构也能保持稳定。

3.3离子晶体

3.3离子晶体

第三章——第三节——离子晶体要点一、离子晶体1.离子晶体(1)定义:由阳离子和阴离子通过离子键结合而成的晶体。

如Na2O、NH4Cl、Na2SO4、NaCl、CsCl、CaF2等都是离子晶体,其中Na2O、NaCl、CsCl、CaF2晶体中只有离子键(2)构成晶体的微粒:阴、阳离子(在晶体中不能自由移动)(3)微粒间的作用力:离子键(4)常见的离子晶体——离子化合物:强碱、活泼金属氧化物、绝大多数盐等(5)结构特点:理论上,结构粒子可向空间无限扩展(6)配位数(C.N.):指一个离子周围最邻近的异电性离子的数目(7)物理性质:硬度较大,难于压缩;熔沸点一般较高,难挥发;不导电,但是在熔融状态或水溶液中可导电2.常见离子晶体的空间结构(1)AB型离子晶体的空间结构:如NaCl和CsCl晶体说明:Ⅰ、氯化钠型晶胞:阴、阳离子的配位数是6,即每个Na+紧邻6个Cl-,每个Cl-紧邻6个Na+①钠离子、氯离子的位置关系:钠离子和氯离子位于立方体的顶角上,并交错排列。

钠离子:体心和棱中点;氯离子:面心和顶点,或反之;②每个晶胞含钠离子、氯离子的个数:Cl-:8×1/8+6×1/2=4 Na+:12×1/4+1=4;③与Na+等距离且最近的Na+有12个;④Na+、Cl-比例为1︰1,化学式为NaCl,属于AB型离子晶体。

Ⅱ、氯化铯型晶胞:阴、阳离子的配位数是8,即每个Cs+紧邻8个Cl-,每个Cl-紧邻8个Cs+每个Cs+周围最邻近的Cl-有8个,每个Cl-周围最邻近的Cs+有8个,则Cs+、Cl-的配位数都是8。

因此整个晶体中,Cs+、Cl-比例为1︰1,化学式为CsCl,属于AB型离子晶体。

同是AB型离子晶体, CsCl与NaCl的晶体结构和配位数不一样(2)CaF2晶体的空间结构由图可知,Ca2+的配位数为8,F-的配位数是43.决定离子晶体结构的主要因素:(1)几何因素:正、负离子的半径比的大小晶体的阴、阳离子所带的电荷数相同的AB型离子晶体的几何因素与配位数(阴、阳离子个数相同,配位数也相同)的关系:r+/ r-配位数0.225-0.414 40.414-0.732 60.732-1.00 8(2)电荷因素:正、负离子所带电荷的多少晶体中阴、阳离子的电荷数不相同,阴、阳离子个数不相同,各离子的配位数也不相同。

高中化学第3章晶体结构与性质第3节第2课时离子晶体过渡晶体与混合型晶体教案2

高中化学第3章晶体结构与性质第3节第2课时离子晶体过渡晶体与混合型晶体教案2

第2课时离子晶体过渡晶体与混合型晶体发展目标体系构建1.借助离子晶体模型认识离子晶体的结构和性质。

2.能利用离子键的有关理论解释离子晶体的物理性质.3。

知道介于典型晶体之间的过渡晶体及混合型晶体是普遍存在的。

一、离子晶体1.结构特点(1)构成粒子:阳离子和阴离子。

(2)作用力:离子键。

(3)配位数:一个离子周围最邻近的异电性离子的数目.微点拨:大量离子晶体的阴离子或阳离子不是单原子离子,有的还存在电中性分子。

离子晶体中不仅有离子键还存在共价键、氢键等。

2.常见的离子晶体晶体类型NaCl CsCl 晶胞阳离子的配位数68阴离子的配位数68晶胞中所含离子数Cl-4Na+4Cs+1Cl-13.物理性质(1)硬度较大,难于压缩。

(2)熔点和沸点较高.(3)固体不导电,但在熔融状态或水溶液时能导电。

离子晶体是否全由金属元素与非金属元素组成?[提示]不一定,如NH4Cl固体是离子晶体但它不含金属元素。

二、过渡晶体与混合型晶体1.过渡晶体(1)四类典型的晶体是指分子晶体、共价晶体、金属晶体和离子晶体。

(2)过渡晶体:介于典型晶体之间的晶体。

①几种氧化物的化学键中离子键成分的百分数氧化物Na2O MgO Al2O3SiO2离子键的62504133百分数/%从上表可知,表中4种氧化物晶体中的化学键既不是纯粹的离子键,也不是纯粹的共价键,这些晶体既不是纯粹的离子晶体也不是纯粹的共价晶体,只是离子晶体与共价晶体之间的过渡晶体。

②偏向离子晶体的过渡晶体在许多性质上与纯粹的离子晶体接近,因而通常当作离子晶体来处理,如Na2O等。

同样,偏向共价晶体的过渡晶体则当作共价晶体来处理,如Al2O3、SiO2等。

微点拨:四类典型晶体都有过渡晶体存在.2.混合型晶体(1)晶体模型石墨结构中未参与杂化的p轨道(2)结构特点-—层状结构①同层内碳原子采取sp2杂化,以共价键(σ键)结合,形成平面六元并环结构。

②层与层之间靠范德华力维系。

晶体的五种类型

晶体的五种类型

晶体的五种类型晶体是由原子或者分子沿着一定规律排列而成的具有长程有序结构的固体物质。

晶体的类型多种多样,根据其结构和性质的不同,可以将晶体分成五种类型:离子晶体、共价晶体、金属晶体、分子晶体和非晶态材料。

1.离子晶体离子晶体是由阴阳离子组成的晶体,其特点是具有良好的电解质性质。

这类晶体的结构稳定,通常具有高熔点和硬度,是常见的岩石和矿石。

典型的离子晶体包括氯化钠(NaCl)、氧化镁(MgO)和硫酸钙(CaSO4)等。

离子晶体的性质主要由其中阳离子和阴离子的相互排列和结合方式所决定。

2.共价晶体共价晶体是由共价键连接的原子或者分子构成的晶体,其特点是硬度大,熔点高,化学性质稳定。

典型的共价晶体包括金刚石(碳)、硅化铝(Al2O3)和碳化硅(SiC)等。

共价晶体的结构稳定,常用作磨料、切割工具和高温材料等。

3.金属晶体金属晶体是由金属原子以金属键连接而成的晶体,其特点是导电性好、变形性高、具有典型的金属性质。

金属晶体的结构通常为紧密堆积,具有良好的韧性和延展性,是制造工程材料、电子材料和建筑材料的重要基础。

典型的金属晶体包括铁(Fe)、铜(Cu)和铝(Al)等。

4.分子晶体分子晶体是由分子之间的范德华力或氢键连接而成的晶体,其特点是化学性质多变,易溶于溶剂。

分子晶体的结构通常不规则,具有良好的可溶性和透明性,是重要的有机功能材料和药物。

典型的分子晶体包括碘化银(AgI)、萘(C10H8)和苯酚(C6H5OH)等。

5.非晶态材料非晶态材料是指由无序排列的原子或者分子构成的非晶体,其特点是没有明显的长程有序结构,通常具有非晶态固体的性质,如良好的可塑性和韧性。

非晶态材料的结构通常为玻璃状或胶状,常用作包装材料、光学材料和电子材料。

典型的非晶态材料包括玻璃、橡胶和塑料等。

总之,晶体的类型多种多样,每种类型的晶体都具有其独特的结构和性质。

通过研究不同类型的晶体,可以更好地理解晶体的结构和形成机制,为材料科学和工程技术的发展提供重要的理论和实践基础。

离子晶体的性质

离子晶体的性质

离子晶体是由离子构成的晶体。

离子晶体的性质受到离子的性质和相互作用的影响。

下面是离子晶体的一些性质:
1.离子晶体的晶格结构是由离子排列而成的,因此离子晶体的晶格常常是由一种离子形成
的。

2.离子晶体的熔点和沸点通常都很高,因为离子之间的相互作用很强,需要大量能量才能
使离子晶体熔化或汽化。

3.离子晶体的导电性通常很差,因为离子晶体中的离子很难移动。

4.离子晶体的化学稳定性通常很高,因为离子之间的相互作用很强,需要大量能量才能使
离子晶体发生化学反应。

5.离子晶体的导热性一般较差,因为离子晶体中的离子很难移动,很难传递热量。

6.离子晶体的折射率一般较大,因为离子晶体的密度较大,光线在离子晶体中的折射率也
较大。

7.离子晶体的弹性模量一般较大,因为离子晶体中的离子相互作用很强,所以离子晶体具
有较大的弹性模量。

8.离子晶体的光学性质一般较差,因为离子晶体中的离子很难移动,很难传递光线。

离子晶体物理性质

离子晶体物理性质

离子晶体物理性质
离子晶体是一种既有离子又有固体结构的物质,其介于水溶液和
结晶体的联结之间,是一种非常特殊的混合物。

它以各种离子的排列
形式表现在眼前。

离子晶体由大量独立的离子排列而成,离子可以通
过电子或其他弱相互作用连接在一起,并形成相互重叠的集群放射出
连续的晶格模式。

这种晶格连续性导致离子晶体与常规固体不同,它
具有自由度高,熔点和溶解度都较低的特性。

由于离子晶体的特殊性质,它在电学、光学、电子、磁性等方面
具有许多特殊性质。

这些特性的应用涉及电路数字存储、抗振动特性、太阳能发电、平板显示屏和轻质复合结构材料等方面。

如在太阳能发
电中,离子晶体可作为一种热敏电阻,当其受热时,其电阻值开始变化,这种变化可以被用来测量温度变化,从而用来控制现场温度以获
取最大的能量转换效率。

此外,离子晶体也可用于制造光纤传感器,
用于感知物体的加速度、振动、外部应力、位移、温度变化等。

离子晶体也具有一些良好的可靠性性能,尤其是由于其高可靠性
的电磁特性,使其具有广泛的应用前景。

它可用于高压电磁控制中,
以及脉冲磁力学阀、电磁控制系统等抗振动接口运算中,能够克服一
般常规固体晶体界面固有的问题。

以上就是离子晶体物理性质的部分内容,离子晶体在科学研究和
工程应用中具有重要的作用,常用于制造光纤传感器、太阳能电池、
电路数字存储器等等,它的应用会进一步提高我们的生活质量。

鲁科版物质结构与性质3.2离子晶体共价晶体分子晶体

鲁科版物质结构与性质3.2离子晶体共价晶体分子晶体

SiO2晶胞
④最小的环为___个Si 和____个O组成的____元 环。含有 个Si-O键; 每个Si-O键被 6 个十二元 环共有。
④每个O原子被
个十二元环共有,
每个Si原子被 个十二元环共有。
⑤1mol SiO2中含________mol Si—O 键。
1、下列物质中属于共价晶体的化合物是( )
若碳原子半径为r,试计算金刚石的密度?
? 2r 3 a a 8 3 r
4
3
812 812
NA a3
(8
NA 3 r)3
9 16N
3 Ar
3
3
❹ 求金刚石中碳原子的空间利用率
8×4/3πr3 a3
(其中 a = 8r)
❺ 写出金刚石中碳原子的原子坐标
(0,0,0) (0,1/2,1/2) (1/2,1/2,0) (1/2,0,1/2) (1/4,3/4,1/4)(3/4,1/4,1/4) (1/4,1/4,3/4)(3/4,3/4,3/4)
CsCl晶胞
①Cs+或Cl-配位数是几?
②Cs+周围紧邻的Cl-有几个?构成 什么图形?
③Cs+周围距离最近的Cs+有几个? (Cl-呢?)
④一个晶胞含______个Cs+,______ 个Cl-。
(3)ZnS晶胞(BeO BeS)
顶点面心:S2-(什么堆 积?) 体内:Zn2+(填8个立方体 的4个,相当于1/8晶胞的 体心) 小结:面心立方+半数填隙
①Zn2+或S2-配位数是几?
②Zn2+周围紧邻的S2-有几个?构成什么图形?
③一个晶胞含______个Zn2+,______个S2-

离子晶体的名词解释

离子晶体的名词解释

离子晶体的名词解释离子晶体是一种固态物质,由离子构成的有序排列形成晶格结构。

离子是带有正电荷或负电荷的原子或分子,在形成晶体结构时通过静电力互相聚集在一起。

离子晶体通常具有高熔点、高硬度和良好的导电性能,因此在许多领域有着广泛的应用。

1. 离子与晶格离子晶体的基本结构是由正离子和负离子组成的晶格。

正离子和负离子之间通过静电相互作用力形成稳定的晶格结构。

正离子和负离子的数目必须相等,以保持整体电中性。

离子晶体的晶格结构对其性质起着重要的影响。

2. 离子晶体的物理性质离子晶体通常具有高熔点和高硬度。

这是因为在离子晶体中,正离子和负离子之间的静电相互作用力较强,需要很高的能量才能破坏这种结构。

因此,离子晶体往往具有非常稳定的结构。

此外,离子晶体还具有良好的光学性能。

离子晶体中的离子对光的吸收和发射起着重要作用,因此离子晶体通常具有特殊的光学效应,例如双折射和荧光。

3. 离子晶体的导电性由于离子晶体中带电离子的存在,它们通常具有良好的导电性能。

当离子晶体受到外界电场的作用时,带电离子会迅速在晶体内部移动,从而产生电流。

这种特性使离子晶体被广泛应用于电池、电解质和导电材料等领域。

4. 离子晶体的应用离子晶体在日常生活中有着广泛的应用。

其中一个典型的应用是在电子设备中的显示技术。

例如,液晶显示屏就是一种以离子晶体为基础的显示技术。

液晶分子具有可控的旋转和排列方式,通过控制电场来改变液晶分子的排列状态,从而实现图像的显示。

此外,离子晶体还常用于人工合成宝石的制备。

通过控制离子的成分和结构,制造出具有与天然宝石相似甚至更好的光学性能的合成宝石。

另外,离子晶体还在能源领域有着重要的应用。

例如,某些离子晶体在高温下具有良好的离子导电性能,可以用于制造固体氧化物燃料电池。

总之,离子晶体作为一种固态物质,在物理性质、导电性以及应用方面都具有独特的特点和广泛的应用前景。

通过深入研究离子晶体的结构和性质,我们可以更好地理解和应用这种材料,推动科学技术的发展。

离子化合物的晶体结构与性质

离子化合物的晶体结构与性质

离子化合物的晶体结构与性质离子化合物是由正负电荷相互吸引而形成的化合物。

它们具有特殊的晶体结构和独特的物理性质。

本文将探讨离子化合物的晶体结构和性质,并探讨它们对材料科学和生命科学的重要性。

一、离子化合物的晶体结构离子化合物的晶体结构是由正负离子按照一定的比例排列而成的。

晶体结构的稳定性和几何形状对于离子化合物的性质起着重要作用。

1. 离子的排列方式离子化合物中的正负离子按照一定的比例排列,形成离子晶体。

最简单的离子晶体是由正负离子交替排列而成的。

例如,氯化钠晶体中,钠离子和氯离子交替排列,形成一个稳定的晶体结构。

2. 离子的配位数离子化合物中的离子通常具有特定的配位数。

配位数是指一个离子周围被其他离子或分子包围的数目。

例如,氯化钠晶体中,每个钠离子被六个氯离子包围,每个氯离子被六个钠离子包围。

这种六配位的结构使得晶体具有稳定性。

3. 晶体的空间群离子化合物的晶体结构可以通过空间群来描述。

空间群是指晶体中离子或原子的排列方式和对称性。

不同的空间群代表不同的晶体结构,从而决定了离子化合物的物理性质。

二、离子化合物的物理性质离子化合物具有一系列独特的物理性质,这些性质与它们的晶体结构密切相关。

离子化合物通常具有高熔点。

这是因为离子之间的电荷吸引力很强,需要克服这种吸引力才能使离子分离。

因此,离子化合物需要高温才能熔化。

2. 脆性离子化合物通常是脆性的,即容易在外力作用下断裂。

这是因为离子晶体的结构是由正负离子排列而成的,当外力作用到离子晶体上时,离子之间的排列会被破坏,导致断裂。

3. 导电性在固态下,离子化合物通常是不导电的。

这是因为离子在固态下无法自由移动。

然而,当离子化合物熔化或溶解在水中时,离子可以自由移动,从而导致溶液具有导电性。

这也是离子化合物在电解过程中起作用的原因。

三、离子化合物在材料科学和生命科学中的应用离子化合物在材料科学和生命科学中具有广泛的应用。

它们的晶体结构和物理性质决定了它们在这些领域的功能和用途。

离子晶体的性质和AB型立方晶系离子晶体的结构

离子晶体的性质和AB型立方晶系离子晶体的结构

离子晶体的性质和AB型立方晶系离子晶体的结构3. 离子晶体的性质离子晶体是以离子键结合形成的晶体。

在CsC1晶体中,每个Cs+周围最近层等距离罗列8个CI-,同时每个CI-周围最近层等距离罗列8个Cs+;但Cs+周围稍远的位置还有其他CI-,同样CI-周围稍远的位置也还有其他Cs+,只是随着距离变大而静电引力快速减小。

离子晶体中离子最近层等距离的异号离子数称为配位数。

在CsCl晶体中,Cs+和CI-的配位数均为8;在NaCl晶体中,Na+和CI-的配位数均为6;在ZnS晶体中,Zn2+和S2-的配位数均为4;在CaF2晶体中,Ca2+的配位数为8,但F-的配位数为4。

离子晶体无确定的相对分子质量,水溶液或熔融态导电。

离子晶体导电是由于其水溶液或熔融态时解离出的离子能被电解。

离子晶体导电的实质是在外加电压下发生了电解反应,而不仅仅是离子定向迁移,电解反应的发生使外电路有电子的定向流淌。

离子晶体熔、沸点较高,硬度高但延展性差。

正负离子周围有多个异号离子与其有引力,破坏离子键时需要较多的能量,因而离子晶体熔、沸点和硬度高。

离子晶体中,每个离子周围吸引异号离子,若施以外力则发生位错,同种电荷的离子排斥作用使晶体遭到破坏,故延展性差(图6-4)。

图6-4 离子晶体的位错 4. AB型立方晶系离子晶体的结构 AB型立方晶系离子晶体典型结构有NaCl型、CsCl型、立方ZnS型(图6-5)。

图6-5 立方晶系AB型离子晶体的结构在NaCl晶胞中,有4个Na+和4个CI-,Na+和Cl-的配位数均为6;CsCl晶胞中,有1个Cs+和1个CI-,Cs+和CI-的配位数均为8;立方ZnS晶胞中,有4个Zn2+和4个S2-,Zn2+和S2-的配位数均为4。

普通状况下,可以按照正负离子半径比逻辑推断AB型立方晶系离子晶体配位状况,以确定晶体类型(表6-3)。

表6-3 AB型立方晶系晶体的离子半径比和配位数及晶体类型的关系第1页共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S Zn
7-2-3 离子晶体的稳定性
离子晶体的晶格能 晶格能——标准态下,拆开1mol离子晶体 变为气态离子所需吸收的能量 7-2-3 离子晶体稳定性
NaCl(s) 298.15℃ Na+(g) + Cl-(g) 标准态
U=786 kJ· -1 mol
晶格能越大,离子晶体越稳定
离子晶体的稳定性
NaCl型 NaI NaCl NaBr NaFBaOSrO CaOMgO 离子电荷 1 1 1 1 2 2 2 2 核间距/pm 318 294 279 231 277 257 240 210 晶格能 -1 704 747 785 923 3054 3223 3401 3791 kJ· mol 熔点/℃ 661 747 801 993 1918 2430 2614 2852 硬度 2~ - - 2.5 2.5 3.3 3.5 4.5 5.5 (金刚石=10)
+ + _ + _ + Na+ _ + _ +
_ + _ + _ + _ +
7-2-2 离子晶体中最简单的结构类型
AB型:NaCl型、 CsCl型、立方ZnS型 NaCl型
7-2-2 离子晶体中最简单的结 晶格类型:面心立方 - 构类型 Cl
阳离子配位数:6 阴离子配位数:6 例 KI、LiF、NaBr、 MgO、CaS
电荷相同,核间距越小,晶格能越大 离子电荷数越多,晶格能越大 晶格能越大,熔点越高,硬度越大
无机化学多媒体电子教案
第二节结束
第七章 固体结构与性质
第二节 结束
无机化学多媒体电子教案
第七章 固体结构与性质 第二节离子晶体及其性质
第二节 离子晶体及其性质
7-1-1 离子晶体的特征和性质
晶体 结点粒 粒子间 类型 子种类 作用力 一般性质 物质示例 熔点较高、 活泼金属 静电 离子 阳、阴 7-2-1晶体的特征 略硬、脆, 氧化物、 晶体 离子 引力 熔体、溶液易导电 盐类 NaF Na+、F硬度2~2.5, 熔点993℃ MgF2 Mg2+、F硬度5, 熔点1261℃ _ + _ + F- _ _
Na+
Hale Waihona Puke CsCl型晶胞类型:简单立方 阳离子配位数:8 阴离子配位数:8
Cl-
Cs+

TlCl、CsBr、CsI
ZnS型
晶类型胞:面心立方 阳离子配位数:4 阴离子配位数:4 例 BeO、ZnSe
S2-
Zn2+
CsCl型
晶胞:正立方形
阳离子配位数:8 阴离子配位数:8 外界条件变化时,晶体类型也能改变 例 TlCl、CsBr、CsI Cl- 如 + CsCl 常温下 CsCl型 Cs ZnS型 高温下 NaCl型 晶胞:正立方形 同质多晶现象: 阳离子配位数:4 化学组成相同而晶体构型不同的现象 阴离子配位数:4 例 BeO、ZnSe 22+
相关文档
最新文档