晶体学基础资料

合集下载

晶体学基础

晶体学基础

图 六方晶系的一些晶向指数与晶面指数
4.晶带
相交于某一晶向直线或平行于此直线的晶面构成一个晶带, 此直线称为晶带轴 设晶带轴的指数为[uvw],则晶带中任何一个晶面的指数 (hkl)都必须满足:hu+kv+lw=0,满足此关系的晶面都属 于以[uvw]为晶带轴的晶带。→晶带定律 (a) 由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:
简单晶胞计算公式
正交晶系
dhkl
1 h k l a b c
2 2 2
立方晶系
d hkl
d hkl
a h k l
2 2 2

六方晶系
1 4 h hk k l 2 3 a c
2 2 2 2
的一组晶向,用<uvw>表示。数字相同,但排列顺序不
同或正负号不同的晶向属于同一晶向族。
eg: 立方晶系中
[111 ], [1 11], [1 1 1], [11 1][11 1], [1 11][1 1 1], [111 ] 八个晶向是立方体中
四个体对角线的方向,其原子排列完全相同,属同一晶向族,故用<111>表示。
六方晶系的晶向指数和晶面指
数同样可以应用上述方法标定,
这时取a1,a2,c为晶轴,而 a1轴与a2轴的夹角为120度,c 轴与a1,a2轴相垂直。但这种 方法标定的晶面指数和晶向指 数,不能显示六方晶系的对称 性,同类型 晶面和晶向,其指 数却不相雷同,往往看不出他 们的等同关系。
根据六方晶系的对称特点,对六 方晶系采用a1,a2,a3及c四个
§2.2.2 晶系和布拉菲点阵
1.七个晶系
2. 十四种布拉菲点阵 按照“每个阵点的周围环境相同”的要求,最先是布拉菲 (A. Bravais)用数学方法证明了只能有14种空间点阵。通 常人们所说的点阵就是指布拉菲点阵。

《结晶学基础》

《结晶学基础》
在离子晶体结构中,每个正离子周围都形成 一个负离子配位多面体;正负离子间距离取决 于离子半径之和,正离子配位数取决于正负离 子半径之比,与离子电价无关。
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的

《晶体学基础》课件

《晶体学基础》课件
《晶体学基础》ppt课件
CONTENTS
目录
• 晶体学简介 • 晶体结构 • 晶体性质 • 晶体缺陷 • 晶体生长与制备 • 晶体应用
CHAPTER
01
晶体学简介
晶体学定义
晶体学是一门研究晶体材料、 晶体结构和晶体性能的科学。
晶体是由原子、分子或离子按 照一定的规律周期性排列而成 的固体。
晶体学的研究内容包括晶体的 几何结构、物理性质、化学性 质以及晶体生长、相变等。
观结构和应力分布有关。
疲劳强度
断裂韧性是衡量物质抵抗脆性断裂的能力的物理量。 不同晶体的断裂韧性不同,与晶体的缺陷类型和扩散 机制有关。
CHAPTER
04
晶体缺陷
点缺陷
01
晶体中一个或多个原子离开其平 衡位置,形成局部的、小的原子 排列异常。
02
点缺陷的形成与温度、压力、杂 质等因素有关。在晶体中,点缺 陷可以移动、聚集和消失,对晶 体的物理性质产生影响。
线缺陷
晶体中沿某一特定方向,原子排列出 现异常。
线缺陷通常表现为晶体的裂纹或位错 ,对晶体的力学性质有显著影响。位 错是晶体中常见的线缺陷,其运动和 相互作用会影响材料的加工和性能。
面缺陷
晶体中沿某一平面的原子排列出现异常。
面缺陷包括晶界、相界和表面等。晶界是晶体内部不同晶粒之间的界面,相界是 晶体中不同相之间的界面。这些面缺陷会影响晶体的光学、电学和热学性质。
19世纪,X射线和电子显微镜的发明 为晶体学的研究提供了新的手段,推 动了晶体学的发展。
17世纪,随着显微镜技术的发展,人 们开始对晶体进行更深入的研究,发 现了晶体的对称性和空间格子。
21世纪,随着计算机技术和材料科学 的快速发展,晶体学在理论和实验方 面都取得了重要进展,为新材料的研 发和应用提供了有力支持。

晶体学基础

晶体学基础
单斜
abc
abc
90
90
三斜
abc
3. 点阵类型
7大晶系 包含14 种空间 点阵— —布拉 菲 (A.Brav ais)点阵
§1-2晶面指数、晶向指数——Miller指数
晶面——穿过晶体的原子平面。 晶向——晶体中任意原子列的直线方向。 不同的晶面和晶向具有不同的原子排列和取向。这就是 晶体具有各向异性的原因。
( 1 00), (0 1 0), (00 1 )
思考: {111}包含多少个等价面?
三、 晶向指数与晶面指数的关系
在立方晶系中(包括密排六方):
[u v w] // (h k l) 时,一定满足:hu+kv+lw = 0 [u v w] (h k l) 时,一定满足:h=u, k=v, l=w
同一直线上,方向相反的晶向其指数加负号;
原子排列相同但空间位向不同的所有晶向称为晶向族, 用< >括号表示。 例如<100>包含:[100],[010],[001 ],[1 00],[0 1 0],[001] z [011] 不通过原点的晶向: (x2-x1):(y2-y1):(z2-z1) =u:v:w
一、晶向指数
确定晶向指数的步骤: 建立坐标系:oxyz, 晶格长度作为单位长度,原点o在待定晶向上;
找出该晶向上除原点外的任意一点的坐标:x,y,z; 将x,y,z 按比例划成互质(最小)整数u,v,w;
将u,v,w 三个数放在方括号内,就得到晶向指数[uvw]。
[说明]: 晶向指数表示的是一族平行的晶向,即相互平行的晶向 具有相同的晶向指数;
[0 1 0]
o x
[1 0 1] [010] y

晶体学基础

晶体学基础

2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl

r rhkl
r .rhkl

h
k
av*
l

r bcv**
av*
r b*
h
cv*
k

l
h
h
k
l

G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;

材料科学基础 第1章 晶体学基础

材料科学基础 第1章 晶体学基础
人类使用的材料中大多为晶态(Crystalline),包括单晶、 多晶、微晶和液晶等。那么什么是晶体? 晶体有何特点?
金刚石
Nacl
水晶
CaF2
MoS2
闪锌矿
高分辨率电镜-High Resolution Electron Microscopy (HREM)
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
底心正方和简单 正方点阵的关系
例:结构对性能的影响-Sn 1850 in Russia. The winter that year was particularly cold, and record low temperatures persisted for extended periods of time. The uniforms of some Russian soldiers had tin buttons, many of which crumbled due to these extreme cold conditions, as did also many of the tin church organ pipes. This problem came to be known as the “tin disease.”
组平行的晶面应当包含点阵所有的阵点。 ● 2、晶向(lattice or crystal directions) 通过两阵点之间的直线。 ● 3、定量表示晶面和晶向的意义 各向异性,结构分析(需要表征晶体结构内部的不同

晶体学基础必学知识点

晶体学基础必学知识点

晶体学基础必学知识点1. 晶体的定义:晶体是由原子、离子或分子以有序排列形成的固态物质。

2. 结晶学:研究晶体的结构、性质以及晶体的生长过程。

3. 晶体的晶格:晶体具有规则的周期性排列结构,可以用晶格来描述。

4. 晶胞:晶体中最小的重复单元,可以通过平移来产生整个晶体结构。

5. 晶体的晶系:根据晶胞的对称性,晶体可以分为七个晶系,分别为三斜晶系、单斜晶系、正交晶系、四方晶系、六方晶系、菱方晶系和立方晶系。

6. 晶体的晶面和晶向:晶体表面上的平面称为晶面,晶体内部的线段称为晶向。

7. 晶体的点阵和晶格常数:晶胞中的基本单位称为点阵,晶体的晶格常数是指晶格中基本单位的尺寸参数。

8. 布拉格方程:描述X射线或中子衍射中晶体衍射角度与晶格参数之间的关系。

9. 动态散射理论:描述X射线或中子与晶体中原子、离子或分子相互作用的过程。

10. 逆格子:描述晶格的倒数空间,逆格子与晶格的结构存在对偶关系。

11. 晶体缺陷:晶体中的缺陷包括点缺陷、线缺陷和面缺陷,晶体缺陷对晶体的性质和行为有重要影响。

12. 晶体生长:研究晶体从溶液或气体中的形成过程,包括核化、生长和晶面的形态演化等。

13. 晶体的结构表征方法:包括X射线衍射、中子衍射、电子衍射、扫描电子显微镜和透射电子显微镜等。

14. 晶体结构的解析和精修:通过衍射数据和晶体学软件对晶体的结构进行解析和精修,得到晶体的准确原子位置和结构参数。

15. 晶体的物理和化学性质:晶体的结构对其性质有重要影响,包括光学性质、电学性质、磁学性质和力学性质等。

16. 晶体学的应用:晶体学在材料科学、化学、生物学、地质学和矿物学等领域有广泛的应用,如材料合成、催化剂设计、药物研发和矿石勘探等。

第三章_晶体学基础

第三章_晶体学基础
简单格子 底心格子 体心格子 面心格子
十四种空间格子(布拉菲格子)
综合考虑单位平行六面体的划分和附加结点的类型,七个晶系空间格 子的基本类型共有十四种。
三斜晶系:三斜简单格子; 单斜晶系:单斜简单格子,单斜底心格子; 斜方晶系:斜方简单格子,斜方底心格子, (正交) 斜方体心格子,斜方面心格子; 四方晶系:四方简单格子,四方体心格子; 三方晶系:三方简单格子(三方菱面体格子); 六方晶系:六方简单格子; 立方晶系:立方简单格子,立方体心格子, 立方面心格子。
简单P
立方I
立方F
立方晶系:a = b=c
α=β=γ=90°
四方P 四方晶系: a = b≠c
四方I α=β=γ=90°
正交P
正交C 正交晶系:a≠b ≠ c
正交I α=β=γ=90°
正交F
单斜P 单斜晶系:a≠b ≠ c
单斜C α=γ=90° β> 90°
六方H
三方R
三斜P
六方晶系: a = b≠c 三方晶系: a = b=c 三斜晶系:a≠b≠c
故确定的步骤为:
● 选定晶轴X、Y、Z和a、b、c为轴单位;
● 平移晶向(棱)直线过原点;
● 在该直线上任取一结点M,将其投影至X、

Y、Z轴得截距OX、OY、OZ;
● 作OX/a:OY/b:OZ/c = u:v:w(最小
整数比);
● 去掉比号,加中括号,[u v w]即为晶
向符号。
某一晶向指数代表一组在
结构基元:组成晶体的离 子、原子或分子。基元内 的原子数等于晶体中原子 的种类数。
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)

晶体学基础

晶体学基础

晶体学基础一、晶体学的定义和基本概念1.1 晶体学的定义晶体学是研究晶体结构、晶体形态和晶体性质的学科,是物理学、化学和材料科学的重要分支。

它研究的对象是晶体,即具有规则、周期性排列的原子、分子或离子结构的固体物质。

1.2 晶体学的基本概念晶体学有一些基本概念,包括晶体的晶系、晶胞、晶面和晶点等。

1.2.1 晶体的晶系晶体的晶系是指晶体中晶胞的对称性,常见的晶系有立方晶系、四方晶系、正交晶系、单斜晶系、斜方晶系、三斜晶系和三角晶系。

不同的晶系具有不同的对称性和晶胞形状。

1.2.2 晶体的晶胞晶体的晶胞是晶体中具有一定对称性的最小重复单元,它由一组原子、分子或离子构成。

晶胞的形状和大小决定了晶体的外形和晶系。

1.2.3 晶体的晶面晶体的晶面是晶胞的界面,它可以由晶胞的截面所确定。

晶体的晶面具有一定的对称性和形状,不同的晶面反映了晶体内部的原子、分子或离子的排列方式。

1.2.4 晶体的晶点晶体的晶点是晶体中原子、分子或离子的位置,它们通过相对位置的排列而形成晶体的结构。

晶点的排列方式决定了晶体的周期性。

二、晶体学的研究方法2.1 X射线衍射方法X射线衍射是研究晶体结构的重要方法之一。

通过将X射线照射到晶体上,通过对衍射光的观察和分析,可以确定晶体的晶胞参数、原子位置和晶体结构。

2.2 电子显微镜方法电子显微镜是一种利用电子束来观察物体的显微镜。

通过电子显微镜,可以对晶体进行高分辨率的成像,揭示晶体的微观结构和原子排列方式。

2.3 光学显微镜方法光学显微镜是利用光学原理观察物体的显微镜。

通过光学显微镜,可以对晶体的形态、结构和颜色进行观察和分析,从而了解晶体的基本特征。

2.4 计算方法晶体学还利用计算方法对晶体结构进行模拟和计算。

通过计算方法,可以预测晶体的结构、性质和响应等,对晶体学研究起到重要的辅助作用。

三、晶体学的应用领域3.1 材料科学晶体学在材料科学领域有着广泛的应用。

通过研究晶体的结构和性质,可以设计和合成新材料,提高材料的性能和功能。

(完整版)第1章 晶体学基础

(完整版)第1章 晶体学基础

第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。

晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。

为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。

这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。

要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。

凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。

点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。

这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。

1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。

每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。

取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。

图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。

晶体学基础知识

晶体学基础知识
距也相同。
不同晶面族的晶面间距也不相同。
面心立方和密堆六方的原子堆垛
原子的密排面的形式:在平面上每个原子与六个原子相切。
hcp中为(0001)面,
按 –ABABAB-方式堆垛。
Fcc中为{111}面,
按 –ABCABCABC-方式 堆垛。
平行六面体的三个棱长a、b、c和及其夹角α 、 β 、γ ,可决定平行六面体尺寸和形状,这六 个量亦称为点阵常数。
晶系

晶系——按点阵常数的特征对晶体的分类,可分为7大 晶系。
晶向与晶面指数
晶向——空间点阵中阵点列的方向。空间中任两阵点

的连线的方向,代表了晶体中原子列的方向。 晶向指数——表示晶向方位符号。
晶向与晶面指数
晶面:空间中不在一直线任三个阵点的构成的平面,

代表了晶体中原子列的方向。 晶面指数:表示晶面方位的符号。
立方系典型晶面
晶向与晶面指数

晶面指数与晶向指数关系:(hkl)⊥[hkl]
c
(111) [111]
c (110)
b a
a
b [110]
晶面间距
晶面间距:指相邻两个平行晶面之间的距离。 晶面间的距离越大,晶面上的原子排列越密集。 同一晶面族的原子排列方式相同,它们的晶面间的间
晶体学基础知识
晶格与晶胞
晶格
为了表达空间原子排列的几何规律,把粒子(原子或分 子)在空间的平衡位置作为阵点,人为地将阵点用一系 列相互平行的直线连接起来形成的空间格架称为晶格。
Байду номын сангаас 晶格与晶胞

晶胞——构成晶格的最基本单元,在三维空间 重复堆砌可构成整个空间点阵,通常为小的平 行六面体。
晶格与晶胞

01晶体学基础

01晶体学基础

上一内容 下一内容 回主目录
返回
续二
(1)电子和空穴:有效电荷与实际电荷相等。 (2)原子晶体:带电的取代杂质缺陷的有效电荷就
等于该杂质离子的实际电荷。 (3)化合物晶体:缺陷的有效电荷一般不等于实际
电荷。
上一内容 下一内容 回主目录
返回
缺陷的表示
• 无缺陷状态:0 • 晶格结点空位:VM, VX • 填隙原子:Ai, Xi • 错位原子:在AB中,AB, BA • 取代原子:在MX中NM • 电子缺陷:e’, h• • 带电缺陷: VM’, VX •, Ai •, Xi’, AB, BA , NM(n-m)
• 箭头表示反应方向
V V 0 NaCl(s) ' •
Na
Cl
• 箭头上表示基质的化学


生成物主要由缺陷组成
AgCl
AgCl(s )
Agi•
VA' g
Cl
Cl
上一内容 下一内容 回主目录
返回
基本的缺陷反应方程式
1.具有夫伦克耳缺陷(具有等浓度的晶格空位和填隙原子的 缺陷)的整比化合物M2+X2-:
位错模型
如图所示,晶体中多余的半原子面好象一片刀刃切入晶体中, 沿着半原子面的“刃边”,形成一条间隙较大的“管道”,该 “管道”周围附近的原子偏离平衡位置,造成晶格畸变。刃型 位错包括“管道”及其周围晶格发生畸变的范围,通常只有3到 5个原子间距宽,而位错的长度却有几百至几万个原子间距。刃 位错用符号 “┻”表示。
内容回顾
1.晶体结构的周期性; 2.点阵结构与点阵; 3. 点阵与平移群及与点阵结构的关系; 4. 晶体结构参数; 5. 晶面指数的确定;
上一内容 下一内容 回主目录

晶体学基础

晶体学基础

1.4晶体学基础(晶向指数与晶面指数)(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--晶向指数和晶面指数一晶向和晶面1 晶向晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。

晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

2 晶面晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。

晶体中原子所构成的平面。

不同的晶面和晶向具有不同的原子排列和不同的取向。

材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。

所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。

为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。

二晶向指数和晶面指数的确定1 晶向指数的确定方法三指数表示晶向指数[uvw]的步骤如图1所示。

(1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。

(2)选取该晶向上原点以外的任一点P(xa,yb,zc)。

(3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。

(4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。

图1 晶向指数的确定方法图2 不同的晶向及其指数当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。

若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y 2,z 2),然后将(x 1-x 2),(y 1-y 2),(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。

则[uvw ]为该晶向的指数。

显然,晶向指数表示了所有相互平行、方向一致的晶向。

晶体学基础专题知识

晶体学基础专题知识

2.3 极射赤平投影和乌尔夫网
直立小园旳投影为一段圆弧。其位置和大小取决 于小园旳位置和大小。
2.3 极射赤平投影和乌尔夫网 水平小园投影仍为一种园,并以基园旳圆心为圆心。
2.3 极射赤平投影和乌尔夫网 倾斜小园旳投影为一小圆。其位置决定于小园旳位置。
2.3 极射赤平投影和乌尔夫网 ②和投影面垂直旳大圆旳极射投影是过基圆圆心旳直线。
2.1 面角守恒定律
晶面角守恒定律告诉我们:将一种物质旳一种晶体旳m1面 与另一晶体旳相应面m1´平行放置,则这两个晶体其他旳相 应晶面m2与m2´,…………,mn与mn´也相互平行,即同一种
物质旳相应晶面间夹角不变。
2.1 面角守恒定律
成份和构造相同旳晶体,经常因生长环境条件变化旳 影响,而形成不同旳外形,或者偏离理想旳形态而形 成所谓旳“歪晶”。
2.3 极射赤平投影和乌尔夫网 将基园拿出来,根据倾斜大园和直立小园投影旳成果, 并标示出合适旳角度间隔,就是著名旳乌尔夫网(吴 氏网)。
乌尔夫网是极射投影旳量度工具。
2.3 极射赤平投影和乌尔夫网
基园旳刻度可用来度量方位角 ,旋转 一周为360; 直径上旳刻度能够用来度量极距角, 从圆心为=0,到圆周为=90;
在球面坐标网中,与纬度相当旳是极距角,与经 度相当旳是方位角。如图所示。
2.2 晶体旳球面投影及其坐标
① 极距角():投影轴与晶面法线或直线间旳夹角,也 就是北极N与球面上投影点之间旳弧度,故称极距角。 极距角都是从北极N点开始度量,从投影球N极到S极, 共分180°。
② 方位角():是包括晶面法线或直线要素旳子午面与 投影球零子午面之间旳夹角。也就是球面上投影点所在 旳子午线与零子午线之间旳水平弧度,故称方位角。方 位角都是从零度子午线(=0,一般在投影球最右侧) 开始顺时针方向计角旳,投影球一周旳方位角共分为 360°。 有了球面坐标网后来,只要懂得投影点旳球面坐标值, 即能够拟定投影点在球面上旳位置。

1-1-晶体学基础

1-1-晶体学基础
14
二、单晶体、多晶体和微晶体
15
16
三、同质多晶和类质同晶 (polymorphism and isomorphism)
17
பைடு நூலகம்
四、液晶 (liquid crystal)

18
第二节 晶体结构的对称性
自然界中很多事物都是对称的
如何堆积?
仅有周期性是不够的
对称性
19
人类也偏爱对称性
20
• 对称操作与对称元素 • 旋转-旋转轴
第一章 晶体学基础 引言
一、晶体的宏观特征
1 规则的几何外形: 光泽 2 有固定的熔点 3 各向异性 4 晶面角守恒
1
二、晶体学发展简史
经典晶体学 (几何晶体学)
1669 年,丹麦学者斯蒂诺对石英( SiO 2 ) 和赤铁矿Fe2O3)晶体的研究,提出了晶体
学第一定律 面角守恒定律,即“同种物
2
3
现代晶体学
1901 年 Nobel 物理奖 (首届)
4
1914年 Nobel 物理奖
5
1915 年 Nobel 物理奖
6
第一节 晶体结构的周期性
结点:晶体内部微粒占有的位置抽象成几何上的点。 点阵:结点在三维空间的规则排列所组成的几何图形。 晶胞:晶体的基本重复单位。
平行六面体单位+结构基元 = 晶胞
素晶胞 (原始晶胞)、复晶胞
晶胞参数:大小和形状 a, b, c, αβγ 分数坐标
7
Na+ 与 Cl- 之间的距离: ½ a.
Cs+ 与 Cl- 之间的距离: a .
3 2
结构基元数目:
4
1
2
8
晶体结构:空间点阵 + 结构基元
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛要求:初赛要求:晶体结构。

晶胞。

原子坐标。

晶格能。

晶胞中原子数或分子数的计算及与化学式的关系。

分子晶体、原子晶体、离子晶体和金属晶体。

配位数。

晶体的堆积与填隙模型。

常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。

决赛要求:晶体结构。

点阵的基本概念。

晶系。

宏观对称元素。

十四种空间点阵类型。

第七章晶体学基础Chapter 7. The basic knowledge of crystallography§7.1 晶体结构的周期性和点阵(Periodicity and lattices of crystal structures)一、.晶体远古时期,人类从宝石开始认识晶体。

红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。

名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。

世界上的固态物质可分为二类,一类是晶态,一类是非晶态。

自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。

人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。

另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。

晶体结构最基本的特征是周期性。

晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。

由于这样的内部结构,晶体具有以下性质:1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。

晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、分子按相同的结构排列而成。

气体、液体和非晶态的玻璃体也有均匀性,但那些体系中原子无规律地杂乱排列,体系中原子的无序分布导致宏观上统计结果的均匀性。

2、各向异性:晶体在不同的方向上具有不同的物理性质,如不同的方向具有不同的电导率,不同的折光率和不同的机械强度等。

晶体的这种特征,是由晶体内部原子的周期性排列所决定的。

在周期性排列的微观结构单元之中,不同方向的原子或分子的排列情况是不同的,这种差异通过成千上万次叠加,在宏观体现出各向异性。

而玻璃体等非晶态物质,微观结构的差异,由于无序分布而平均化了,所以非晶态物质是各向同性的。

例如玻璃的折光率是各向等同的,我们隔着玻璃观察物体就不会产生视差变形。

3、各种晶体生长中会自发形成确定的多面体外形。

晶体在生长过程中自发形成晶面,晶面相交成为晶棱,晶棱聚成顶点,使晶体具有某种多面体外形的特点。

熔融的玻璃体冷却时,随着温度降低,粘度变大,流动性变小,逐渐固化成表面光滑的无定形物,工匠因此可将玻璃体制成各种形状的物品,它与晶体有棱、有角、有晶面的情况完全不同。

4、晶体有确定的熔点而非晶态没有。

晶体加热至熔点开始熔化,熔化过程中温度保持不变,熔化成液态后温度才继续上升。

而非晶态玻璃体熔化时,随着温度升高,粘度逐渐变小,成流动性较大的液体。

5、晶体具有对称性。

晶体的外观与内部微观结构都具有特定的对称性,以后几节会专门介绍。

二、点阵与结构单元1895年Roentgen发现X射线,1912年Bragg首次用X射线衍射测定晶体结构,标志现代晶体学的创立。

晶体内部原子、分子结构的基本单元,在三维空间作周期性重复排列,我们可用一种数学抽象——点阵来研究它。

若晶体内部结构的基本单元可抽象为一个或几个点,则整个晶体可用一个三维点阵来表示。

点阵是一组无限的点,点阵中每个点都具有完全相同的周围环境。

在平移的对称操作下,(连结点阵中任意两点的矢量,按此矢量平移),所有点都能复原,满足以上条件的一组点称为点阵。

我们观察图7-2的二维平面几组点,在(a)组点中,每个点周围的环境不完全相同,所以不是点阵点,(b)组与(C)组点,每个点的周围环境都相同,平移矢量a、b作用后,图形都能复原,所以是点阵。

CuSe图7-2我们研究的晶体含有各种原子、分子,它们按某种规律排列成基本结构单元,我们可按结构基元抽象为点阵点。

我们先观察二维周期排列的一些原子、分子。

(a)为金属Cu的一层平面排列,每个Cu 原子可抽取一个点阵点。

在二维平面中,可将点阵点连接成平面格子。

图7-3 二维周期排列的晶体结构及平面格子我们研究的晶体含有各种原子、分子,它们按某种规律排列成基本结构单元,我们可按结构基元抽象为点阵点。

我们先观察二维周期排列的一些原子、分子。

(a)为金属Cu的一层平面排列,每个Cu 原子可抽取一个点阵点。

在二维平面中,可将点阵点连接成平面格子。

图7-4请注意:六方格子包含了六重旋转轴的对称性,每个点阵点周围有6个点阵点相邻,但六方格子的基本单位必须取平行四边形。

讨论二维点阵结构后,进一步分析晶体结构。

晶体结构是在三维空间伸展的点阵结构。

由晶体结构抽取的空间点阵中,一定可以找出与3个基本周期对应的3个互不平行的矢量a、b、c。

与空间点阵相应的平移群是:T mnp=m a+n b+p c m,n,p=0, ±1,±2……平移a、b、c矢量将点阵点相互连结起来,可将空间点阵划分为空间格子,空间格子将晶体结构截成一个包含相同内容的单位,这个基本单位叫晶胞。

图7-5 空间点群一共有十四种空间点群三.晶胞和晶胞参数晶胞是由微粒(原子、分子或离子)在三维空间整齐排列而成。

晶胞中最小的重复单元称为结构基元。

晶体则是结构基元在三维空间周期性重复出现所形成的固体。

晶体结构包括两方面:一是结构基元所包含微粒的种类、数量及相互关系;另一方面是结构基元在空间周期性排列的规律。

把前者结构基元抽象成几何点称为点阵点,后者就可用点阵结构表示。

晶胞是晶体的最小单位,晶体可视为是有一个个晶胞在三维空间并置堆砌而成。

因此只要了解晶胞,整个晶体结构也就掌握了。

在点阵结构中,将点阵点用结构基元代替,空间点阵单位就成为晶胞。

晶胞包括二个要素:几何要素和化学要素。

几何要素是指晶胞的大小、形式,用晶胞参数a、b、c、α、β、γ表示。

三个向量的长度a,、b、c表示大小,向量的夹角α=(b c)的夹角,β=(a b)的夹角,γ=(a b)的夹角表示方向;化学要素是指晶胞的内容,即晶胞中有哪些微粒(原子、分子、离子)、及他们的数量和位置。

位置用分数坐标表示。

晶胞参数( unit cell parameters)构成晶胞的六面体的三个边长(a、b、c)和它们之间的夹角α.β.γ,它们决定晶体的结构和大小。

晶胞的内容由组成晶胞的原子或分子及它们在晶胞中的位置所决定。

图7-7 为CsCl 的晶体结构。

Cl与Cs的1:1存在。

若C S+Cl-取一点阵点,我们可将点阵点取Cl-的位置。

根据Cl-的排列,我们可取出一个a=b=c,α=β=γ=90º的立方晶胞,其中8个Cl-原子位于晶胞顶点,但每个顶点实际为8个晶胞共有,所以晶胞中含8×1/8=1个Cl-原子。

Cs+原子位于晶胞中心。

晶胞中只有1个点阵点。

故为素晶胞。

图7-6为8个CsCl晶胞。

右上角为一个单胞。

图7-6 CsCl晶体结构图7-7是金刚石的晶胞。

金刚石也是一个a=b=c,α=β=γ=90º的立方晶胞,晶胞除了顶点8×1/8=1个C原子外,每个面心位置各有1个C原子,由于面心位置C原子为2个晶胞共有。

故6×1/2=3个C原子,除此晶胞内部还有4个C原子,所以金刚石晶胞共有1+3+4=8个C原子。

对于晶胞的棱心位置的原子,则为4个晶胞共有,计数为1/4个。

图7-7 金刚石晶胞四 .晶面1、晶面指标不同方向的晶面,由于原子、分子排列不同,具有不同的性质。

为了区别,晶体学中给予不同方向的晶面以不同的指标,称为晶面指标。

设有一组晶面与3个坐标轴x 、y 、z 相交,在3个坐标轴上的截距分别为r,s,t(以a,b,c 为单位的截距数目),截距数目之比 r:s:t 可表示晶面的方向。

但直接用截距比表示时,当晶面与某一坐标轴平行时,截距会出现∞,为了避免这种情况发生,规定截距的倒数比1/r:1/s:1/t 作为晶体指标。

由于点阵特性,截距倒数比可以成互质整数比1/r:1/s:1/t=h:k:l ,晶面指标用(hkl )表示。

图7-8图7-8中,r 、s 、t 分别为2,2,3;1/r:1/s:1/t=1/2:1/2:1/3=3:3:2,即晶面指标为(332),我们说(332)晶面,实际是指一组平行的晶面。

图7-9 示出立方晶系几组晶面及其晶面指标。

(100)晶面表示晶面与1/a 轴相截与b 轴、c 轴平行;(110)晶面面表示与a 和b 轴相截,与c 轴平行;(111)晶面则与a 、b 、c 轴相截,截距之比为1:1:1图7-9 立方晶体几组晶面晶面指标出现负值表示晶面在晶轴的反向与晶轴相截。

晶面、、、、、可通过3重或4重旋转轴联系起来,晶面性质是相同的,可用{100}符号来代表这6个晶面。

同理可用{111}代表、、、、、、、8个晶面。

2、晶面间距一组平行晶面(hkl)中两个相邻平面间的垂直距离称为晶面间距,用d hkl表示。

§7.2 晶体的对称性(Symmetry in crystal)一、七个晶系根据晶体的对称性,可将晶体分为七个晶系,每个晶系有它自己的特征对称元素。

对称性高的晶体,晶胞的规则性强,如立方晶系的晶胞是立方体,晶胞三个边长(即晶轴单位长度)相等并互相垂直。

这样的晶体,通过立方晶胞4个体对角线方向各有1个3重轴。

这四个3重轴称为立方晶系的特征对称元素。

我们若在晶体外形或宏观性质中发现4个3重轴,就可判定该晶体结构中必定存在立方晶系(英文为Cubic)。

由于立方晶系的晶体包含一个以上高次轴,也将立方晶系称作高级晶系。

还有些晶系,晶胞中至少有2个晶轴的单位长度是相等的,更重要的是这些晶胞中都有一个高次轴(6次轴、4次轴或3次轴),这个高次轴就称为他们的特征对称元素。

这些晶系有六方晶系(Hexagonal)、四方晶系(Tetragonal)、三方晶系(Trigonal)。

由于它们晶胞形状规则性比立方晶系低,又统称为中级晶系。

六方晶系的特征是宏观可观察到6次轴对称性,但每个晶胞仍是a、b晶轴相等,夹角为120°的平行六面体。

四方晶系中晶轴夹角都是90°,a、b轴亦相等。

另有3个晶系是正交晶系(Orthorhombic)、单斜晶系(Monoclinic)、三斜晶系(Triclinic),特征对称元素都不包含高次轴,所以统称为低级晶系。

相关文档
最新文档