确定二次函数关系式的常见题型及解法

合集下载

解题秘诀二次函数最值的4种解法

解题秘诀二次函数最值的4种解法

解题秘诀二次函数最值的4种解法二次函数是高中数学中的一个重要知识点,掌握了解题的秘诀和方法,就可以更好地解决与二次函数相关的各种问题。

本文将介绍四种解法来求解二次函数的最值问题。

一、二次函数的最值根据导数解法要求解二次函数的最值,可以通过求导数的方法来解决。

具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2. 对函数进行求导,得到导函数:f'(x) = 2ax + b。

3.导函数表示了二次函数的斜率,要求函数的最值,就是要求导函数为零点时的x值。

4. 解方程2ax + b = 0,求得x = -b / 2a。

5.将求得的x值代入二次函数,计算得到对应的y值。

6.x和y的值就是二次函数的最值。

二、二次函数的最值根据顶点法解法顶点法也是求解二次函数的最值的一种方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2.求出二次函数的顶点坐标,顶点的x值为-x/2a。

3.将求得的x值代入二次函数,计算得到对应的y值。

4.x和y的值就是二次函数的最值。

三、二次函数的最值根据平移法解法平移法是一种通过平移变换求解二次函数最值的方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2.将二次函数表示为顶点形式:f(x)=a(x-h)^2+k,其中(h,k)为顶点坐标。

3.根据函数的几何性质,二次函数的最值就是顶点的纵坐标k。

四、二次函数的最值根据因式分解解法因式分解是一种求解二次函数最值的常用方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。

2.将二次函数进行因式分解:f(x)=a(x-x1)(x-x2),其中x1和x2为二次函数的两个零点。

3.根据函数的几何性质,二次函数的最值为x轴与二次函数的拐点处的纵坐标。

通过以上四种解法,我们可以灵活地解决二次函数的最值问题。

已知三点确定二次函数的表达式

已知三点确定二次函数的表达式

解法一: 设所求二次函数关系式为:y = ax2+bx+c.
又抛物线过点(1,0),(3,0),(2,-1),
依题意得: a+b+c=0
a 1
9a+3b+c = 0 解得 b 4
4a + 2b + c=-1
c3
∴所求的函数关系式为
y x2 。4x 3
解法二 ∵点(1,0)和(3,0)是抛 物线与x轴的两个交点, ∴设二次函数关系式为:y=a(x-1)(x-3), 又抛物线过点(2,-1), ∴ -1=a(2-1)(2-3) 解得a 1
确定二次函数的关系式
①设 设二次函数的关系式 ②代 将相关数值代入关系式得到方程或
方程组 ③解 解方程或方程组得出待定系数的值 ④写 写出该二次函数的关系式
例1:已知抛物线图象上三个点的坐标(1,0), (3,0),(2,-1)求二次函数关系式。
例1:已知抛物线图象上三个点的坐标(1,0), (3,0),(2,-1),求二次函数关系式。
小 结:
如何选择不同形式的二次函数的关系式?
1.一般式:y ax2 bx c(a 0)
(已知抛物线上三点或三对x、y的值,用一般式.)
2.顶点式: y a x h2 k(a 0)
(已知抛物线的顶点或对称轴或最值,用顶点式.)
3.交点式 : y a(x x1)(x x2 )(a 0)
求c的值
∴设二次函数的关系式为y=a(x-1)2+2
∵图象经过点(3,-6)
∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的关系式为y=-2(x-1)2+2
即: y=-2x2+4x

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。

初中二次函数解析式的确定,例题和答案

初中二次函数解析式的确定,例题和答案

第一、求二次函数解析式的问题一.知识要点:1.已知抛物线的顶点(m,n )及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-a)2+b.,式中只有一个待定系数k,把(m,n )代入即可求出k ,从而求出抛物线的解析式。

2. 已知抛物线与x 轴的交点(x 1,0)和(x 2,0)及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-x 1 )(x-x 2 ) 式中只有一个待定系数k,把(a,b )代入即可求出k ,从而求出抛物线的解析式。

3. 已知抛物线上任意三点(x 1,y 1)(x 2,y 2)(x 3,y 3)这时可以设抛物线的解析式为:y=ax 2+bx+c,式中含有三个待定系数a 、b 、c 把(x 1,y 1)(x 2,y 2)(x 3,y 3)代入,得到含a , b, c 的方程组,即可求出k ,从而求出抛物线的解析式。

二. 重点、难点:重点:求二次函数的函数关系式难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。

三. 教学建议:求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。

典型例题例1.已知某二次函数的图象经过点A (-1,-6),B (2,3),C (0,-5)三点,求其函数关系式。

例2. 已知二次函数y ax bx c =++2的图象的顶点为(1,-92),且经过点(-2,0),求该二次函数的函数关系式。

例3. 已知二次函数图象的对称轴是x =-3,且函数有最大值为2,图象与x 轴的一个交点是(-1,0),求这个二次函数的解析式。

例4. 已知二次函数y ax bx c =++2的图象如图1所示,则这个二次函数的关系式是__________________。

图1例5. 已知:抛物线在x 轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式例6. 已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式。

二次函数图像的变换及解析式的确定(必考)

二次函数图像的变换及解析式的确定(必考)
(2,-2),设抛物线解析式为 = ሺ − ሻ −,将(1,0)代入,得0=a-
2,解得a=2,∴抛物线的解析式为 = ሺ − ሻ − = − + .
>
/m
<
解法2:∵抛物线 = + + 的对称轴为x=2,且与x轴交于点(1,0),
∴抛物线与x轴的另一个交点为(3,0),∴抛物线的解析式为 = ሺ −
+ ሻሺ − ሻ,把(0,3)代入,得a·3×(-1)=3,解得a=-1,
∴该二次函数的表达式为 = −ሺ + ሻሺ − ሻ,
即 = − − + .
>
m
<
>
/m
<
类型8 利用平移变换求抛物线解析式
(人教九上P35例3改编)将二次函数 = 22 + 4 + 1 的图象向右平移2个
<
>
/m
<
>
m
<
>
/m
<
续表
变换形式
图象关系
点坐标变化
横坐标 互
>
m
<
关于 轴
>
m
<
>
m
<
>
/m
<
>
/m
<
为相反数,
>
/m
<
系数关系
不变
______
本质
相同
开口方向______
相 − 值______,
变号
互为____

2

反数

求二次函数解析式的五种常见类型

求二次函数解析式的五种常见类型
A B = A N 2 + B N 2 = 4 2 + 4 2 = 42 ,
因此AM+OM的最小值为4 2 .
返回
方法2 利用顶点式求二次函数解析式
4.在平面直角坐标系内,二次函数图象的顶点为A(1,
-4),且过点B(3,0),求该二次函数的解析式.
解:∵二次函数图象的顶点为A(1,-4),
∴设y=a(x-1)2-4.
x2+4x. 解得a=- .
解:把A(-2,-4),O(0,0),B(2,0)三
故y=(x-1)2-4,即y=x2-2x-3.
点的坐标代入y=ax +bx+c, 方法1 利用一般式求二次函数解析式
由函数的基本形式求二次函数解析式)
2
当x=0时,y=-1;
4 a- 2 b+ c= - 4, a = - 1 , 即y=-x2+4x-3.
解法三:∵抛物线的顶点坐标为(-2,4),与x轴的一个交点坐标为(1,0), 解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
设抛物线的解析式为y=a(x-2)2,
OM的最小值. 由函数的基本形式求二次函数解析式)
解法二:设抛物线对应的函数解析式为y=a(x+2)2+4,将点(1,0)的坐标代入得0=a(1+2)2+4,解得a=- .
返回
2.一个二次函数,当自变量x=-1时,函数值y=2; 当x=0时,y=-1;当x=1时,y=-2.那么这个 二次函数的解析式为____y_=__x_2-__2_x_-__1____.
返回
3.如图,在平面直角坐标系中,抛 物线y=ax2+bx+c经过A(-2, -4),O(0,0),B(2,0)三点.
组,得 (2)将抛物线C1向左平移3个单位长度,可使所得的抛物线C2经过坐标原点.如图,所求抛物线C2对应的函数解析式为y=x(x+4),即y=

求二次函数的解析式例题

求二次函数的解析式例题

求二次函数关系式求二次函数的关系式,有一定的灵活性和技巧性,一般地,二次函数的关系式有以下三种不同的表达形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0,(h,k)是抛物线的顶点坐标)(3)两点式:y=a(x-p)(x-q)+h[a≠0,(p,h)和(q,h)是图象上两个对称点的坐标.特别地,当已知二次函数的图象与x轴的两个交点的坐标是(x1,0)和(x2,0)时,可设所求函数式为:y=a(x-x1)(x-x2)(a≠0).例1 已知二次函数的图象过A(-1,-8)、B(4,-3)、C(5,-8)三点,求它的函数式.解法1设所求二次函数为y=ax2+bx+c,由已知,图象经过(-1,-8)、(4,-3),(5,-8)三点,得解得 a=-1,b=4,c=-3.所以,所求二次函数式为,y=-x2+4x-3.解法2由A、C两点的坐标可知,图象的对称轴是直线x=2,设所求函数式为y=a(x-2)2+k,因为图象过A(-1,-8)和B(4,-3),所以解得 a=-1,k=1.因此,所求函数为y=-(x-2)2+1, 即 y=-x2+4x-3解法3 由已知可知,点A(-1,-8)与点C(5,-8)互为对称点(对称轴是直线x=2),因此,设所求函数式为y=a(x-5)(x+1)-8,又点(4,-3)在函数图象上,于是得-3=a(4-5)(4+1)-8. a=-1所以,所求函数为y=-(x-5)(x+1)-8, 即 y=-x2+4x-3.例2 已知二次函数的图象与x轴的两交点的距离是4,且当x=1,函数有最小值-4,求这个二次函数的关系式.解法1 由已知,得抛物线的对称轴是x=1,与x轴两交点的坐标分别是(-1,0)和(3,0),顶点坐标是(1,-4),设所求二次函数式为y=ax2+bx+c,则有解得 a=1,b=-2,c=-3.所以所求二次函数关系式为y=x2-2x-3.解法2 因为抛物线的顶点坐标为(1,-4),且过(-1,0),故设二次函数关系式为y=a(x-1)2-4,并将x=-1,y=0代入,得 a=1,所以所求二次函数关系式为y=(x-1)2-4,即 y=x2-2x-3.)和(3,0),顶点坐标是(1,-4),解法3因为抛物线与x轴的交点坐标分别是(1,0因此,设函数关系式为y=a(x+1)(x+3),将x=1,y=-4代入,得 a=1,故所求二次函数关系式为y=(x+1)(x-3), 即 y=x2-2x-3解法4 设所求函数关系式为y=ax2+bx+c,因为抛物线顶点坐标为(1,-4),且过(-1,0),于是得解得 a=1,b=-2,c=-3.故所求二次函数关系式为y=x2-2x-3.。

二次函数抛物线,与方程关系,例题及解析

二次函数抛物线,与方程关系,例题及解析

练习:1、已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是( A )A .1y >2yB .1y 2y =C .1y <2yD .不能确定 2、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是( B ) A. ab <0 B. ac <0C. 当x <2时,函数值随x 增大而增大;当x >2时,函数值随xD. 二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根.3、如图是二次函数y =ax 2+bx +c (a ≠0)在平面直角坐标系中的图象,根据图形判断 ①c >0;②a +b +c <0;③2a -b <0;④b 2+8a >4ac 中,正确的是(填写序号) ② 、④ .4、二次函数221=++-y ax x a 的图象可能是( B )5、在反比例函数ay x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( A )6、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( A )7、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( D )①240b ac ->; ②0abc >; ③80a c +>;④930a b c ++<. 其中,正确结论的个数是A. 1B. 2C. 3D. 48、已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点AB A .B .C .(-1,2),(1,0) . 下列结论正确的是( D)A. 当x >0时,函数值y 随x 的增大而增大B. 当x >0时,函数值y 随x 的增大而减小C. 存在一个负数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x > x 0时,函数值y 随x 的增大而增大D. 存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x >x 0时,函数值y 随x 的增大而增大 9、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有(B )A. 2个B. 3个C. 4个D. 5个10、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( B ). A.②④B. ①④C. ②③D. ①③11、已知二次函数y =x 2-x+a (a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( B )(A) m -1的函数值小于0 (B) m -1的函数值大于0(C) m -1的函数值等于0 (D) m -1的函数值与0的大小关系不确定12、定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为[2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( B )A. ①②③④B. ①②④C. ①③④D. ②④(Ⅳ) 二次函数y =ax 2+bx +c (a ≠0)图象的平移二次函数y =ax 2+bx +c (a ≠0)平移:a 不变,函数y =ax 2+bx +c (a ≠0)移),,对于旋转、对称变换也是一样。

【精选推荐】二次函数(确定二次函数的表达式)

【精选推荐】二次函数(确定二次函数的表达式)

∴二次函数的表达式为y=a(x-1)2+2, 将点(0,1)代入y=a(x-1)2+2, 得a=-1. ∴二次函数的表达式为y=-(x-1)2+2,即y=-x2+2x+1.
解法3:设二次函数的表达式为y=ax2+bx+c,将点(0,1),(1,2)和(2,1)分别代
入y=ax2+bx+c,
得 1 c,
因为只有一个系数a是未知
的,所以只需要知道图象上
一个点的坐标即可.
(2)形如y=a(x-h)2和
y=ax2+k的二次函数,有两个
系数是未知的,所以需要知
解:∵(4,3)是抛物线的顶点坐标,∴设二次
函数表达式为y=a(x-4)2+3,
把点(10,0)代入y=a(x-4)2+3,解得a= 1 , 12
因此铅球行进高度y(m)与水平距离x(m)
2=3x2-6x+1.故选B.
2. 二次函数的图象如图所示,则它的解析式正确的是( D )
A.y=2x2-4x
B.y=-x(x-2)
C.y=-(x-1)2+2
D.y=-2x2+4x
解析:根据图象得:抛物线的顶点坐标为 (1,2),设抛物线的解析式为y=a(x-1)2+2,将 (2,0)代入解析式,得0=a+2,解得a=-2,则抛物 线解析式为y=-2(x-1)2+2=-2x2+4x.故选D.
第二章 二次函数
学习新知
检测反馈
学习新知
生活中有很多类似抛 物线形状的建筑物,如 果你是设计师,你能设 计出这些建筑物吗?
初步探究确定二次函数表达式所需要的条件

二次函数经典例题及解答

二次函数经典例题及解答

⎧⎪⎨⎪⎩二次函数一、中考导航图1.二次函数的意义;2.二次函数的图象;3.二次函数的性质⎧⎪⎪⎨⎪⎪⎩顶点对称轴开口方向增减性顶点式:y=a(x-h)2+k(a ≠0)4.二次函数 待定系数法确定函数解析式一般式:y=ax 2+bx+c(a ≠0) 两根式:y=a(x-x 1)(x-x 2)(a ≠0)5.二次函数与一元二次方程的关系。

6.抛物线y=ax 2+bx+c 的图象与a 、b 、c 之间的关系。

三、中考知识梳理 1.二次函数的图象在画二次函数y=ax 2+bx+c(a ≠0)的图象时通常先通过配方配成y=a(x+b 2a)2+ 4a 24ac-b 的形式,先确定顶点(-b 2a,4a 24ac-b ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标. 2.理解二次函数的性质抛物线的开口方向由a 的符号来确定,当a>0时,在对称轴左侧y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大;简记左减右增,这时当x=-b 2a 时,y 最小值=4a24ac-b ;反之当a<•0时,简记左增右减,当x=-b2a时y 最大值=4a 24ac-b .3.待定系数法是确定二次函数解析式的常用方法一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax 2+bx+c,然后组成三元一次方程组来求解;在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k;在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x 轴一交点坐标和对称轴,则可设解析式为y=a(x-x 1)(x-x 2)来求解. 4.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 当y=0时抛物线便转化为一元二次方程ax 2+bx+c=0,即抛物线与x 轴有两个交点时,方程ax 2+bx+c=0有两个不相等实根;当抛物线y=ax 2+bx+c 与x 轴有一个交点,方程ax 2+bx+c=0有两个相等实根;当抛物线y=ax 2+bx+c 与x 轴无交点,•方程ax 2+bx+c=0无实根.5.抛物线y=ax 2+bx+c 中a 、b 、c 符号的确定a 的符号由抛物线开口方向决定,当a>0时,抛物线开口向上;当a<0时,•抛物线开口向下;c 的符号由抛物线与y 轴交点的纵坐标决定.当c>0时,抛物线交y 轴于正半轴;当c<0时,抛物线交y 轴于负半轴;b 的符号由对称轴来决定.当对称轴在y•轴左侧时,b 的符号与a 的符号相同;当对称轴在y 轴右侧时,b 的符号与a 的符号相反;•简记左同右异. 6.会构建二次函数模型解决一类与函数有关的应用性问题,•应用数形结合思想来解决有关的综合性问题. 四、中考题型例析 1. 二次函数解析式的确定例1 求满足下列条件的二次函数的解析式 (1)图象经过A(-1,3)、B(1,3)、C(2,6); (2)图象经过A(-1,0)、B(3,0),函数有最小值-8; (3)图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为y=ax 2+bx+c,把A(-1,3)、B(1,3)、C(2,6)各点代入上式得3,3,642.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩ 解得1,0,2.a b c =⎧⎪=⎨⎪=⎩∴解析式为y=x 2+2.(2)解法1:由A(-1,0)、B(3,0)得抛物线对称轴为x=1,所以顶点为(1,-8).• 设解析式为y=a(x-h)2+k,即y=a(x-1)2-8. 把x=-1,y=0代入上式得0=a(-2)2-8,∴a=2. 即解析式为y=2(x-1)2-8,即y=2x 2-4x-6.解法2:设解析式为y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把x=1,y=-8•代入上式得-8=a(1+1)(1-3).解得a=2, ∴解析式为y=2x 2-4x-6.解法3:∵图象过A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a. ∵函数有最小值-8.∴24(3)(2)4a a a a---=-8.又∵a ≠0,∴a=2.∴解析式为y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是x=-1,xyO又∵图象与x 轴两交点的距离为6,即AB=6.由抛物线的对称性可得A 、B 两点坐标分别为A(-4,0),B(2,0), 设出两根式y=a(x-x 1)·(x-x 2),将A(-4,0),B(2,0)代入上式求得函数解析式为y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意3对x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解;•如果三个已知条件中有顶点坐标或对称轴或最值,可选用y=a(x-h)2+k 来求解;若三个条件中已知抛物线与x 轴两交点坐标,则一般设解析式为y=a(x-x 1)(x-x 2). 2. 二次函数的图象例2 (2003·孝感)y=ax 2+bx+c(a ≠0)的图象如图所示,则点M(a,bc)在( • ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 分析:由图可知: 抛物线开口向上⇒a>0.002y c bx y b a ⇒<=-⇒<⎫⎪⎬⎪⎭抛物线与轴负半轴相交对称轴在轴右侧⇒bc>0.∴点M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定a 、b 、c 的符号.例3 (2003·岳阳)已知一次函数y=ax+c 二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系中的大致图象是( ).分析:一次函数y=ax+c,当a>0时,图象过一、三象限;当a<0时,图象过二、•四象限;c>0时,直线交y 轴于正半轴;当c<0时,直线交y 轴于负半轴;•对于二次函数y=•ax 2+bx+c(a ≠0)来讲:⎧⎪⎪⎪⎨⎪⎪⎪⎩开口上下决定a的正负左同右异(即对称轴在y轴左侧,b的符号与a的符号相同;)来判别b的符号抛物线与y轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当a>0时,二次函数y=ax 2+bx+c 的开口向上,而一次函数y=•ax+c 应过一、三象限,故排除C;当a<0时,用同样方法可排除A;c 决定直线与y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3. 二次函数的性质例4 (2002·杭州)对于反比例函数y=-2x与二次函数y=-x 2+3,•请说出他们的两个相同点:①_________,•②_________;•再说出它们的两个不同点:••①________,••②_________.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命题的热点.4. 二次函数的应用例5 (2003·厦门)已知抛物线y=x 2+(2k+1)x-k 2+k, (1)求证:此抛物线与x 轴总有两个不同的交点.(2)设x 1、x 2是此抛物线与x 轴两个交点的横坐标,且满足x 12+x 22=-2k 2+2k+1. ①求抛物线的解析式.②设点P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点,•且关于此抛物线的对称轴对称. 求m+m 的值.分析:(1)欲证抛物线与x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令y=0,证△>0即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出k 的值,可确定抛物线解析式;•②由P 、Q 关于此抛物线的对称轴对称得n 1=n 2,由n 1=m 12+m 1,n 2=m 22+m 2得m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0可求得m 1+m 2=-1. 解:(1)证明:△=(2k+1)2-4(-k 2+k) =4k 2+4k+1+4k 2-4k=8k 2+1. ∵8k 2+1>0,即△>0,∴抛物线与x 轴总有两个不同的交点.(2)①由题意得x1+x2=-(2k+1), x1· x2=-k2+k.∵x12+x22=-2k2+2k+1,∴(x1+x2)2-2x1x2=-2k2+2k+1,即(2k+1)2-2(-k2+k)=-2k2+k+1,4k2+4k+1+2k2-2k=-2k2+2k+1.∴8k2=0,∴k=0,∴抛物线的解析式是y=x2+x.②∵点P、Q关于此抛物线的对称轴对称,∴n1=n2.又n1=m12+m1,n2=m22+m2.∴m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0.∵P、Q是抛物上不同的点,∴m1≠m2,即m1-m2≠0.∴m1+m2+1=0即m1+m2=-1.点评:本题考查二次函数的图象(即抛物线)与x轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.基础达标验收卷一、选择题:1.(2003·大连)抛物线y=(x-2)2+3的对称轴是( ).A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004·重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,ca)在( ).A.第一象限;B.第二象限;C.第三象限;D.第四象限3.(2004·天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有( ).A.b2-4ac>0B.b2-4ac=0C.b2-4ac<0D.b2-4ac≤04.(2003·杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( ).A.b=3,c=7B.b=-9,c=-15C.b=3,c=3D.b=-9,c=215.(2004·河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ).6.(2004·昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ).A.4+mB.mC.2m-8D.8-2m二、填空题1.(2004·河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=_______.2.(2003·新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003·天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004·武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003·黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002·北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:三、解答题1.已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.2.已知抛物线y=- 12x2+(6- 2m)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值;(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.一、学科内综合题1.如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题3.某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?4.如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米?答案:基础达标验收卷一、1.D 2.D 3.A 4.A 5.B 6.C二、1.(x-1)2+2 2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-12x 2+2x+52 4.如y=-x 2+1 5.1 6.y=15x 2-85x+3或y=-15x 2+85x-3或y=-17x 2-87x+1或y=-17x 2+87x-1三、1.解:(1)∵函数y=x 2+bx-1的图象经过点(3,2), ∴9+3b-1=2,解得b=-2. ∴函数解析式为y=x 2-2x-1. (2)y=x 2-2x-1=(x-1)2-2. 图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x ≥3时,y ≥2. ∴当x>0时,使y ≥2的x 的取值范围是x ≥3. 2.(1)设A(x 1,0) B(x 2,0). ∵A 、B 两点关于y 轴对称.∴12120,0.x x x x +=⎧⎨≤⎩∴2(60,2(3)0.m ⎧⎪=⎨--≤⎪⎩解得m=6. (2)求得y=-12x 2+3.顶点坐标是(0,3) (3)方程-12x 2)x+m-3=0的两根互为相反数(或两根之和为零等). 3.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC; ②抛物线CBE; ③抛物线DEB; ④抛物线DEC; ⑤抛物线DBC. (2)在(1)中存在抛物线DBC,它与直线AE 不相交. 设抛物线DBC 的解析式为y=ax 2+bx+c.将D(-2, 92),B(1,0),C(4,0)三点坐标分别代入,得942,20,164.a b c a b c a b c ⎧-+=⎪⎪++=⎨⎪++=⎪⎩解这个方程组,得a=14,b=-54,c=1. ∴抛物线DBC 的解析式为y=14x 2-54x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2, 92),得a=14也可.】 又将直线AE 的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得20,6.m n n -+=⎧⎨=-⎩解这个方程组,得m=-3,n=-6. ∴直线AE 的解析式为y=-3x-6. 能力提高练习 一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y 轴的左侧, ∴-2ba<0,∴b>0. 又∵抛物线交于y 轴的负半轴. ∴c<0.(2)如图,连结AB 、AC.∵在Rt △AOB 中,∠ABO=45°, ∴∠OAB=45°.∴OB=OA.∴B(-3,0). 又∵在Rt △ACO 中,∠ACO=60°, ∴OC=OA ·cot60°3∴3 设二次函数的解析式为 y=ax 2+bx+c(a ≠0).由题意930,330,3.a b ca b cc-+=⎧⎪++=⎨⎪=-⎩3,31,3.abc⎧=⎪⎪⎪⇒=-⎨⎪=-⎪⎪⎩∴所求二次函数的解析式为y=33x2+ (3-1)x-3.3.解:(1)设s与t的函数关系式为s=at2+bt+c由题意得1.5,422,255 2.5;a b ca b ca b c++=-⎧⎪++=-⎨⎪++=⎩或1.5,422,0.a b ca b cc++=-⎧⎪++=-⎨⎪=⎩解得1,22,0.abc⎧=⎪⎪=-⎨⎪=⎪⎩∴s=12t2-2t.(2)把s=30代入s=12t2-2t, 得30=12t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s=12×72-2×7=212=10.5;把t=8代入,得s=12×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴25,100 3.a ha h=-⎧⎨=--⎩解得1,251.ah⎧=-⎪⎨⎪=⎩抛物线的解析式为y=-125x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.。

待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解〔提高〕【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,复原:将求出的待定系数复原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线y ax bx c =++2经过A ,B ,C 三点,当x ≥0时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为y ax bx c =++2〔a ≠0〕. 由图象可知A ,B ,C 的坐标分别为〔0,2〕,〔4,0〕,〔5,-3〕.∴=++=++=-⎧⎨⎪⎩⎪c a b c a b c 216402553,,,解之,得a b c =-==⎧⎨⎪⎪⎪⎩⎪⎪⎪12322,,∴抛物线的解析式为y x x =-++123222 y x x x =--+=--+1232123225822()()∴该抛物线的顶点坐标为()32258,.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围x ≥0.2. 一条抛物线y x mx n =++142经过点()032,与()432,.求这条抛物线的解析式. 【答案与解析】抛物线y x mx n =++142经过点〔032,〕和(,)432, ∴这条抛物线的对称轴是直线x =2.设所求抛物线的解析式为y x h =-+1422().将点(,)032代入,得1402322()-+=h ,解得h =12. ∴这条抛物线的解析式为y x =-+142122(),即y x x =-+14322. 【总结升华】解析式中的a 值已经知道,只需求出m n ,的值。

确定二次函数的表达式(经典)

确定二次函数的表达式(经典)
二次函数 确定二次函数的表达式
1
复习提问:
1.二次函数表达式的一般形式是什么?
y=ax²+bx+c (a,b,c为常数,a ≠0)
2.二次函数表达式的顶点式是什么?
y=a(x-h)2+k (a ≠0)
3.若二次函数y=ax²+bx+c(a≠0)与x轴两交点为 (x1,0),(x2,0)则其函数表达式可以表示成什么形 式?
AB 6CB AB 3,OC 0.9 2
B(3,0.9)代入y ax2中,0.9 a 32
a 0.1因此这段抛物线对应的二次
图 26.2.6
函数表示式为y 0.1x2 (3 x 3)
11
谈谈你的收获
12
〔议一议〕
通过上述问题的解决,您能体会到求二次函数 表达式采用的一般方法是什么?(待定系数法)
-b/2a = 3 (4ac-b2)/4a = 4
解方程组得:
a= -7 b= 42 c= -59 ∴ 二次函数的解析式为:y= -7x2+42x-59 5
解法2:(利用顶点式) ∵ 当x=3时,有最大值4∴ 顶点坐标为
(3,4) 设二次函数解析式为: y=a(x-3)2+4 ∵ 函数图象过点(4,- 3) ∴ a(4 - 3)2 +4 = - 3 ∴ a= -7 ∴ 二次函数的解析式为:
你能否总结出上述解题的一般步骤?
1.若无坐标系,首先应建立适当的直角坐标系; 2.设抛物线的表达式; 3.写出相关点的坐标; 4.列方程(或方程组); 5.解方程或方程组,求待定系数; 6.写出函数的表达式;
13
归纳:
在确定二次函数的表达式时 (1)若已知图像上三个非特殊点,常设一般式 ; (2)若已知二次函数顶点坐标或对称轴,常设顶 点式 较为简便; (3)若已知二次函数与x轴的两个交点,常设交 点式较为简单。

二次函数解析式的几种解法

二次函数解析式的几种解法

2. 利用顶点坐标求解。
一般式解法
1 基本思路
通过配方法将二次函数转换为一般式。
3 例子
解方程:3x²+ 7x - 2 = 0
2 步骤
1. 将函数转化为完全平方。 2. 利用平方差公式进行化简。
配方法解法
1 基本思路
通过配方法将二次函数转化为标准形式。
3 例子
解方程:2x²+ 5x + 2 = 0
二次函数解析式的几种解 法
通过本演示文稿,我们将深入探讨二次函数解析式的各种解法,包括标准式, 顶点式,一般式,配方法,完全平方,右边等于零,左边等于零,带分数, 分组整理,移项,平移等方法。
二次函数概述
• 二次函数的基本形式:f(x) = ax²+ bx + c • 二次函数的图像特征:抛物线 • 常见二次函数的例子与应用
2. 通过其他解法求解。
解析式与图像的关系
1 关系说明
2 特征分析
3 例子
探索二次函数解析式 与其图像之间的关系。
分析二次函数的解析 式对图像形状的影响。
分析方程:y = x²- 4x +4
标准式解法
1 基本思路
将二次函数转化为标准形式。
3 例子
解方程:2x²- 5x - 3 = 0
2 步骤
1. 将函数写为完全平方的形式。 2. 通过完全平方公式进行化简。
顶点式解法
1 基本思路
利用顶点坐标求解二 次函数。
2 步骤
3 例子
1. 将二次函数转换为 顶点式。
解方程:x²- 4x + 3 = 0
通过带分数的形式进行二次函数的求解。
3 例子
解方程:x²- 2x - 8 = 0

怎样确定二次函数的解析式

怎样确定二次函数的解析式

怎样确定二次函数的解析式?确定二次函数的解析式一般采用待定系数法.应根据已知条件的不同特点,适当选取二次函数的一般式、顶点式或交点式,以使计算最简便为宜.(1)已知抛物线上三个点的坐标,最好选用一般式.例1 已知抛物线经过A (0,4),B (1,3)和C (2,6)三点,求二次函数的解析式..c bx ax y 2++=设二次函数的解析式为规范解法因A 、B 、C 三点在函数的图象上,所以它们的坐标满足函数的解析式.把A 、B 、C 三点的坐标代入所设解析式,⎪⎩⎪⎨⎧=++=++=.6c b 2a 4,3c b a ,4c 得方程组⎪⎩⎪⎨⎧=-==.4c ,3b ,2a 解得 .4x 3x 2y 2+-=故所求函数解析式为(2)若已知条件与抛物线的顶点有关,则用顶点式比较恰当.例2 已知二次函数的图象顶点为(2,3),且经过点(3,1),求这个二次函数的解析式..n )m x (a y 2++=式为设二次函数的解析规范解法.3)2x (a y ,)3,2(2+-=得的坐标代入把顶点.3)23(a 1,)1,3(2+-=得的坐标代入再把点解得a =-2..3)2x (2y 2+--=式为故所求二次函数的解析(3)已知抛物线与x 轴两个交点的坐标,选用交点式比较简便.例3 已知A (2,0),B (-1,0),C (1,-3)三个点在抛物线上,求二次函数的解析式.思路启迪由A 、B 两点的纵坐标为0知,这两点是抛物线与x 轴的交点.规范解法 设二次函数的解析式为),x x )(x x (a y 21--=).1x )(2x (a y ,1x ,2x 21+-=-==得代入把再把点C (1,-3)的坐标代入,得-3=a (1-2)(1+1),.23a =解得 ).1x )(2x (23y +-=故所求解析式为点评上述3个例题均可采用二次函数的一般式求解.如例2中的抛物线顶点坐标为(2,3),可以列出两个方程,即 顶点的横坐标22=-a b , ① 顶点的纵坐标3442=-a b ac , ②再把点(3,1)的坐标代入c bx ax y ++=2,得9a+3b+c=1③ 把方程①、②、③联立得方程组,解得 ⎪⎩⎪⎨⎧-==-=.5c ,8b ,2a.5x 8x 2y 2-+-=故所求解析式为显然,选用一般式解决例2的问题比用顶点式麻烦得多.因此,求二次函数的解析式,根据己知条件选取表达式是关键.例4 已知二次函数的图象经过点A (3,—2)和B (1,0),且对称轴是直线x =3.求这个二次函数的解析式.思路启迪一已知对称轴是直线x =3,因对称轴经过顶点,所以这是与顶点有关的问题..h 3)-a(x y 12+=设二次函数的解析式为规范解法把A (3,-2),b (1,0)两点的坐标代入,得⎪⎩⎪⎨⎧-==⎪⎩⎪⎨⎧=+--=+-.2h ,21a .0h )31(a ,2h )33(a 22解得 .2)3x (21y 2--=故所求解析式为思路启迪二由对称轴是直线x =3,且点A 的横坐标是3,知点A (3,—2)是抛物线的顶点,可设解析式为顶点式.23)-a(x y 22-=设二次函数的解析式为规范解法21a ,02)31(a ,)0,1(B 2==--解得得的坐标代入把点.2)3x (21y 2--=故所求解析式为思路启迪三由对称轴是直线x =3,可得关于a 、b 的一个方程.3a 2b =-又知图象经过两定点,可设解析式为一般式,.c bx ax y 32++=设二次函数的解析式为规范解法⎪⎪⎩⎪⎪⎨⎧=++-=++=-.0c b a 2c b 3a 9,3a 2b ,得根据题意 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧=-==.25,3,21c b a .25x 3x 21y 2+-=故所求析式为思路启迪四由点B (1,0)的纵坐标是0知,它是抛物线与x 轴的交点,若能求出抛物线与x 轴的另一个交点,即点B 关于对称轴x =3的对称点.则可设解析式为交点式..5m ,32m 1(m,0),B 3x B(1,0) 4==+'=解得则的对称点关于直线设点规范解法)0,5(B 的坐标为所以点' 设二次函数的解析式为y =a (x -1)(x -5).得代入的坐标把点,)2,3(A -a (3-1)(3-5)=-2,.21a =解得).5x )(1x (21y --=故所求解析式为思路启迪五同解法4得到B′(5,0),就具备了图象过三个定点,可设其解析式为一般式.规范解法5 同解法4,求得点B (1,0)关于对称轴x =3的对称点B '(5,0),设二次函数的解析式为.c bx ax y 2++=),2,3(A 0c bx ax 5x ,1x 2-=++==的两根及图象过点是一元二次方程由⎪⎪⎩⎪⎪⎨⎧=-==⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+++=+=-.25c ,3b ,21a .2c b 3a 9,51a c ,51a b 解得得.25x 3x 21y 2+-=故所求解析式为点评 例4各解法中以解法2最佳.它体现在对点A (3,—2)是所求抛物线的顶点这一隐含条件挖掘得好.因此,我们在解题过程中既要学会一题多思,一题多解,拓开思路;更要注意寻求合理的解题途径,选好突破口.注 本题还可直接把A 、B 、B′三点坐标代入所设一般式,求a 、b 、c 的值.29.如何利用“抛物线x 轴交点间的距离”求二次函数的解析式?已知抛物线与x 轴两交点间的距离,求二次函数的解析式,一般有下列两种情况:例1 已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4.求二次函数的解析式.思路启迪在已知抛物线与x 轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x =3,再利用抛物线的对称性,可知图象与x 轴两交点的坐标分别为(1,0)和(5,0). 此时,可随意使用二次函数的一般式或交点式,得二次函数的解析式为.25x 3x 21y 2+-=点评 同一个题目使用不同的方法求解后,应进一步比较分析它们的优缺点,才能不断提高解题水平,求得最简捷的解法.例2 已知二次函数的图象经过⎪⎭⎫ ⎝⎛-25,0A 和)6,1(--B 两点,且图象与x 轴的两个交点间的距离为4.求二次函数的解析式.思路启迪已知抛物线与x 轴的两个交点间的距离,不知道它的对称轴,情况就比上述问题要复杂得多.利用A 、B 两点的坐标可以确定两个方程,即.6c b a 25c -=+--=和根据待定系数法的要求,必须设法找到第三个方程,才能利用二次函数的一般式求得a 、b 、c 的值.确定第三个方程的思路有二. 规范解法1 因为抛物线与x 轴交点的横坐标是一元二次方程0c bx ax2=++的两个根.x ,x 21方程的求根公式为 ,a 2ac 4b b x 22,1-±-=.4|x x |21=-可列方程即.4a 2ac 4b b a 2ac 4b b 22=-----+-.4a ac 4b 2=-化简得 两边平方,得.16422=-a ac b.a 16ac 4b 22=-∴.,0c b a 25c 得方程组即可求解联立和把这个方程与程=+--=规范解法2 根据一元二次方程根与系数的关系,,16x x ,a b x x 2121=-=+,16)x x (,,4|x x |22121=-=-得两边平方把.16x x 4)x x (21221=-+即.a 16ac 4b ,a c x x ,a b x x 222121=-=-=+得代入并整理把点评以上两种变形方法都应熟练掌握,它们对解决“已知抛物线与x 轴的两个交点间的距离,求二次函数解析式”的问题大有益处.30.怎样求二次函数的最大(小)值?求二次函数的最大值和最小值的问题,有着广泛的应用.求二次函数c bx ax y 2++=的最值,有下面三种方法: (1)公式法.由二次函数c bx ax y 2++=的图象看出,当a>0时,抛物线的开口向上,它的顶点⎪⎪⎭⎫ ⎝⎛--a 4b ac 4,a 2b 2在最低处.由此可得:当a>0且a 2b x -=时,函数达到最小值,这个最小值就是抛物线顶点的纵坐标,即.a 4b ac 4y 2-=最小当a<0且a 2b x -=时,函数达到最大值,这个最大值就是抛物线顶点的纵坐标,即.a 4b ac 4y 2-=最大 例1 求函数322--=x x y 的最大值或最小值.规范解法 由a=1>0知抛物线开口向上 故当,122a 2b x 时=--=-= .44412a 4b ac 4y 2-=--=-=最小(2)配方法.变形为利用配方法把二次函数c bx ax y 2++=.a 4b ac 4a 2b x a y 22-+⎪⎭⎫ ⎝⎛+=.0a 2b x ,x 2≥⎪⎭⎫ ⎝⎛+则有对任意实数 ,a 4b ac 4y ,a 2b x 0a 2-=-=>最小时当若.a 4b ac 4y ,a 2b x 0a 2-=-=<最大时当若例2 求二次函数25-2x y 2-+=x 的最大值或最小值.规范解法.8945x 2 1x 25x 22x 5x 2y 222+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+--=-+-= ∵,045,022≥⎪⎭⎫ ⎝⎛-<-=x a.89y ,45x ==∴最大时当点评利用公式法与配方法求二次函数的最值时,应根据具体情况,选用恰当的方法.(3)判别式法.所谓“判别式法”就是利用一元二次方程根的判别式ac 4b 2-来求二次函数的最值的方法.例3 求函数232--=x x y 的最大值或最小值. .0)2y (x 32x 2=+--把解析式变形为规范解法.0)2y (24)3(,0ac 4b ,x 22≥+⨯+-≥-即必有判别式为实数因.825y ,-≥得解这个不等式.8252x 3x 2y 2---=的最小值为故函数 点评用“判别式法”求二次函数的最大值或最小值,有时比公式法和配方法更为简便,它不仅可用来求二次函数的最值,还可求更为广泛的一类函数的最值.31.怎样利用二次函数的最值求得其他函数的最值?利用二次函数的最值,可以进一步研究其他一些函数的最值问题.举例如下.例1 求函数22122+--=x x y 的最大值或最小值.思路启迪在函数的解析式中,含有二次三项式,2x 2x 2+-故可构造关于x 的二次函数,2x 2x t 2+-=,先求出其最值,再通过不等式运算求出函数2x 2x 12y 2+--=的最值. .2x 2x t 2+-=令规范解法.11)-(x t ,2+=得配方得两边同加上,2,0t 11<-≤-22x 2x 12y 1,2t 1212<+--=≤<-≤即.2x 2x 12y 2只有最小值显然函数+--=.1y ,1x ==最小时故当例2 求函数322+--=x x y 的最大值或最小值. 思路启迪在函数解析式中,含有关于x 的二次三项式,3x 2x 2+--可构造二次函数2x t -=,3x 2+-通过求二次函数的最值,求得3x 2x y 2+--=的最值..4)1x (t ,,3x 2-x t 22++-=+-=得配方令规范解法.1x 3x ,03x 2x 2≤≤-≥++-的取值范围是得由当x =-1时,∵a=-1<0, ∴t 有最大值4,即t≤4,从而y≤2. 又∵,0322≥+--x x 当x=1时取“=”号,∴y≥0,综上0≤y≤2. 故函数3x 2x y 2+--=既有最大值,又有最小值.当x =-1时,;2y =最大当x =1时,.0y =最小注 ①以上两例,都是根据已知函数的特征,构造出一个二次函数,先求出二次函数的最值,再通过不等式的运算求得已知函数的最值.②求函数的最值应先考虑自变量的取值范围.如二次函数c bx ax y 2++=的自变量取值范围是全体实数.再如例1中,因2x 2x 12y ,01)1x (2x 2x 222+--=≠+-=+-故的自变量取值范围也是全体实数,在解题过程中可以不作叙述.但例2中,应限制被开方数,03x 2x 2≥+--所得自变量的取值范围不再是全体实数,而是-3≤x≤1,必须加以明确.因为函数的最值一定是自变量取某一确定值时函数的对应值,如果你所求的函数最值,在自变量的取值范围内找不到确定的值,使它对应的函数值就是这个“最值”,那么表明你所求的连函数值都不是,更谈不上是函数的最值了.所以,求自变量的取值范围是求函数最值不可缺少的步骤.例3 已知x 、y 为实数,且x+y=2,求22xy +的最小值.思路启迪在x 、y 满足一定条件的前提下,求函数22y x +的最值,叫做求函数的条件最值.求条件最值最基本的方法是通过代入消元,把表达式转化为只含有一个自变量的一元二次函数的形式,再利用二次函数的最值求解..x 2y 2y x -==+解出由代入①,得.442)2(222+-=-+=x x x x t .2)1x (2t ,2+-=得配平方.2y x 22的最小值是故+例4 设,|x -y|=2求xy 的最小值.思路启迪要想把式子xy 转化为只含有一个未知数,比如只含有x 的式子,就需对,|x -y|=2分类讨论去绝对值符号,从中解出y ,再代入消元.规范解法 由|x -y|=2知x≠y,有以下两种情况:①当x>y 时,x -y =2,解得y =x -2..1)1x (x 2x )2x (x xy 22--=-=-=∴.1xy ,1x -=有最小值时当.1)1x (x 2x )2x (x xy 22-+=+=+=∴.1xy ,1x --=有最小值时当再从①、②中比较出最小值,才是所求的最小值.由于两种情况下的最小值都是-1,故当x =±1时,xy 达到最小值-1.32.解二次函数最值的应用题的方法步骤是什么?解二次函数最值应用题的基本方法,是设法把关于最值的实际问题,转化为二次函数的最值问题,然后按求二次函数最值的方法求解.其一般步骤是:(1)利用题目中的已知条件和学过的有关数学公式列出关系式;(2)把关系式转化为二次函数的解析式;(3)求二次函数的最大值或最小值.例1 用12米长的木料做成如图13—20所示的矩形窗框(包括中间的十字形),问当长、宽各是多少时,矩形窗框的面积最大?最大的面积是多少?规范解法 设窗框长为x 米,.3x 312米则窗框的宽为-.x 4x 3x 312x y 2+-=⎪⎭⎫ ⎝⎛-=矩形窑框的面积为.4)2x (y ,2+--=得配平方).(4y ,)(2x 平方米时米当最大==).(2243x 312,米此时=-=-答:当窗框的长、宽各为2米时,窗框的面积最大,最大的面积是4平方米.例2 已知三角形的两边和为20cm ,这两边的夹角为120°(图13—21).求它的面积的最大值;当面积最大时,这两边的长各是多少?思路启迪已知三角形两边之和为20cm ,应设其中一边为x cm ,并将这条边上的高用x 表示,即可把该三角形的面积表示为x 的函数.规范解法 在如图13—21所示的△AB C 中,设BC 边的长为xcm ,则AB =(20-x )cm .过A 作BC 边上的高AD ,与CB 的延长线交于点D .∵∠ABD=180°-120°=60°,.cm )x 20(23AD -=∴).x 20(23x 21y ABC -⋅=∆∴的面积为 .043a .x 35x 43y 2<-=+-=这里即).cm (325434)35(y ,)cm (1043235x 22=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=有最大值时当 此时20-x =10(cm )..cm 10,;cm 325:2三角形两边的长各为当面积最大时是这个三角形的最大面积答 例3 快艇和轮船分别从A 地和C 地同时开出,航行路线互相垂直.如图13—22.快艇的速度为40千米/小时,轮船的速度是15千米/小时,A 、C 两地间的距离是120千米.问经过多少时间,快艇和轮船的距离最小?(精确到0.1小时)思路启迪设经过t 小时后,快艇和轮船间的距离最小,此时快艇在图13—22所示的B 点位置,轮船在D 点位置.因连结两点以线段最短,故快艇和轮船间的最短距离,就是线段BD 的长.∵快艇速度为40千米/小时,轮船速度为15千米/小时,AC =120千米,∴BC=120-40t ;CD =15t .在Rt△BCD 中,由勾股定理,得即大约经过2.6小时,快艇和轮船间的距离最小.例4某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销路,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)某商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?思路启迪商场所获的利润是由售出的商品数量和这件商品的利润相乘而得到的.如果每件衬衫降价x元,则盈利为(40-x)元,则可多售出2x件衬衫,即每天可售出(20+2x)件衬衫,从而可求出每天的利润.由于这个关系式是一个二次项系数为负数的二次函数,所以可求出盈利的最大值,规范解法(1)设每件衬衫应降价x元,根据题意,得(40-x)(20+2x)=1200.整理,得.0200302=+-xx20x,10x,21==解这个方程即当降价10元或20元时,由于销售量不同,都可获利1200元.但“为了扩大销售”,“尽快减少库存”可降价20元,每天销售量将增加,符合题中要求.(2)设商场平均每天盈利y元,则.1250)15x(2)x220)(x40(y2+--=+-=即每件衬衫降价15元时,商场平均每天盈利最多,达到1250元.答:若商场平均每天盈利1200元时,每件衬衫应降价10元或20元;每件衬衫降价15元时,商场平均每天盈利最多,达到1250元.点评通过解答上述的几个实际问题,会使我们感觉到数学的美在于它源于实践,用于实践.我们从生产、生活的实践中发现和总结规律,进而能根据客观规律指导实践,解决生产、生活中的一些实际问题.初中数学中的一次函数、二次函数问题是与实际问题联。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定二次函数关系式的常见题型及解法深圳市福田区新洲中学 温德君确定二次函数的关系式,既是数学教学重点,也是教学的难点,学生学习不易掌握.在全国各地的中考考试中是必考内容,它可出现在选择题、填空题中,而且基本上都会出现在最后的压轴题中。

解题的基本思想方法是待定系数法和数形结合方法,根据题目给出的具体条件或结合图形,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就确定二次函数关系式的常见题型及解法如下。

一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 1)(222-+=-m m x m m y 是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .练习 1.若5)2(22+-=-ax a y 是关于x 的二次函数,则a = .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一.例2、写出一个开口向下的二次函数的表达式______.分析:根据给出的条件,所以这道题只需满足c b a y ++=χχ2中的a<0即可,如y =-x 2+2x +1(注:答案不唯一)练习 1.写出一个对称轴为x =-2的二次函数的表达式______.三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x -h )2 + k ,当图像向左(右)平移n 个单位时,就在x +h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值左负右正;k 值上正下负(或左加右减、上加下减).由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3.(2013•毕节地区)将二次函数y=x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y=(x ﹣1)2+3B .B.y=(x+1)2+3C .y=(x ﹣1)2﹣3D .D.y=(x+1)2﹣3 考点: 二次函数图象与几何变换.分析: 由二次函数y=x 2的图象向右平移一个单位长度,再向上平移3个单位长度,根据平移的性质,即可求得所得图象的函数解析式.注意二次函数平移的规律为:左加右减,上加下减.解答: 解:∵二次函数y=x 2的图象向右平移一个单位长度,再向上平移3个单位长度,∴所得图象的函数解析式是:y=(x ﹣1)2+3.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.例4.(2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【答案】B练习 1.(2013哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2分析:根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动.即(-1,0)—→(0,-2).解答:根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”故选D.2.(2013•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2分析:根据“左加右减、上加下减”的原则进行解答即可.解答:解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.四、用待定系数法确定二次函数关系式例5. 抛物线y=a(x﹣1)2+4经过点A(﹣1,0),求该抛物线的解析式。

分析:将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;解答:解:(1)将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,解得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4;例6..已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),求此二次函数的解析式。

分析:利用待定系数法把A(1,0),C(0,﹣3)代入)二次函数y=x2+bx+c 中,即可算出b、c的值,进而得到函数解析式是y=x2+2x﹣3;解答:解:∵二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),∴,解得,∴二次函数的解析式为y=x2+2x﹣3;(一)顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k-=2.这y+hxa顶点坐标为(h,k),对称轴方程x = h,极值为当x = h时,y极值=k来求出相应的系数;例7.抛物线与x轴交于A,与y轴交C点,点A的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是直线x=,求抛物线的解析式。

分析: 根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点再由待定系数法求解即可;解答: 解:设抛物线的解析式把A (2,0)C (0,3)代入得: 解得: ∴即练习 :1.二次函数的图象过点(3,0),(2,-3)两点,对称轴为x=1,求这个二次函数解析式.解 设这个二次函数解析式为y=a(x-1)2+n ,由已知,得⎩⎨⎧-=+=+304n a n a 解之,得⎩⎨⎧-==.4,1n a所求的二次函数解析式为y=(x-1)2-4,即y=x 2-2x-3.注 当已知二次函数的图象的对称轴为x=x 0时,可设它的解析式为y=a(x-x 0)2+n ,这样只需求两个特定系数a ,n .2.(2011江苏无锡,9,3分)下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( )A .y = (x − 2)2 + 1B .y = (x + 2)2 + 1C .y = (x − 2)2 − 3D .y = (x + 2)2 − 3【答案】C3.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.4.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.(二)两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例8 已知二次函数的图象y=﹣x 2+bx+c 经过点A (3,0),B (﹣1,0). 求这个二次函数解析式.分析: 根据抛物线y=﹣x 2+bx+c 经过点A (3,0),B (﹣1,0),直接得出抛物线的解析式为;y=﹣(x ﹣3)(x+1),再整理即可,解答: 解:∵抛物线y=﹣x 2+bx+c 经过点A (3,0),B (﹣1,0). ∴抛物线的解析式为;y=﹣(x ﹣3)(x+1),即y=﹣x 2+2x+3,例9已知二次函数的图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29),求这个二次函数解析式 分析: 根据二次函数的图像与x 轴交于(-2,0),(4,0)两点,设抛物线的解析式为;y=a (x+2)(x-4),再代入(1,-29)求出a 值即可。

解、Θ图像与x 轴交于(-2,0),(4,0)两点,设二次函数解析式为y=a (x+2)(x-4).又 Θ图象经过点(1,-29) ∴-29= a ( 1 +2) ( 1– 4)解得a = 21 ∴二次函数解析式y =21 ( x +1) ( x – 4)=223212--x χ.练习: 1.抛物线与x 轴交于A 、B 两点,与y 轴交C 点,点A 的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是直线x= ,求抛物线的解析式。

分析: 根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点再由待定系数法求解即可;解答: 解:设抛物线的解析式把A (2,0)C (0,3)代入得:解得:∴即(三)一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;例10 已知抛物线y=ax 2+bx+c 经过点A (0,3),B (3,0),C (4,3),求抛物线的函数表达式。

.分析:把点A 、B 、C 代入抛物线解析式y=ax 2+bx+c 利用待定系数法求解解法:解:(1)∵抛物线y=ax 2+bx+c 经过点A (0,3),B (3,0),C (4,3), ∴,解得,所以抛物线的函数表达式为y=x 2﹣4x+3;练习 : 1.抛物线y=ax 2+bx+c (a ≠0)经过点A (﹣3,0)、B (1,0)、C (﹣2,1),求抛物线的表达式。

分析: 把点A 、B 、C 的坐标分别代入已知抛物线的解析式列出关于系数的三元一次方程组,通过解该方程组即可求得系数的值或设交点式(两点式)解答均可.解答:解:由题意可知9300421a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩.解得13231a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩. ∴抛物线的表达式为y=212133x x -+.2.已知抛物线y=ax 2+bx+c 经过(1,-4),(-1,0),(-2,5),求抛物线的函数表达式。

解答:解:设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y小结:用待定系法确定二次函数关系式时,要灵活运用顶点式、交点式和一般式。

一般步骤是:五、数形结合法数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例11.已知在Rt △OAB 中,∠OAB=90°,∠BOA=30°,OA=,若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处. 求经过点O ,C ,A 三点的抛物线的解析式.分析:在Rt△AOB中,根据AO的长和∠BOA的度数,可求得OB的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC的长求得CD、OD的值,从而求出点C、A的坐标,将A、C、O的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式.解答:解:过点C作CH⊥x轴,垂足为H;∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,∴OB==4,AB=2;由折叠的性质知:∠COB=30°,OC=AO=2,∴∠COH=60°,OH=,CH=3;∴C点坐标为(,3).∵O点坐标为:(0,0),∴抛物线解析式为y=ax2+bx(a≠0),∵图象经过C(,3)、A(2,0)两点,∴,解得;∴此抛物线的函数关系式为:y=﹣x2+2x.例12. 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.求抛物线的解析式;分析:利用三角函数和图形的旋转知识,先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;解答:解:在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;练习 1.(2013•宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.考点:二次函数图象与几何变换;待定系数法求二次函数解析式.分析:(1)利用交点式得出y=a(x﹣1)(x﹣3),进而得出a求出的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x2,进而得出答案.解答:解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x﹣1)(x﹣3),把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上.点评:此题主要考查了二次函数的平移以及配方法求二次函数解析式顶点坐标以及交点式求二次函数解析式,根据平移性质得出平移后解析式是解题关键.练习2 (2013•眉山压轴题)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式.考点:二次函数综合题分析:(1)利用待定系数法求出抛物线的解析式;(2)△APE为等腰直角三角形,有三种可能的情形,需要分类讨论:①以点A为直角顶点.过点A作直线AD的垂线,与抛物线的交点即为所求点P.首先求出直线PA的解析式,然后联立抛物线与直线PA的解析式,求出点P的坐标;②以点P为直角顶点.此时点P只能与点B重合;③以点E为直角顶点.此时点P亦只能与点B重合.(3)抛物线沿射线AD方向平移个单位,相当于向左平移1个单位,并向上平移一个单位.据此,按照“左加右减”的原则,确定平移后抛物线的解析式.解答:解:(1)根据题意得,A(1,0),D(0,1),B(﹣3,0),C(0,﹣3).抛物线经过点A(1,0),B(﹣3,0),C(0,﹣3),则有:,解得,∴抛物线的解析式为:y=x2+2x﹣3.(2)存在.△APE为等腰直角三角形,有三种可能的情形:①以点A为直角顶点.如解答图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F.∵OA=OD=1,则△AOD为等腰直角三角形,∵PA⊥AD,则△OAF为等腰直角三角形,∴OF=1,F(0,﹣1).设直线PA的解析式为y=kx+b,将点A(1,0),F(0,﹣1)的坐标代入得:,解得k=1,b=﹣1,∴y=x﹣1.将y=x﹣1代入抛物线解析式y=x2+2x﹣3得,x2+2x﹣3=x﹣1,整理得:x2+x﹣2=0,解得x=﹣2或x=1,当x=﹣2时,y=x﹣1=﹣3,∴P(﹣2,﹣3);②以点P为直角顶点.此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上.过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B 重合.∴P(﹣3,0);③以点E为直角顶点.此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上.综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形.点P的坐标为(﹣2,﹣3)或(﹣3,0).(3)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4.抛物线沿射线AD方向平移个单位,相当于向左平移1个单位,并向上平移一个单位,∴平移后的抛物线的解析式为:y=(x+1+1)2﹣4+1=x2+4x+1.点评:本题考查了二次函数综合题型,涉及二次函数的图象与性质、待定系数法、抛物线与平移、等腰直角三角形等知识点,试题的考查重点是分类讨论的数学思想.。

相关文档
最新文档