常见的滚动轴承失效形式

合集下载

常见轴承失效分析

常见轴承失效分析

对常见轴承失效分析的探讨摘要:轴承是社会生产最为关键的的零部件之一,同时也是最为损伤的零部件之一,所以,对于轴承的失效分析尤为重要,本文结合作者的工作经验主要阐述了轴承的失效分析,仅供参考。

关键词:轴承;失效分析一、轴承在生产中概述轴承是广泛应用于机械设备的零部件,是配套的精密零件,同时也是最易损坏的元件之一。

按轴承工作的摩擦性质来分,可分为滑动摩擦轴承(简称滑动轴承)和滚动摩擦轴承(简称滚动轴承)。

其中滚动轴承最常见,它一般由内、外两个套圈、一组滚动体和一个保持架组成。

本文结合工程案例主要分析了轴承的失效形式以及其改进的原因。

二、轴承损伤和失效的形式轴承在工作中丧失其规定的功能,导致故障或不能正常工作的现象称为失效。

轴承的失效可分为正常失效和早期失效两种。

按其损伤机理大致可分为:接触疲劳失效、磨损失效、断裂失效、塑性变形失效、腐蚀失效和游隙变化失效等几种基本形式。

1.接触疲劳失效接触疲劳失效是滚动轴承最常见的失效形式,是轴承表面受到交变应力的作用而产生的失效。

滚动轴承在高接触应力作用下,通过多次的应力循环后,在套圈或滚动体工作表面的局部区域产生小片或小块金属剥落,形成麻点或凹坑,从而引起振动,噪声增大,温度升高,磨损加剧,最终导致轴承不能正常工作的现象称为接触疲劳失效。

根据材质、工作条件、润滑条件等因素,接触疲劳失效可分为点蚀与剥落。

点蚀是由于表面出现麻点而失效,通常有非进展性和进展性之分,前者通常不影响轴承的使用,但如果使用一段时间后,由于某种原因,使点蚀不断扩展,进而形成进展性点蚀,表面会出现大面积的微剥落,最后使轴承失效。

剥落是在次表面产生疲劳裂纹,然后扩展至表面,使金属成片状脱落,可分为浅层剥落和硬化层剥落。

2.磨损失效工作过程中,轴承零件之间相对滑动摩擦导致工作表面金属不断损失的现象叫磨损。

持续的磨损会使轴承零件尺寸和形状变化,配合游隙增大,工作表面形貌恶化而丧失旋转精度,由此引起工作温度升高、振动、噪声、摩擦力矩增大等,导致轴承不能正常工作的现象叫磨损失效。

阐述滚动轴承主要失效形式。

阐述滚动轴承主要失效形式。

阐述滚动轴承主要失效形式。

滚动轴承是一种常见的机械元件,被广泛应用于各种机械设备中。

然而,由于长时间的使用或其他原因,滚动轴承会出现各种失效现象。

本文将阐述滚动轴承的主要失效形式。

1. 疲劳失效:滚动轴承长时间运转会受到周期性的载荷,这会导致轴承材料的疲劳破坏。

疲劳失效是滚动轴承最常见的一种失效形式。

在高速旋转或载荷较大的情况下,疲劳失效会更加严重。

2. 磨损失效:滚动轴承在工作时,滚动体与滚道、保持架之间会产生相对滑动,引起摩擦和磨损。

长时间的磨损会导致滚道和滚珠的形状变化,甚至出现凹坑和裂纹,从而影响轴承的正常运转。

3. 腐蚀失效:在潮湿、腐蚀性介质环境下,滚动轴承容易受到腐蚀,导致金属表面产生氧化、锈蚀等现象。

腐蚀会降低轴承的表面质量和硬度,进而影响其承载能力和使用寿命。

4. 偏磨失效:轴承在使用过程中,如果安装不当或者受到外力影响,可能会导致轴承的滚动体和滚道之间产生不均匀的接触压力,从而引起偏磨。

偏磨会导致滚动体表面形成凹坑,加剧磨损和摩擦,最终导致轴承失效。

5. 堵塞失效:滚动轴承在工作过程中,如果进入过多的灰尘、杂质等异物,会导致滚动体和滚道之间的接触变得不平滑,从而增加磨损和摩擦。

严重的堵塞会使轴承卡死,无法正常运转。

6. 热损失效:滚动轴承在高速旋转或载荷较大的情况下,会产生大量热量。

如果无法及时散热,轴承温度会升高,导致润滑油失效,进而影响轴承的润滑和运转。

过高的温度还会引起轴承材料的热膨胀,导致轴承失效。

7. 错位失效:滚动轴承在受到外力或安装不当等原因影响时,可能会出现滚动体和滚道之间的错位现象。

错位会导致滚动体和滚道之间的接触不均匀,增加了磨损和摩擦,最终导致轴承失效。

滚动轴承的主要失效形式包括疲劳失效、磨损失效、腐蚀失效、偏磨失效、堵塞失效、热损失效和错位失效。

了解这些失效形式,可以帮助我们更好地维护和保养滚动轴承,延长其使用寿命,提高机械设备的可靠性和性能。

同时,在设计和选择滚动轴承时,也应考虑其抗疲劳、抗磨损、抗腐蚀等性能,以满足实际工作条件的要求。

滚动轴承的故障诊断

滚动轴承的故障诊断

滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。

据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。

滚动轴承的常见故障形式有以下几种。

1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。

严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。

疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。

然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。

轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。

2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。

磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。

3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。

其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。

通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。

胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。

4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。

5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。

轴承失效形式及原因分析

轴承失效形式及原因分析
轴承失效形式及原因知识
轴承基本知识
轴承基本知识
轴承基本知识
轴承基本知识
我们车间目前使用的主轴承就是轧机轴承:粗中轧 轧辊和红圈辊箱均使用四列圆柱滚子轴承,CCR辊箱 使用为调心滚子轴承。 圆柱滚子轴承内径与辊颈采用紧配合,承受径向力 ,具有负荷容量大、极限转速高、精度高、内外圈可 分离且可以互换、加工容易、生产成本低廉、安装拆 卸方便等优点。 调心滚子轴承具有双列滚子,外圈有1条共用球面 滚道,内圈有2条滚道 并相对轴承轴线倾斜成一个角 度。这种巧妙的构造使它具有自动调心性能, 因而 不易受轴与轴承箱座角度对误差或轴弯曲的影响,适 用于安装误差或轴 挠曲而引起角度误差之场合。该 轴承除能承受径向负荷外,还能承受双向作用的轴向 负荷。
三、轴承失效原因
三、轴承失效原因
1、氧化渣、水等异物侵入引起的失效: 轧辊轴承的精密度很高,它对异物十分敏感,氧化渣、水等异物侵入轴承内部是使其过早失 效的最主要原因。氧化渣、水等异物与润滑油脂综合后很容易产生油污泥,油污泥的形成和 堆积能造成许多不良后果,其一是油污泥占据了原来润滑油脂的很大一部分空间,因而迟缓 了热量的传递和散发;其二是硬而胶性的堆积物在滚动体和滚道上形成时,在工作负荷下滚 动体滚过这些沉积物时,工作应力将大为增加,结果是轴承的正常疲劳寿命减少:其三是保 持架发生疲劳,随之而来使整个轴承彻底损坏。 2、过载和过热引起的失效: 在安装正确,密封良好的情况下,过载是引起轴承失效的另一原因。众所周知,轧辊辊颈轴 承运行时承受着巨大而又频繁的冲击力,长时间超负荷过载运行,会引起轴承材料的过早疲 劳,最终将体现在滚道表面层材料的碎裂剥离(麻面),这种损坏开始时发生在某些小面积上 ,但扩展极快。通常由于过载而引起的损坏总是先从内圈开始。过热而引起的失效情况多发 生在高线转速相对较快的10架~14架。轧辊轴承上,产生过热的原因可大致归结为:(1)润 滑油脂变质以及不足或过量;(2)过载:(3)装配不良:(4)外部热源传导进来的热量。轴承 长期过热会引起表面变色(暗蓝、蓝黑等)。过热不仅能使保持架严重氧化,同时也能使滚动 体、滚道退火软化,甚至咬死。

轴承主要失效形式

轴承主要失效形式

轴承的主要失效形式1、剥离损伤状态:轴承在承受旋转载荷时,内圈、外圈的滚道或滚动体面由于滚动疲劳而呈现鱼鳞状的剥离现象。

原因:载荷不当;安装不良(非直线性);力矩载荷;异物进入、进水;润滑不良、润滑剂不合适;轴承游隙不适当;轴承箱精度不好、轴承箱的刚性不均、轴的挠度大;生锈、侵蚀点、擦伤和压痕(表面变形现象)。

措施:检查载荷的大小;改善安装方法、改善密封装置、停机时防锈;使用适当粘度的润滑剂、改善润滑方法;检查轴和轴承箱的精度;检查游隙。

2、剥离损伤状态:呈现出带有轻微磨损的暗面,暗面上由表及里有多条深至5~10μm,的微小裂缝,并在大范围内发生微小脱落(微小剥离)。

原因:润滑剂不合适;异物进入了润滑剂内;润滑剂不良造成表面粗糙;配对滚动零件的表面质量不好。

措施:选择润滑剂;改善密封装置;改善配对滚动零件的表面粗糙度。

3、卡伤损伤状态:卡伤是指由于在滑动面的微小烧伤汇总而产生的表面损伤,表面为滑道面、滚道面圆周方向的线状伤痕。

滚子断面的摆线状伤痕靠近滚子端面的轴环面的卡伤。

原因:过大载荷、过大预压;润滑不良;异物咬入;内圈外圈的倾斜、轴的挠度;轴、轴承箱的精度。

4、擦伤损伤状态:所谓擦伤,是在滚道面和滚动面上,由随着滚动的打滑和油膜热裂产生的微小烧伤汇总而成的表面损伤。

原因:高速轻载荷;急加减速;润滑剂不适当;水的进入。

措施:改善预压;改善轴承游隙;使用油膜性好的润滑剂;改善润滑防震;改善密封装置。

5、断裂损伤状态:由于对滚道的挡边或滚子角的局部施加冲击或过大载荷,而使其一小部分断裂。

原因:安装时受到了打击;载荷过大;跌落等;使用不良。

措施:改善安装方法(采用热装、使用适当的工具夹);改善载荷条件;轴承安装到位,使挡边受支承。

6、裂纹、裂缝损伤状态:滚道轮或滚动体有事会产生裂纹损伤。

如果继续使用,裂纹将发展为裂缝。

原因:过大过盈量;过大载荷、冲击载荷;剥落有所发展;由于滚道轮或安装构件的接触而产生的发热和微震磨损;蠕变造成的发热;锥轴的锥角不良;轴的圆柱度不良;轴台阶的圆角半径比轴承倒角大而造成与轴承倒角的干扰。

滚动轴承常见的失效形式与原因分析

滚动轴承常见的失效形式与原因分析

滚动轴承常见的失效形式及原因分析+浪逐风尖2008-11-05 10:55滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

第五章_滚动轴承的故障监测和诊断

第五章_滚动轴承的故障监测和诊断


滚动体损伤振动情况
4、轴承偏心 当滚动轴承的内圈出现严重磨损等情况时,轴承会出现偏心 现象,当轴旋转时,轴心(内圈中心)便会绕外圈中心摆动, 如图4示,此时的振动频率为nfr(n=1, 2,…)。

滚动轴承偏心振动特征
实例
• 6210轴承的监测与诊断 • 一台单级并流是鼓风机,其结构如图。该机组自 86 年 1 月30日起,测点③的振动加速度逐渐增加至正常值10倍,为 查明原因,对测点③的振动信号进行频谱分析。
第二节 滚动轴承的失效形式
滚动轴承常见的失效形式:
滚动轴承尺寸的选择2
疲劳点蚀或剥落
磨 损
胶 合
断 裂
保持架损坏
烧 伤
第三节 滚动轴承的振动
与轴承的结构有关的振动 ——无论轴承正常与否,都会产生振动
与轴承滚动表面状况有关的振动两种类型
——反映了轴承的损坏状况
一、滚动轴承的振动机理 1、承载状态下滚动轴承的振动
图 IFD法的信号变换过程
二、滚动轴承的精密诊断
1、轴承内滚道损伤 轴承内滚道产生损伤时,如:剥落、裂纹、点蚀等(如图所 示),若滚动轴无径向间隙时,会产生频率为nfi(n=1,2,…) 的冲击振动。

内滚道损伤振动特征
通常滚动轴承都有径向间隙,且为单边载荷,根据点蚀部 分与滚动体发生冲击接触的位置的不同,振动的振幅大小会发 生周期性的变化,即发生振幅调制。若以轴旋转频率fr,进行振 幅调制,这时的振动频率为nfi士fr(n=1,2…)。
2.轴承外滚道损伤
当轴承外滚道产生损伤时,如剥落、裂纹、点蚀等(如图2 所示),在滚动体通过时也会产生冲击振动。由于点蚀的位置 与载荷方向的相对位置关系是一定的,所以,这时不存在振幅 调制的情况,振动频率为nfo ( n=1,2,…),振动波形如图 所示。

滚动轴承主要失效形式及其形成原因介绍

滚动轴承主要失效形式及其形成原因介绍

滚动轴承主要失效形式及其形成原因介绍滚动轴承是机械设备中支撑和保证轴类零件正常运转的重要零件,滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效,一旦出现失效就会影响机械设备的正常运转。

因此,正确认识和了解滚动轴承的失效形式及形成原因,对于提高轴承使用寿命、提高劳动生产效率和设备使用率以及保证安全生产,都是十分必要的。

滚动轴承在实际生产中,虽然滚动轴承的结构形式各式各样,承受载荷方向不同、大小不一,工作环境和使用条件千差万别,但其失效形式主要有以下几种:①内、外圈或滚动体剥落;②内、外圈或滚动体有压坑:③内、外圈或滚动体磨损;④内、外圈或滚动体裂纹;⑤内、外圈或滚动体点腐蚀;⑥内、外圈或滚动体烧伤;⑦内、外圈或滚动体变色。

现就其主要失效形式及其形成原因做一简单介绍:一、内、外圈或滚动体剥落对于滚动轴承来说零件工作表面承受周期性交变载荷或冲击载荷的作用,由于零件间接触面积很小,因此会产生极高的接触应力。

滚动轴承套圈及各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角。

通常呈现疲劳扩展特征的海滩状纹路.产生部位主要出现在套圈和滚动体的滚动表面。

二、内、外圈或滚动体有压坑压坑是由于在压力作用下硬质固体物侵入零件表面产生的凹坑的现象。

它属于材料的局部表面塑性变形,其产生的部位主要在零件的工作表面上,形状和大小不一,有一定深度,压坑边缘有轻微凸起,边缘较光滑。

其形成的原因是轴承零件在运转中产生的金属颗粒、密封不良造成轴承外部杂质侵入。

预防压坑的措施主要有:提高零件的加工精度和轴承的清洁度、改善润滑、提高密封质量等。

三、内、外圈或滚动体磨损滚动轴承在工作时滚动体和内外圈相互接触的金属表面相对运动产生摩擦,从而引起金属消耗或产生残余变形,使其表面的形状、尺寸、组织或性能发生改变即产生磨损。

18种常见轴承损坏原因分析

18种常见轴承损坏原因分析

润滑剂的选择
油润滑 作为选择时的参考,下图示出了润滑油的温度与粘度的关 系。 润滑油粘度与温度的关系
润滑剂的选择
油润滑 作为选择时的参考,下表示出了轴承在使用条件下选择润 滑油的例子。
运转温度 转 速 轻载荷或通载荷 重载荷或冲击载荷
-30~0℃
容许转速以下
容许转速50%以下
ISOVG 15,22,32(冷冻机油)
采用测声器对会发出异常音 和不规则音,用测声器能够分辨。
运转检查与故障处理
(2) 轴承的振动 运转中的机器,通过振动测定,便可得知轴承有否异常。 采用特殊的振动测量器(频率分析器等)可测量出振动的大 小 , 通过频率分布可推断出异常的具体情况。测得的数值
轴承失效形式比例
14
%


轴承是精密零件,如果轴承及润滑脂收到污染,将无法有效运行。此外,由于已经注 有润滑脂的免维护密封轴承只占有所有使用轴承中的一小部分,所以所有提前失效的 轴承中至少有 14%是由于污染问题造成的 SKF 拥有卓越的轴承制造和设计能力,可 以为各种恶劣的工作环境提供密封解决方案。
滚子轴承的运行轨迹也一样,(I) 是对在内圈旋转载荷时所使用的圆柱滚子轴承 正确加上径向载荷时的外圈运行轨迹。 (J) 是内圈与外圈相对倾斜, 轴的挠度较 大时的运行轨迹。滚道面的运行轨迹 , 在其纵向上产生浓淡 , 在负载圈的出人口 处 , 运行轨迹是倾斜的。双列圆锥滚子轴承是内圈旋转。 K 表示只负担径向载荷 时的外圈的运行轨迹。 L 表示只受轴向载荷时的轨迹。在内圈与外圈相对倾斜 , 只承受径向载荷的情况时,其运行轨迹偏离在两列轨道面180゜的位置上(m)。
34
%


如果机器出现过载、使用或维护不当,轴承都会收到影响,导致提前失效的轴承中有 34%是由于疲劳引起的。由于轴承在维护不当或应力过大时会发出“提前警告” ,可 以用状态监控设备进行检测和分析,因此突然的或计划外的失效是可以避免的。

滚动轴承常见的失效形式

滚动轴承常见的失效形式

滚动轴承常见的失效形式滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产烧伤、生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、架电腐蚀、保持损坏等。

一,疲劳剥落用应表面在接触力的反复作疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体劳料由于材疲。

现状剥落下来的象称为疲劳剥落点蚀也是或体从表,下其滚动面金属金属基呈点状片。

后,点蚀扩展将形成疲劳剥落寸但劳起引一种疲现象,形状尺很小疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有: 1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型滚动表面是以表面为起源产生的疲表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下: A、制造因素精度、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、 1、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了、材料品质的影响:轴承工作时,零件滚动表面承受周期性交变载荷目标值,这种情况很容易造成产品的早期失效。

常见的滚动轴承失效形式

常见的滚动轴承失效形式

常见的滚动轴承失效形式1.接触疲劳失效接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。

接触疲劳失效常见的形式是接触疲劳剥落发。

接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。

由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。

深层剥落是接触疲劳失效的疲劳源。

2.磨损失效磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。

持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。

磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。

磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。

粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。

3.断裂失效轴承断裂失效主要原因是缺陷与过载两大因素。

当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。

过载原因主要是主机突发故障或安装不当。

轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。

应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。

但一般来说,通常出现的轴承断裂失效大多数为过载失效。

4.腐蚀失效有些滚动轴承在实际运行当中不可避免的要接触到水、水汽以及腐蚀性介质等,这些物质会引起滚动轴承的生锈和腐蚀,另外滚动轴承在运转过程中还会受到微电流和静电的作用,造成滚动轴承的电流腐蚀。

滚动轴承主要的失效形式

滚动轴承主要的失效形式

滚动轴承主要的失效形式
滚动轴承作为机械装置中的重要组成部分,在运转过程中往往面
临着各种各样的失效形式。

能够全面、准确地了解这些失效形式,对
于提高滚动轴承的寿命和可靠性有着非常重要的指导意义。

以下将针
对主要的几种失效形式作出详细的介绍。

1、疲劳断裂
疲劳断裂是滚动轴承运转过程中最常见的失效形式之一。

在连续
的载荷变化下,滚动轴承的材料往往会逐渐累积微小的损伤痕迹,长
时间累积下来就会导致材料的疲劳断裂。

这种失效形式通常表现为滚
动体或保持架的开裂、碎裂等。

2、局部损伤
局部损伤是致使滚动轴承失效的另一种比较常见的形式。

局部损
伤通常可以分为磨损、划伤、剥落等几种类型。

这些损伤痕迹的产生
与滚动轴承的材质质量、润滑方式、环境条件等因素有着密切的关系。

例如在高负荷、低润滑情况下,局部损伤容易发生。

3、卡死
在一些情况下,如负荷过大、润滑不良等原因,滚动轴承可能会
发生卡死现象。

当卡死发生时,滚动轴承内部的滚珠或滚子将停止滚动,会严重损伤轴承表面和保持架。

4、失效的预测和定位
滚动轴承失效的预测和定位是确保机械设备长期运转的重要方法之一。

通过对轴承主要失效形式的了解,可以通过振动检测、温度检测、粘度测量等方法进行失效的预测,通过巡检、检修等方法进行失效的定位,进行及时的维护和修理,从而确保机械设备的性能和可靠性。

在使用滚动轴承时,需要按照正常的操作要求,并进行有效的润滑和维护。

及时发现和处置可能的失效形式,可以有效的延长轴承的使用寿命和维护成本。

轴承失效的九个阶段

轴承失效的九个阶段

【图文并茂】涨姿势!轴承失效9个阶段频谱图,你get了吗?滚动轴承是机器中最精密的部件,但由于种种原因,通常只有10%到20%的轴承使用寿命能达到它们的设计寿命。

动轴承在使用过程中由于很多原因造成其运行环境达不到使用要求从而导致失效或损坏,常见的失效形式有剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

轴承失效一般会经历9个阶段,每个阶段在频谱上会表现出不同的症状。

第1阶段,频谱如图:频率范围在20 KHz~60 KHz之间或更高;普通的频谱上不会出现任何指示,通常用峰值能量、HFD、冲击脉冲、SEE等超音频测量仪器测量。

图1 轴承失效第1阶段频谱第2阶段,频谱如图:在共振(固有)频率处发出铃叫声,共振频率还作为载波频率调制轴承的故障频率。

图2 轴承失效第2阶段频谱第3阶段,频谱如图:出现轴承故障频率;当轴承磨损进一步加剧,峰值将随着时间线性增加。

图3 轴承失效第3阶段频谱第4阶段,频谱如图:故障频率将产生谐波,这表明发生了一定程度的冲击;故障频率的谐波有时会比基频峰更早被发现;同时,时域波形中也会出现冲击脉冲显示。

图4 轴承失效第4阶段频谱建议结合对数坐标进行分析,及时发现轴承故障的早期显示。

使用加速度传感器,不要进行积分。

加速度能突出信号中的高频成分.图5 轴承失效第4阶段频谱(这个是什么图)第5阶段,频谱如图:出现更多轴承故障谐波,由于故障自身的性质,还会出现边频带;时域波形上的尖峰波将更加清晰和明显;高频率轴承检测,如峰值能量和冲击脉冲趋势持续上升;能够从频谱中看到谐波,特别是边带后,轴承磨损就已经能够用肉眼观察到了。

图6 轴承失效第5阶段频谱第6阶段,频谱如图:1X幅值增大,并出现1X的谐波,这是由于磨损引起间隙增大的结果。

图7 轴承失效第6阶段频谱第7阶段,频谱如图:故障频率及其边频带变成峰丘状,经常被叫作“干草堆”,还能听到轴承发出的噪声;高频率的轴承测量值可能会逐渐减少。

滚动轴承的失效形式与故障诊断

滚动轴承的失效形式与故障诊断
关键词:滚动轴承;失效模式;故障诊断 中图分类号:TH133.3 文献标识码:A 文章编号:1673- 260X(2012)06- 0115- 02
滚动轴承由于具有摩擦系数小,运动精度高、对润滑剂 的黏度不敏感、低速下亦能承受载荷、产品已经国际标准 化,、成本低廉,互换性好等优点,广泛应用于冶金、电力、石 化、航空航天等领域,是旋转机械中应用最为广泛的通用机 械零件,也是最易损坏的元件之一.旋转机械的许多故障都 与滚动轴承有关,轴承运行性能的好坏直接影响到其支撑 的轴以及安装在轴上的齿轮乃至整台机械设备的性能,其 缺陷往往会导致设备产生异常振动和噪声,甚至造成设备 损坏,导致巨大的经济损失.据统计,旋转机械的故障有 30% 是由轴承引起的,由此可见开展滚动轴承故障诊断工作的 重要性. 1 基本失效形式与成因分析
疲劳是滚动轴承失效的主要形式,常表现为滚动体或 内外圈滚道表面脱落或蜕皮,初期是在接触表面形成不规 则的凹坑,而后逐渐延伸成片,冲击载荷造成振动和噪声的 加剧.交变的疲劳应力是造成疲劳剥落的主要原因,有时也 与润滑不良或强迫安装有关,而通常所说的轴承寿命即是 指轴承的疲劳寿命. 1.2 磨损失效
磨损是滚动轴承失效的另一常见形式,是轴承滚道、滚 动体、保持架、座孔或轴颈由于机械原因而引起的表面磨损. 磨损造成轴承游隙增大、表面粗糙度增加,轴承运转精度降 低、振动和噪声增大.磨粒(尘埃、异物的侵入)及润滑不良造 成磨损的根本原因. 1.3 腐蚀失效
润滑油、水份或湿气产生的化学腐蚀,电流通过引起电 火花而产生的电腐蚀及轴承内外圈与座孔或轴颈存在微小
相对运动形成微振腐蚀是滚动轴承腐蚀失效的三种表现形 式.表面腐蚀导致高精度轴承精度丧失而失去其功能. 1.4 断裂失效
滚动轴承零件材料有缺陷和热处理不良,运行中过载、 转速过高、润滑不良或装配不善造成过大的热应力等可能 引起轴承零件轴承出现裂纹或断裂、加速其劣化. 1.5 胶合失效

滚动轴承的常见失效形式

滚动轴承的常见失效形式

滚动轴承的常见失效形式
滚动轴承常见的失效形式有以下几种:
1. 疲劳寿命失效:由于长期受到往复或旋转运动的载荷,轴承在加载周期内逐渐疲劳,最终导致材料的损坏和断裂。

2. 磨损失效:轴承在工作时,由于摩擦和磨损,导致轴承表面的润滑膜破裂和金属接触,进而导致表面磨损,影响轴承的使用寿命。

3. 负荷过载失效:当轴承承受超过其设计负荷的过大载荷时,轴承可能会产生塑性变形、疲劳断裂、滚动体撞击等失效情况。

4. 温度过高失效:由于轴承在工作过程中热量产生过多,导致轴承温度升高,使轴承材料的硬度降低、磨损加剧,最终导致轴承失效。

5. 腐蚀和锈蚀失效:当轴承暴露在腐蚀性环境中,例如潮湿、腐蚀性气体等,轴承的表面会发生腐蚀和锈蚀,导致失效。

6. 组装和安装不当导致轴承的形变或损坏,进而影响轴承的使用寿命。

7. 润滑不良:如果轴承的润滑不足或润滑油污染,会导致轴承摩擦、磨损、过热等问题,进而引发失效。

需要注意的是,这些失效形式可能相互影响和交叉存在,因此在轴承的使用和维护过程中,需要综合考虑各种因素,以延长轴承的使用寿命。

轴承常见失效图解

轴承常见失效图解

失效形式: 滚动体变色(兰或褐色)并有滚动压 痕;滚动体,内外圈,保持架等可能 有极度的磨损或金属流动,反过来导 致发热严重或直接失效。
原因分析: 润滑受阻,温度过高导致润滑剂失效 。
预防措施: 选择合适的润滑剂;防止润滑流失; 循环润滑间隔合适;配合和载荷都要 合适以避免温度上升过高。
失效形式: 红/褐色斑点出现在轴承的滚道,保持 架,滚动体上。由于磨损或游隙的增 加导致振动增加,承载减弱。
原因分析: 轴承暴露在空气中或腐蚀性的液体 中;由于温度的急速改变导致的水蒸 气的液化使得轴承生锈
预防措施: 隔离腐蚀性的轴承运转/储存环境, 选 用密封轴承,对于恶劣的环境考虑合 适的外部密封;不要打开轴承的原始 包装。
微动腐蚀
失效形式: 表面形成的褐色的浅层氧化剥落;配合表面的磨损可能 产生噪音,跳动问题;可能产生疲劳断裂或影响浮动端 轴承的浮动功能。
失效形式: 布氏压痕总是成排出现在滚道上,使 得轴承的振动,噪音增大。严重的布 氏压痕会导致轴承的早期失效。
原因分析: 静载过大或轴承受到严重的碰撞,如 安装时锤子敲击,部件撞击轴承。通 过外力安装轴承时,力作用在了外圈 上。
预防措施: 选择轴承时,仔细考虑轴承的当量静 载荷;选用合适的安装工具;使用外 力安装轴承时小心避免力作用在外圈 上。
预防措施: 改善润滑(增加粘度,EP添加剂,数量);正确安装轴承。
©SCHAEFFLER GROUP 2010-All rights reserved
预防措施: 控制系统过热或过载,使系统有充分 的散热,必要时提供辅助散热系统。
失效形式: 通常外圈断裂是沿着圆周方向,并产 生几块断裂碎片。如果有轴向载荷, 断裂截面会通过滚道的中间位置。外 圈的外表面会显示不规则的受载图谱 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的滚动轴承失效形式常见的滚动轴承失效形式1(接触疲劳失效接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。

接触疲劳失效常见的形式是接触疲劳剥落发。

接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。

由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。

深层剥落是接触疲劳失效的疲劳源。

2(磨损失效磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。

持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。

磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。

磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。

粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。

3( 断裂失效轴承断裂失效主要原因是缺陷与过载两大因素。

当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。

过载原因主要是主机突发故障或安装不当。

轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。

应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。

但一般来说,通常出现的轴承断裂失效大多数为过载失效。

4( 腐蚀失效有些滚动轴承在实际运行当中不可避免的要接触到水、水汽以及腐蚀性介质等,这些物质会引起滚动轴承的生锈和腐蚀,另外滚动轴承在运转过程中还会受到微电流和静电的作用,造成滚动轴承的电流腐蚀。

滚动轴承的生锈和腐蚀会造成套圈、滚动体表面的坑状锈,梨皮状锈及滚动体间隔相同的坑状锈,全面生锈及腐蚀。

最终引起滚动轴承的失效。

除此之外,滚动轴承在工作中,由于外界或内在因素的影响,使原有配合间隙改变,精度降低,乃至造成“咬死”称为游隙变化失效。

外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等,内在因素如残余奥氏体和残余应力处于不稳定状态等均是造成游隙变化失效的主要原因。

1. 前言滚动轴承在使用过程中由于本身质量和外部条件的原因,其承载能力,旋转精度和减摩能性能等会发生变化,当轴承的性能指标低于使用要求而不能正常工作时,就称为轴承损坏或失效,轴承一旦发生损坏等意外情况时,将会出现其机器、设备停转,功能受到损伤等各种异常现象。

因此需要在短期内查处发生的原因,并采取相应措施。

当然,滚动轴承损坏的情况比一般机械零件的损坏要复杂得多,滚动轴承损坏的特点是表现形式多,原因复杂,轴承的损坏除了轴承设计和制造的内在因素外,大部分是由于使用不当,例如:选型布适合(参见顾客须知)、支承设计不合理,安装不当,润滑不良,密封不好等外部因素引起的。

研究滚动轴承损坏的形成和原因具有重要的意义,一方面可以改进使用方法,正确地使用轴承,充分发挥轴承应有的效能,另一方面有助于开发性能更好的新产品。

本文中除了叙述滚动轴承使用中注意事项、安装方法、运转监察等外,还着重介绍轴承损坏的形式和原因及应采取的对策。

2.轴承的使用2.1 使用注意事项滚动轴承使精密零件,因而在使用时要求相应地持慎重态度,既便使用了高性能的轴承,如果使用不当,也不能达到预期的性能效果,所以,使用轴承应注意以下事项: 2.1.1 保持轴承及其周围环境的清洁。

即使肉眼看不见的微笑灰尘进入轴承,也会增加轴承的磨损,振动和噪声。

2.1.2 使用安装时要认真仔细,不允许强力冲压,不允许用锤直接敲击轴承,不允许通过滚动体传递压力。

2.1.3 使用合适、准确的安装工具,尽量使用专用工具,极力避免使用布类和短纤维之类的东西。

2.1.4 防止轴承的锈蚀,直接用手拿取轴承时,要充分洗去手上的汗液,并涂以优质矿物油后再进行操作,在雨季和夏季尤其要注意防锈。

2.2 配合2.2.1 配合的选择滚动轴承的内径尺寸和外径尺寸是按标准公差制造的,轴承内圈与轴,外圈与座孔的配合松紧程度只能通过控制轴颈的公差和座孔的公差来实现。

轴承内圈与轴的配合采用基孔制,轴承外圈与座孔的配合采用机轴制。

滚动轴承常用的配合如图 2-1 所示。

正确选择配合,必须知道轴承的实际负荷条件,工作温度及其他要求,而实际上是很困难的。

因此,多数情况是根据使用精研选择配合的。

2.2.2 负荷性质选择配合首先应考虑负荷向量相对套圈的旋转情况。

按照合成径向负荷向量相对于套圈的旋转情况,套圈所承受的复合可分为:固定负荷、旋转负荷和摆动负荷,如图 2-2 所示。

a. 固定负荷作用于套圈上的合成径向负荷,由套圈滚道的局部区域所承受,并传至轴或轴承座的相应局部区域,这种负荷称为固定负荷。

其特点是合成径向负荷向量与套圈相对静止。

承受定向负荷的套圈可选用较松的配合。

b.旋转负荷作用于套圈上的合成径向负荷沿滚道圆周方向旋转,顺次由各个部位所承受,这种负荷称为旋转负荷,其特点是合成径向负荷向量相对于套圈旋转。

承受旋转负荷的套圈应选紧配合,在特殊情况下,如负荷很轻,或在重负荷作用下套圈仅偶尔低速转动,轴承选用较硬材料和表面粗糙较高时,承受旋转负荷的套圈也可选用较松的配合。

c.摆动负荷作用于套圈上的合成径向负荷方向不定,这种负荷情况称为摆动负荷或不定向负荷,其特点是作用套圈上的合成径向负荷向量在套圈滚道的一定区域内摆动,为滚道一定区域所承受,或作用于轴承上的负荷是冲击负荷,振动负荷,其方向,数值经常变动的负荷。

承受摆动负荷得轴承内、外套圈与轴、轴承座孔的配合都应采用紧配合。

2.2.3 负荷大小套圈与轴或外壳间的过赢量取决于负荷的大小,较重的负荷采用较大的过赢量,较轻的负荷采用较小的过赢量。

通常将当量径向负荷p 分成“轻”、“正常”、“重”负荷三种情况,其与轴承的额定动负荷 c 的关系列于表 2-1,供选择轴和座孔公差带时参考。

2.2.4 轴和外壳孔公差带的选择根据负荷的大小和性质,对轴和委可控的公差带规定在表 2-2——表 2-4 内。

2.2.5 配合表面的粗糙度和形位公差配合表面的粗糙度和形位公差,直接影响产品的使用性能,如耐磨性,抗腐蚀性和配合性质等。

为此,合理规定轴和外壳孔的形位公差和提出配合表面的粗糙度要求,对于稳定配合性质,提高过赢配合的联结强度至关重要。

轴和外壳孔的配合表面粗糙度及形位公差见表 2-5——表 2-6 和图 2-32.3 轴承安装轴承安装的好坏与否,将影响到轴承的精度、寿命和性能。

因此,请充分研究轴承的安装,即请按照包含如下项目在内的操作标准进行轴承安装。

2.3.1 清洗轴承及相关零件,(对已经脂润滑的轴承及双侧具油封或防尘盖,密封圈轴承安装前无需清洗。

)2.3.2 检查相关零件的尺寸及精加工情况2.3.3 安装方法轴承的安装应根据轴承结构,尺寸大小和轴承部件的配合性质而定,压力应直接加在紧配合得套圈端面上,不得通过滚动体传递压力,轴承安装一般采用如下方法:a. 压入配合轴承内圈与轴使紧配合,外圈与轴承座孔是较松配合时,可用压力机将轴承先压装在轴上,然后将轴连同轴承一起装入轴承座孔内,压装时在轴承内圈端面上,垫一软金属材料做的装配套管(铜或软钢),如图 2-4 所示。

装配套管的内径应比轴颈直径略大,外径直径应比轴承内圈挡边略小,以免压在保持架上。

轴承外圈与轴承座孔紧配合,内圈与轴为较松配合时,可将轴承先压入轴承座孔内,这时装配套管的外径应略小于座孔的直径,如图2-5 所示。

如果轴承套圈与轴及座孔都是紧配合时,安装室内圈和外圈要同时压入轴和座孔,装配套管的结构应能同时押紧轴承内圈和外圈的端面,如图 2-6 所示。

b.加热配合通过加热轴承或轴承座,利用热膨胀将紧配合转变为松配合的安装方法。

是一种常用和省力的安装方法。

此法适于过盈量较大的轴承的安装,热装前把轴承或可分离型轴承的套圈放入油箱中均匀加热80-100?,然后从油中取出尽快装到轴上,为防止冷却后内圈端面和轴肩贴合不紧,轴承冷却后可以再进行轴向紧固。

轴承外圈与轻金属制的轴承座紧配合时,采用加热轴承座的热装方法,可以避免配合面受到擦伤。

用油箱加热轴承时,在距箱底一定距离处应有一网栅,如图 2-7所示,或者用钩子吊着轴承,轴承不能放到箱底上,以防沉杂质进入轴承内或不均匀的加热,油箱中必须有温度计,严格控制油温不得超过 100?,以防止发生回火效应,使套圈的硬度降低。

c.圆锥孔轴承的安装圆锥孔轴承可以直接装在有锥度的轴颈上,或装载紧定套和退卸套的锥面上,其配合的松紧程度可用轴承径向游隙减小量来衡量,因此,安装前应测量轴承径向游隙,安装过程中应经常测量游隙以达到所需要的游隙减小量为止,安装时一般采用锁紧螺母安装,也可采用加热安装的方法。

d.推力轴承的安装推力轴承的周全与轴的配合一般为过渡配合,座圈与轴承座孔的配合一般为间隙配合,因此这种轴承较易安装,双向推力轴承的中轴泉应在轴上固定,以防止相对于轴转动。

轴承的安装方法,一般情况下是轴旋转的情况居多,因此内圈与轴的配合为过赢配合,轴承外圈与轴承室的配合为间隙配合。

2.3.4 轴承安装后的检查2.3.5 润滑剂的添加2.4 轴承运转检查轴承安装结束以后,应马上进行运转检查,已确定安装是否正常。

表 2-7 出示了运转检查的方法再此运转检查中若发现异常现象,应马上停止运转,并对机器进行检查,生产的原因及其措施,请参照表 2-83.轴承的诊断管理为使滚动的轴承具有的性能,在良好的条件下能够维持长期使用,必须对轴承进行检查和保养,这种检查与保养(轴承装前保管见附页轴,对提前预防故障是很重要的,希望根据适合机器运转条件承储存)的操作标准,进行定期检查和保养,一般采用如下方法:3.1 运转状态下得量中检查根据轴承的滚动声、振动、温度的检查和润滑剂的性质检查,润滑剂的补充或更换时间进行判断。

详细情况见第 4 项内容:运转中检查与故障处理。

3.2 轴承检查充分观察机器的定期检查和更换而拆下莱德轴承,检查滚道面状况和有无损伤及可否再次使用,详细情况请见第 5 项内容:轴承的检查。

4.运转中检查与故障处理运转中的检查项目有轴承的滚动声、振动、温度、润滑的状态等,具体情况如下: 在运转中发现异常状态时,请参照上表 2-84.1 轴承的滚动声采用测声器对运转中的轴承的滚动声的大小及音质进行检查,轴承即使有轻微的剥离等损伤,也会发出异常音和不规则音,用测声器能够分辨。

相关文档
最新文档