初中数学二轮复习圆的综合
初三数学关于圆的综合问题(二)人教版知识精讲
初三数学关于圆的综合问题(二)人教版【同步教育信息】一. 本周教学内容:关于圆的综合问题(二)综合题是指学生在不同的学习阶段所学的知识,不同章节所学的知识,特别是代数、几何不同学科中所学的知识,综合运用进行解题的数学题目,它既能考察同学们对数学基础知识基本方法掌握的熟练程度,又能考察综合运用数学知识分析问题、解决问题的能力。
几何中关于圆的综合题大致可分为: (1)以几何知识为主体的综合题; (2)代数、几何知识相结合的综合题; (3)圆中的探索型问题;我们通过下面的例题对以上各类问题进行分析。
【典型例题】(一)以几何知识为主体的综合题。
例1. 如图:⊙O 是△ABC 的外接圆,BD 是⊙O 的切线,与CA 延长交于D ,且BD 2=DA 2+DA ·AB ,△ABD 的外接圆交BC 于E ,(1)求证:AB =AC (2)求证:BD =EC(3)若△ABD 的周长等于AC +BC , 求证:·,并求的值AB BE BC BEEC2分析:本题(1)易证。
利用(1)题的结论证(2)题,我们发现如果BD =EC 成立,必有△ABD ≌△AEC , 所以我们只需连结AE ,并证得∠2=∠C 即可。
(3)题若结论成立,需△ABE ∽△BAC ,因此证明∠1=∠C 是本题解出的关键。
解:(1)∵BD 2=DA ·DC =DA (DA +AC )=DA 2+DA ·AC ,由已知得:BD 2=DA 2+DA ·AB , ∴AC =AB(2)连结AE ,∵BD 是⊙O 的切线,∴∠2=∠C又∵∠AEC 是圆内接四边形AEBD 的外角,∠AEC =∠D ∵AB =AC ,∴△ADB ≌△AEC ∴BD =EC(3)由已知AB +BD +AD =AC +BC =AC +BE +EC ∵AB =AC ,BD =EC ,∴AD =BE又∵△ADB ≌△AEC ,∴AD =AE ,∴AE =BE ,∠1=∠3 ∵AB =AC ,∴∠3=∠C ,∴∠1=∠C ∴△BAE ∽△BCA ∴∴·BA BE BCBAAB BE BC ==2又∵∠CAE =∠DBC =∠2+∠3=2∠3 ∠CEA =∠1+∠3=2∠3 ∴∠CAE =∠CEA ∴CE =CA 即AB =EC由AB 2=BE ·BC ,∴EC 2=BE ·BC =BE (EC +BE )∴BE 2+EC ·BE -EC 2=0∴()BE EC BE EC210+-= 解得:BE EC =-512点拨:本题是一道典型的几何综合题,把中学几个阶段学到的知识有机的组合到一起,图形中相似三角形、全等三角形、等腰三角形综合到一起,由果索因的分析方法是本题的基本方法,而最后的求值,则应综合我们前面证过的结论,得到关于BE 和EC 的关系式,最后利用解一元二次方程的方法求解。
九年级数学圆的综合复习(二)教师版
(江岸模四)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F,连接BE。
(1)求证:DF是⊙O的切线;(2)若AC=3AE,求tan∠BFD的值。
知识点(圆相关概念和性质)知识点一:垂径定理与圆周角定理1、垂径定理2、圆周角定理3、直径所对的圆周角为直角,圆与四边形对角互补知识点二:切线的性质与判定 1、切线的性质2、切线的判定方法3、切线长定理4、内外心【例题精讲一】垂径定理与圆周角定理(洪山模一)1、如图⊙O 中,弦BC 的垂直平分线DE 交⊙O 于E ,垂足为D 。
F 为弧BE 上一点,EF 与CB 的延长线相交于点A 。
(1)求证:∠AFB =∠EFC ;(2)当∠AFB =60°,AD =4,⊙O 的半径为2时,求AF 的长。
(2)连接OB 则OB =2 ∵∠AFB =60° ∴∠BFH =30° ∴∠BFH =2∠BFH =60° ∴OD =12OB =1在Rt∆ADE 中 ∵AD =4 DE =3 ∴AE =5 ∵Rt∆ADE 和Rt∆EFH 中,∠E 公共 ∴Rt∆EDA~Rt∆EFH =(新洲5月)如图,AB 是⊙O =直径,C 是弧AB 的中点,弦=D 与AB 相交于E 。
=(1)若∠=OD =45°,求证:CE =2ED ;(2)若AE =EO ,求tan ∠AOD 的值。
(1)连CA 、CO ,∵ C 是⌒AB 的中点,AB 是⊙O 的直径, ∴∠AOC =90°,又AO =CO ,∴AC = 2 OC =2OD∵∠AOD =∠A =45°,∴AC ∥OD ,∴CE ED =ACOD=2, ∴CE =2ED(2)过D 作DH ⊥AB 于H ,则△DHE ∽△COE , ∴EH ED =OE OC =12,设OE =1,则OC =OD =2,设HE =a ,则DH =2a ,∴ (a+1)2+(2a)2=22 解得:a =-1(舍)或a =35, ∴ tan ∠AOD =6585=34【课堂练习】(外校题六)如图,AB 是⊙O 的直径,过点B 作O 的切线BM ,弦CD //BM ,交AB 于点F ,且AD =CD ,连接AC ,AD ,延长AD 交BM 于点E 。
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8.切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
圆的综合知识点总结(初中数学)
圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
中考复习—圆的综合巩固
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.
要点诠释: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等, 那么它们所对应的其余各组量分别相等.
【典型例题-类型二:与圆有关的角及相A关定理】
例2.如图 ,在圆O中,点C是弧AB的中点,∠A=50°,则∠BOC=( )
⑶锐角三角形外接圆的圆心在它的内部(如图1),直角三角形外接圆的圆
心在斜边
A
A
A
O B
B
C
B
C
O
O
C
图1
图2
图3
例4.若圆A的半径为5,点A的坐标为(3,4),点P的坐标为(5,8)
,则点P的位置为A( )
A.在圆A内
B.在圆A上
C.在圆A外
D.不确定
【分析】本题有两种方法,既可以画图, 也可以计算AP的长,再与半径进行比较. ∵AP= (5 3)2 (8 4)2 = 22 42= 20<5,所以点P在圆内. 答案:A
注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 要点诠释: 常见辅助线做法:
⑴过圆心,作垂线,连半径,造直角三角形,用勾股,求长度; ⑵有弧中点,连中点和圆心,得垂直平分.
【典型例题-类型三:垂直定理】
例3、如图,AB是圆O的直径,弦CD⊥AB,垂足为E,若AB=10, CD=8,则AE= .
【解析】 解:如图,连接OC. ∵弦CD⊥AB于E,CD=8, ∴CE=4.
【总结升华】外接圆的圆心,它是三角形三边垂直平分线的 交点,它到三角形各顶点的距离相等;
【知识点梳理】
考点五、直线和圆的位置关系的定义、性质及判定
2020年中考数学二轮专项特训——圆的综合应用(含详细解答)
2020年中考数学二轮专项特训——圆的综合应用专训1圆中常见的计算题型名师点金:与圆有关的计算主要涉及圆与其他几何图形结合,利用圆周角定理求角度,利用垂径定理构造直角三角形并结合勾股定理,已知弦长、弦心距、半径三个量中的任意两个量时,可求出第三个量,利用弧长、扇形面积公式计算弧长、扇形面积等.有关角度的计算1.如图,⊙I是△ABC的内切圆,D,E,F为三个切点.若∠DEF=52°,则∠A的度数为()A.76°B.68°C.52°D.38°(第1题)(第2题) 2.如图,有一圆经过△ABC 的三个顶点,且弦BC 的中垂线与AC ︵相交于D点.若∠B =74°,∠C =46°,则AD ︵所对圆心角的度数为( )A .23°B .28°C .30°D .37°3.(中考·娄底)如图,在⊙O 中,AB ,CD 是直径,BE 是切线,B 为切点,连接AD ,BC ,BD.(1)求证:△ABD ≌△CDB ;(2)若∠DBE =37°,求∠ADC 的度数.(第3题)半径、弦长的计算4.(中考·南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 2 cm,∠BCD=22°30′,则⊙O的半径为________.(第4题)(第5题)5.如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是CF ︵的中点,弦CF 交AB 于点E.若⊙O 的半径为2,则CF =________.6.如图,在⊙O 中,直径AB 与弦AC 的夹角为30°,过点C 作⊙O 的切线交AB 的延长线于点D ,OD =30 cm .求直径AB 的长.(第6题)面积的计算7.(2015·丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.(第7题)专训2圆中常用的作辅助线的方法名师点金:在解决有关圆的计算或证明题时,往往需要添加辅助线,根据题目特点选择恰当的辅助线至关重要.圆中常用的辅助线作法有:作半径,巧用同圆的半径相等;连接圆上两点,巧用同弧所对的圆周角相等;作直径,巧用直径所对的圆周角是直角;证切线时“连半径,证垂直”以及“作垂直,证半径”等.作半径,巧用同圆的半径相等1.如图,两正方形彼此相邻,且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆O的直径上;小正方形BEFG的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边AB上.若小正方形的边长为4 cm,求该半圆的半径.(第1题)连接圆上两点,巧用同弧所对的圆周角相等2.如图,圆内接三角形ABC的外角∠ACM的平分线与圆交于D点,DP⊥AC,垂足是P,DH⊥BM,垂足为H,求证:AP=BH.(第2题)作直径,巧用直径所对的圆周角是直角3.如图,⊙O的半径为R,弦AB,CD互相垂直,连接AD,BC.(1)求证:AD2+BC2=4R2;(2)若弦AD,BC的长是方程x2-6x+5=0的两个根(AD>BC),求⊙O的半径及点O到AD的距离.(第3题)证切线时辅助线作法的应用4.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.判断CD与⊙O的位置关系,并说明理由.(第4题)遇弦加弦心距或半径5.如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 2 D.4 2(第5题)(第6题)6.(中考·贵港)如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=23,OH=1,则∠APB=________.遇直径巧作直径所对的圆周角7.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC,AC 于点D,E,且点D是BC的中点.(1)求证:△ABC为等边三角形.(2)求DE的长.(第7题)遇切线巧作过切点的半径8.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA 切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=3,∠ACB=60°,求⊙O的半径.(第8题)巧添辅助线计算阴影部分的面积9.(中考·自贡)如图,点B ,C ,D 都在⊙O 上,过点C 作AC ∥BD 交OB 的延长线于点A ,连接CD ,且∠CDB =∠OBD =30°,DB =6 3 cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD ,BD 与BC ︵所围成的阴影部分的面积(结果保留π).(第9题)专训3圆的实际应用名师点金:与圆有关的知识在实际生活中有着广泛的应用,从实际生活中抽象出数学问题,并运用圆的相关知识解决这些问题,可以达到学以致用的目的.利用垂径定理解决台风问题1.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30 km/h,受影响区域的半径为200 km,B市位于点P北偏东75°的方向上,距离P点320 km处.(1)试说明台风是否会影响B市;(2)若B市受台风的影响,求台风影响B市的时间.(第1题)利用圆周角知识解决足球射门问题(转化思想)2.如图,在“世界杯”足球比赛中,队员甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴队员乙已经助攻冲到B点,现有两种射门方式:一是由队员甲直接射门;二是队员甲将球迅速传给队员乙,由队员乙射门.从射门角度考虑,你认为选择哪种射门方式较好?为什么?(第2题)利用直线与圆的位置关系解决范围问题3.已知A,B两地相距1 km.要在A,B两地之间修建一条笔直的水渠(即图中的线段AB),经测量在A地的北偏东60°方向,B地的北偏西45°方向的C处有一个以C为圆心,350 m为半径的圆形公园,则修建的这条水渠会不会穿过公园?为什么?(第3题)利用圆锥侧面展开图解决材料最省问题4.如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为40 2 cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?(第4题)专训4与圆有关的动态问题名师点金:对于与圆有关的运动情形下的几何问题,在探究求值问题时,通常应对运动过程中所有可能出现的不同情形进行分析,如果符合某些条件的点、线等几何图形不唯一,要注意分类讨论,在探究确定结论成立情况下的已知条件时,可以把确定结论当作已知用.利用圆探究运动中形成的特殊几何图形问题1.如图,AB是半圆O的直径,BC是弦,点P从点A开始,沿AB向点B以1 cm/s的速度移动,若AB长为10 cm,点O到BC的距离为4 cm.(1)求弦BC的长;(2)经过几秒△BPC是等腰三角形?(PB不能为底边)(第1题)2.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P 是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.(第2题)利用圆探究运动中的特殊位置关系问题3.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=12 cm,AD =8 cm,BC=22 cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1 cm/s的速度运动,动点Q从点C开始沿CB边向点B以2 cm/s的速度运动,P,Q分别从点A,C同时出发.当其中一动点到达终点时,另一个动点也随之停止运动.设运动时间为t s.当t为何值时,PQ与⊙O相切?(第3题)利用圆探究运动中的面积问题4.如图,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)如图,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.(第4题)专训5几种常见的热门考点名师点金:圆的知识是初中数学的重点内容,也是历年中考命题的热点.本章题型广泛,主要考查圆的概念、基本性质以及圆周角定理及其推论,直线与圆的位置关系,切线的性质和判定,正多边形与圆的计算和证明等,通常以这些知识作为载体,与函数、方程等知识综合考查.垂径定理及其推论的应用1.如图所示,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.95B.245C.185D.52(第1题)(第2题)2.如图是一圆柱形输水管的横截面,阴影部分为有水部分.如果水面AB 的宽为8 cm,水的最大深度为2 cm,那么该输水管的半径为() A.3 cm B.4 cm C.5 cm D.6 cm圆心角与圆周角3.如图所示,AB是⊙O的直径,AB⊥弦CD于点E,∠BOC=70°,则∠ABD =()A.20°B.46°C.55°D.70°(第3题)(第4题)4.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°5.如图所示,C 为半圆上一点,AC ︵=CE ︵,过点C 作直径AB 的垂线CP ,P 为垂足,弦AE 交PC 于点D ,交CB 于点F.求证:AD =CD.(第5题)点、直线与圆的位置关系6.已知⊙O的半径为4 cm,A为线段OP的中点,当OP=7 cm时,点A 与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定7.在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以点C为圆心,r 为半径作圆,若⊙C与直线AB相切,则r的值为()A.2 cm B.2.4 cm C.3 cm D.4 cm8.设⊙O的半径为2,圆心O到直线l的距离OP=m,且m使得关于x的方程2x2-22x+m-1=0有实数根,则直线l与⊙O()A.相离或相切B.相切或相交C.相离或相交D.无法确定切线的判定与性质(第9题)9.(中考·哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=40°,则∠ABD的度数是()A.30°B.25°C.20°D.15°10.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,与BC相交于点E.(1)若BC=3,CD=1,求⊙O的半径;(2)取BE的中点F,连结DF,求证DF是⊙O的切线.(第10题)与圆有关的计算11.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为()(第11题) A.25π-6B.252π-6C.256π-6D.258π-612.(2015·兰州)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°,①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)(第12题)圆与其他知识的综合类型1:圆与三角形的综合13.(2015·成都)如图,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF =BC.⊙O 是△BEF 的外接圆,连结BD.(1)求证:△ABC ≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由.(第13题)类型2:圆与四边形的综合14.(2015·天津)已知A ,B ,C 是⊙O 上的三个点,四边形OABC 是平行四边形,过点C 作⊙O 的切线,交AB 的延长线于点D.(1)如图①,求∠ADC 的大小;(2)如图②,经过点O 作CD 的平行线,与AB 交于点E ,与AB ︵交于点F ,连结AF,求∠FAB的大小.(第14题) 类型3:圆与函数的综合15.如图,直线y=-34x+3与x轴相交于点A,与y轴相交于点B,点C是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.(1)如图①,当四边形OBCE是矩形时,求点C的坐标;(2)如图②,若⊙C与y轴相切于点D,求⊙C的半径r;(3)在⊙C的移动过程中,能否使△OEF是等边三角形?(只回答“能”或“不能”)(第15题)专训6圆与二次函数的综合名师点金:圆与二次函数的综合,一般会涉及勾股定理、相似三角形的判定、求二次函数的表达式、求直线对应的函数表达式、切线的判定与性质,综合考察的知识点较多,同学们注意培养自己解答综合题的能力,关键还是基础知识的掌握,要能将所学知识融会贯通,有的问题的解法不止一种,同学们可以积极探索其他解法.二次函数中利用全等证明圆与直线的位置关系1.如图,在平面直角坐标系中,⊙A与x轴相交于C(-2,0),D(-8,0)两点,与y轴相切于点B(0,4).(1)求经过B、C、D三点的抛物线对应的函数表达式;(2)设抛物线的顶点为E,证明:直线CE与⊙A相切.(第1题)利用直线与圆的位置关系求直线对应的函数表达式2.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线对应的函数表达式;(2)以AB为直径作⊙M,一直线经过点E(-1,-5),并且与⊙M相切,求该直线对应的函数表达式.(第2题)利用圆的有关性质求抛物线对应的函数表达式3.(2015·烟台节选)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧ED上的点F作FH⊥AD于点H,且FH=1.5.(1)求点D的坐标及该抛物线对应的函数表达式;(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标.(第3题)二次函数中利用勾股定理的逆定理证明直线与圆的位置关系4.如图,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.(1)求D点的坐标和圆D的半径;(2)求sin∠ACB的值和经过C、A、B三点的抛物线对应的函数表达式;(3)设抛物线的顶点为F,证明直线AF与圆D相切.(第4题)答案专训1 1.A2.B 点拨:∵有一圆经过△ABC 的三个顶点,且弦BC 的中垂线与AC ︵相交于D 点,∴AB ︵所对的圆心角的度数=2∠C =2×46°=92°,ADC ︵所对的圆心角的度数=2∠B =2×74°=148°=AD ︵所对的圆心角的度数+DC ︵所对的圆心角的度数=AD ︵所对的圆心角的度数+BAD ︵所对的圆心角的度数=AD ︵所对的圆心角的度数+AB ︵所对的圆心角的度数+AD ︵所对的圆心角的度数,∴AD ︵所对的圆心角的度数=12(148°-92°)=28°.故选B .3.(1)证明:∵AB ,CD 是直径,∴∠ADB =∠CBD =90°. 在Rt △ABD 和Rt △CDB 中, ⎩⎨⎧AB =CD ,BD =DB ,∴Rt △ABD ≌Rt △CDB(HL ).(2)解:∵BE 是切线,∴AB ⊥BE.∴∠ABE =90°. ∵∠DBE =37°,∴∠ABD =53°.∵OD =OA ,∴∠ODA =∠BAD =90°-53°=37°, 即∠ADC 的度数为37°.4.2 cm 点拨:连接OB ,∵∠BCD =22°30′,∴∠BOD =2∠BCD =45°.∵AB ⊥CD ,∴BE =AE =12AB =12×22=2(cm ),△BOE 为等腰直角三角形,∴OB =2BE =2 cm ,故答案为2 cm .5.2 36.解:连接OC.∵∠A =30°,∴∠COD =60°. ∵DC 切⊙O 于C ,∴∠OCD =90°.∴∠D =30°.∵OD =30 cm ,∴OC =12OD =15 cm . ∴AB =2OC =30 cm .(第7题) 7.(1)证明:如图,连接OD,∵OB=OD,∴∠ABC=∠ODB.∵AB=AC,∴∠ABC=∠ACB.∴∠ODB=∠ACB.∴OD∥AC.∵DF是⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)解:如图,连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°.∵OA=OE,∴∠AOE=90°.∵⊙O的半径为4,∴S扇形AOE =4π,S△AOE=8.∴S阴影=S扇形AOE-S△AOE=4π-8.专训2(第1题)1.解:连接OA ,OF ,如图.设OA =OF =r cm ,AB =a cm .在Rt △OAB 中,r 2=⎝ ⎛⎭⎪⎫a 22+a 2,在Rt △OEF 中,r 2=42+⎝ ⎛⎭⎪⎫4+a 22,∴a 24+a 2=16+16+4a +a24,解得a 1=8,a 2=-4(舍去).∴r 2=⎝ ⎛⎭⎪⎫822+82=80,∴r 1=45,r 2=-45(舍去),即该半圆的半径为4 5 cm .点拨:在有关圆的计算题中,求角度或边长时,常连接半径构造等腰三角形或直角三角形,利用特殊三角形的性质来解决问题.2.证明:连接AD ,BD.∵∠DAC ,∠DBC 是DC ︵所对的圆周角. ∴∠DAC =∠DBC.∵CD 平分∠ACM ,DP ⊥AC ,DH ⊥CM ,∴DP =DH. 在△ADP 和△BDH 中, ⎩⎨⎧∠DAP =∠DBH ,∠DPA =∠DHB =90°,DP =DH ,∴△ADP ≌△BDH ,∴AP =BH.点拨:本题通过作辅助线构造圆周角,然后利用“同弧所对的圆周角相等”得到∠DAC =∠DBC ,为证两三角形全等创造了条件.3.(1)证明:过点D 作⊙O 的直径DE ,连接AE ,EC ,AC. ∵DE 是⊙O 的直径,∴∠ECD =∠EAD =90°. 又∵CD ⊥AB ,∴EC ∥AB , ∴∠BAC =∠ACE. ∴BC ︵=AE ︵.∴BC =AE.在Rt △AED 中,AD 2+AE 2=DE 2, ∴AD 2+BC 2=4R 2.(2)解:过点O作OF⊥AD于点F.∵弦AD,BC的长是方程x2-6x+5=0的两个根(AD>BC),∴AD=5,BC=1.由(1)知,AD2+BC2=4R2,∴52+12=4R2,∴R=26 2.∵∠EAD=90°,OF⊥AD,∴OF∥EA.又∵O为DE的中点,∴OF=12AE=12BC=12,即点O到AD的距离为12.点拨:本题作出直径DE,利用“直径所对的圆周角是直角”构造了两个直角三角形,给解题带来了方便.4.解:CD与⊙O相切,理由如下:如图,作直径CE,连接AE.∵CE是直径,∴∠EAC=90°.∴∠E+∠ACE=90°.∵CA=CB,∴∠B=∠CAB.∵AB∥CD,∴∠ACD=∠CAB.∵∠B=∠E,∴∠ACD=∠E,∴∠ACE+∠ACD=90°,即OC⊥DC.又OC为⊙O的半径,∴CD与⊙O相切.(第4题)(第7题) 5.C 6.60°7.(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵点D是BC 的中点,∴AD是线段BC的垂直平分线,∴AB=AC.∵AB=BC,∴AB=BC=AC,∴△ABC为等边三角形.(2)解:连接BE.∵AB是直径,∴∠AEB=90°,∴BE⊥AC,∵△ABC是等边三角形,∴AE=EC,即E为AC的中点.∵D是BC的中点,故DE为△ABC的中位线.∴DE=12AB=12×2=1.8.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA.∵PA=PB,∴∠PAB=∠PBA.∴∠OAB+∠PAB=∠OBA+∠PBA,即∠PAO=∠PBO.又∵PA是⊙O的切线,∴∠PAO=90°.∴∠PBO=90°.∴OB⊥PB. 又∵OB是⊙O的半径,∴PB是⊙O的切线.(2)解:连接OP,∵PA=PB,∴点P在线段AB的垂直平分线上.∵OA=OB,∴点O在线段AB的垂直平分线上.∴OP为线段AB的垂直平分线,又∵BC⊥AB,∴PO∥BC.∴∠AOP=∠ACB=60°.∴∠OPA=30°. 在Rt△APO中,AO2+PA2=PO2,即AO2+3=(2AO)2.又∵AO>0,∴AO=1.∴⊙O的半径为1.(第8题)(第9题) 9.(1)证明:如图,连接CO,交DB于点E,∴∠O=2∠CDB=60°.又∵∠OBE=30°,∴∠BEO=180°-60°-30°=90°.∵AC∥BD,∴∠ACO=∠BEO=90°,即OC⊥AC.又∵点C在⊙O上,∴AC是⊙O的切线.(2)解:∵OE⊥DB,∴EB=12DB=3 3 cm.在Rt△EOB中,∵∠OBE=30°,∴OE=12OB.∵EB=3 3 cm,∴由勾股定理可求得OB=6 cm. 又∵∠D=∠DBO,DE=BE,∠CED=∠OEB,∴△CDE≌△OBE,∴S△CDE =S△OBE,∴S阴影=S扇形OCB=60360π·62=6π(cm2).专训31.解:(1)如图,过B作BH⊥PQ于H,在Rt△BHP中,由条件易知:BP=320 km,∠BPQ=30°.∴BH=12BP=160 km<200 km.∴台风会影响B市.(2)如图,以B为圆心,200 km为半径作圆,交PQ于P1,P2两点,连接BP1,由垂径定理知P1P2=2P1H.在Rt△BHP1中,BP1=200 km,BH=160 km,∴P1H=2002-1602=120(km).∴P1P2=2P1H=240 km.∴台风影响B市的时间为24030=8(h).点拨:本题在图形中画出圆,可以非常直观地构造数学模型,然后利用垂径定理解决生活中的实际问题.(第1题)(第2题) 2.解:选择射门方式二较好,理由如下:设AQ与圆的交点为C,连接PC,如图所示.∵∠PCQ是△PAC的外角,∴∠PCQ>∠A.又∵∠PCQ=∠B,∴∠B>∠A.∴在B点射门比在A点射门好.∴选择射门方式二较好.点拨:本题运用转化思想,将射门角度大小的问题,建模转化到圆中,根据圆周角的相关知识来解决实际问题.3.解:修建的这条水渠不会穿过公园.理由:过点C作CD⊥AB,垂足为D.∵∠CBA=45°,∴∠BCD=45°,CD=BD.设CD=x km,则BD=x km.易知∠CAB=30°,∴AC=2x km,AD=(2x)2-x2=3x km.∴3x+x=1,解得x=3-1 2,即CD=3-12km≈0.366 km=366 m>350 m,也就是说,以点C为圆心,350 m为半径的圆与AB相离.即修建的这条水渠不会穿过公园.4.解:∵圆锥形漏斗的底面半径为20 cm,高为40 2 cm,∴圆锥的母线长为202+(402)2=60(cm).设圆锥的侧面展开图的圆心角为n°,则有nπ×60180=2π×20,解得n=120.方案一:如图①,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为60 3 cm.此时矩形的面积为60×603=3 6003(cm2).方案二:如图②,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为30+60=90(cm),此时矩形的面积为90×60=5 400(cm2).∵3 6003>5 400,∴方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.(第4题)专训41.解:(1)作OD⊥BC于D.由垂径定理知,点D是BC的中点,即BD=12BC,∵OB=12AB=5 cm,OD=4 cm,由勾股定理得,BD=OB2-OD2=3 cm,∴BC=2BD=6 cm.(2)设经过t s,△BPC是等腰三角形.①当PC为底边时,有BP=BC,即10-t=6,解得t=4;②当BC为底边时,有PC=PB,此时P点与O点重合,t=5.∴经过4 s或5 s△BPC是等腰三角形.2.解:(1)线段AB长度的最小值为4.理由如下:连接OP.∵AB切⊙O于P,∴OP⊥AB.取AB的中点C,则AB=2OC,当OC=OP时,OC最短,即AB最短,此时AB=4.(2)存在.假设存在符合条件的点Q.如图①,设四边形APOQ为平行四边形,∵∠APO=90°,∴四边形APOQ为矩形.又∵OP=OQ,∴四边形APOQ为正方形,∴OQ=QA.∴∠QOA=45°,在Rt△OQA中,根据OQ=2,∠AOQ=45°,得Q点的坐标为(2,-2).(第2题)如图②,设四边形APQO为平行四边形,连接OP,∵OQ∥PA,∠APO=90°,∴∠POQ=90°.又∵OP=OQ,∴∠PQO=45°,∵PQ∥OA,∴PQ⊥y轴.设PQ交y轴于点H,在Rt△OHQ中,根据OQ=2,∠HQO=45°,得Q点的坐标为(-2,2).∴符合条件的点Q的坐标为(2,-2)或(-2,2).3.解:如图,设PQ与⊙O相切于点H,过点P作PE⊥BC,垂足为E.(第3题)∵在四边形ABCD中,AD∥BC,∠ABC=90°,∴PE=AB.由题意可知:AP=BE=t cm,CQ=2t cm,∴BQ=BC-CQ=(22-2t) cm,EQ=BQ-BE=22-2t-t=(22-3t) cm.∵AB 为⊙O 的直径,∠ABC =∠DAB =90°, ∴AD ,BC 为⊙O 的切线.∴AP =PH ,HQ =BQ. ∴PQ =PH +HQ =AP +BQ =t +22-2t =(22-t) cm . 在Rt △PEQ 中,PE 2+EQ 2=PQ 2, ∴122+(22-3t)2=(22-t)2,即 t 2-11t +18=0,解得t 1=2,t 2=9.∵P 在AD 边运动的时间为AD 1=81=8(s ),而t =9>8,∴t =9(舍去). ∴当t =2 s 时,PQ 与⊙O 相切.4.解:(1)∵在△ACO 中,∠OAC =60°,OC =OA , ∴△ACO 是等边三角形. ∴∠AOC =60°. (2)如图,(第4题)①作点C 关于直径AB 的对称点M 1,连接AM 1,OM 1. 易得S △M 1AO =S △CAO ,∠AOM 1=60°,∴AM 1︵=4π180×60=43π.∴当点M 运动到M 1时,S △MAO =S △CAO ,此时动点M 经过的弧长为43π.②过点M 1作M 1M 2∥AB 交⊙O 于点M 2,连接AM 2,OM 2,易得S △M 2AO =S △CAO ,∴∠OM 1M 2=∠AOM 1=60°.又∵OM 1=OM 2,∴∠M 1OM 2=60°,∴∠AOM 2=120°.∴AM 2︵=4π180×120=83π.∴当点M 运动到M 2时,S △MAO =S △CAO ,此时动点M 经过的弧长为83π. ③过点C 作CM 3∥AB 交⊙O 于点M 3,连接AM 3,OM 3,易得S △M 3AO=S △CAO ,∠AOM 3=120°.∴AM 2M 3︵=4π180×240=163π.∴当点M 运动到M 3时,S △MAO =S △CAO ,此时动点M 经过的弧长为163π. ④当点M 运动到C 时,M 与C 重合,S △MAO =S △CAO ,此时动点M 经过的弧长为4π180×300=203π.综上所述,当S △MAO =S △CAO 时,动点M 所经过的弧长为43π或83π或163π或203π.专训51.C 2.C 3.C 4.D(第5题)5.证明:如图,连结AC. ∵AB 为⊙O 的直径, ∴∠ACB =90°,∴∠ACD +∠DCB =90°. ∵CP ⊥AB 于点P , ∴∠B +∠DCB =90°, ∴∠ACD =∠B.又∵AC ︵=CE ︵,∴∠B =∠CAD =∠ACD ,∴AD =CD. 6.A 7.B 8.B 9.B(第10题)10.(1)解:设⊙O 的半径为r ,∵AB 是⊙O 的直径,BC 是⊙O 的切线, ∴AB ⊥BC ,在Rt △OBC 中,∵OC 2=OB 2+CB 2, ∴(r +1)2=r 2+(3)2,解得r =1,∴⊙O 的半径为1. (2)证明:连结OF , ∵OA =OB ,BF =EF , ∴OF 是△BAE 的中位线, ∴OF ∥AE ,∴∠A =∠2,∠1=∠ADO , 又∵∠ADO =∠A ,∴∠1=∠2,在△OBF 和△ODF 中,⎩⎨⎧OB =OD ,∠2=∠1,OF =OF ,∴△OBF ≌△ODF , ∴∠ODF =∠OBF =90°,即OD ⊥DF ,又OD 是⊙O 的半径, ∴FD 是⊙O 的切线. 11.D(第12题)12.解:(1)相切,理由如下: 如图,连结OD , ∵AD 平分∠BAC , ∴∠1=∠2.∵OA =OD ,∴∠1=∠3, ∴∠2=∠3,∴OD ∥AC. 又∠C =90°,∴OD ⊥BC , ∴BC 与⊙O 相切. (2)①设⊙O 的半径为r. ∵AC =3,∠B =30°,∴AB =6. 又OA =OD =r ,∴OB =2r.∴2r +r =6,解得r =2,即⊙O 的半径是2.②由①得OD =2,则OB =4,BD =23,S 阴影=S △OBD -S 扇形ODE =12×23×2-60π×22360=23-2π3.13.(1)证明:在Rt △CED 中,∠C +∠CED =90°,在Rt △BFE 中,∠EFB +∠BEF =90°.∵∠CED =∠BEF ,∴∠C =∠EFB.在Rt △ABC 和Rt △EBF 中, ⎩⎨⎧∠C =∠EFB ,BC =BF ,∠ABC =∠EBF ,∴△ABC ≌△EBF.(2)解:BD 与⊙O 相切,理由如下: 连结BO ,∵OB =OF , ∴∠OBF =∠OFB.∵FD 垂直平分AC ,∴D 为AC 的中点,又∵△ABC 为直角三角形. ∴BD =CD ,∴∠DCB =∠DBC.由(1)知∠ACB =∠EFB , ∴∠DBC =∠DFB =∠OBF.∵∠CBF =∠CBO +∠OBF =90°, ∴∠DBO =∠CBO +∠DBC =90°, ∴BD 为⊙O 的切线.14.解:(1)∵CD 是⊙O 的切线,C 为切点, ∴OC ⊥CD ,即∠OCD =90°. ∵四边形OABC 是平行四边形,(第14题)∴AB ∥OC ,即AD ∥OC. ∴∠ADC +∠OCD =180°, ∴∠ADC =180°-∠OCD =90°.(2)如图,连结OB ,则OB =OA =OC. ∵四边形OABC 是平行四边形, ∴OC =AB , ∴OA =OB =AB.即△AOB 是等边三角形. 于是,∠AOB =60°.由OF ∥CD ,又∠ADC =90°,得∠AEO =∠ADC =90°.∴OF ⊥AB ,有BF ︵=AF ︵.∴∠FOB =∠FOA =12∠AOB =30°.∴∠FAB =12∠FOB =15°.15.解:(1)∵直线y =-34x +3与x 轴交于点A(4,0),与y 轴交于点B(0,3),∴OA =4,OB =3,∴AB =32+42=5.连结CF ,∵四边形OBCE 是矩形,∴CE =OB =3.设OE =x ,则由切线长定理知AF =AE =x +4,∴BF =x +4-5=x -1.在Rt △CBF 中,∵BC =OE =x ,CF =CE =3,BF =x -1,BC 2=CF 2+BF 2,∴x 2=32+(x -1)2,解得x =5,即OE =5,∴点C 的坐标为(-5,3).(2)连结CE ,CD ,易知四边形CEOD 是正方形,∴OE =OD =r.由切线长定理知BF =BD =3-r ,AE =AF ,又∵AE =AO +OE =4+r ,AF =AB +BF =5+3-r =8-r ,∴4+r =8-r ,∴r =2.(3)不能.专训61.(1)解:设过点B 、C 、D 三点的抛物线对应的函数表达式为y =ax 2+bx+c ,则⎩⎨⎧4=c ,0=4a -2b +c ,0=64a -8b +c ,解得⎩⎪⎨⎪⎧a =14,b =52,c =4.∴经过B 、C 、D 三点的抛物线对应的函数表达式为y =14x 2+52x +4. (2)证明:∵y =14x 2+52x +4=14(x +5)2-94,∴E ⎝ ⎛⎭⎪⎫-5,-94. 设直线CE 对应的函数表达式为y =mx +n ,直线CE 与y 轴交于点G ,则⎩⎪⎨⎪⎧0=-2m +n ,-94=-5m +n ,解得⎩⎪⎨⎪⎧m =34,n =32,∴直线CE 对应的函数表达式为y =34x +32. 在y =34x +32中,当x =0时,y =32,∴点G 的坐标为⎝ ⎛⎭⎪⎫0,32.如图,连结AB 、AC 、AG ,则BG =OB -OG =4-32=52,CG =OC 2+OG 2=22+⎝ ⎛⎭⎪⎫322=52,∴BG =CG.又∵AB =AC ,AG =AG , ∴△ABG ≌△ACG , ∴∠ACG =∠ABG.∵⊙A 与y 轴相切于点B(0,4), ∴∠ABG =90°,。
圆综合复习
中考专题复习——圆综合●考点透视圆是初中几何知识的重要内容,中考试题中年年考查,往往是结合几个知识点或其它章节知识同时考查.突出了方程思想和转化思想,考查了学生分析问题和解决问题的能力.1.重视基础知识的考查.2.整合学科知识,考查创新应用主要考查内容有:①圆与相似三角形的综合;②圆与四边形的综合;③圆与方程的综合.●学习目标1.体验从课本习题至圆综合的变式过程。
2.寻找变式后面的不变的基本图形和数学思想。
3.培养分析问题和解决问题的能力●学习重、难点圆综合变式中的基本图形的发现和利用基本数学思想解决具体问题的方法。
一、经典再现,突出主题二、范例探究例1:(九年级下册103页)如图1:AB是⊙O的直径,点E、C是⊙O上的两点,DC是⊙O的切线,AD⊥CD.求证:AC平分∠BAE。
图1深入探究:1、如图1,AB是⊙O的直径,点E、C是⊙O上的两点,AC平分∠BAE,AD⊥CD.请问DC与⊙O的位置关系?2、如图1:AB是⊙O的直径,点E、C是⊙O上的两点,DC是⊙O的切线,AC平分∠BAE.请问AD与CD位置关系?3、如图1,例1条件不变,连接BC,请问图1中有相似三角形吗?4、如图1,例1条件不变,且AD=4,AC=5,求⊙O半径。
(2)、添加辅助线后你能从图2得到什么结论?(边相等?三角形相似?)香洲一模21题图(香洲一模21题)在R t △ABC 中,∠C =90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径的圆弧与BC 相切于点D ,交AC 于点E ,交AB 于点F ,连接AD . (1)求证:AD 平分∠BAC ;(2)已知CE =1,sin ∠B =0.6,求圆弧的半径和△ABD 的面积.(3)、添加辅助线后你能从图3得到什么结论?(边关系?三角形相似?)变式5:在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径的圆弧与BC 相切于点D ,交AC 于点E ,连接AD . 已知AE=2,DC=3,求圆弧的半径.图2图3A 变式5图1、在Rt △AFD 中,∠D=90°,AD =9, FD =12,∠BAD 的平分线AC 交FD 与点C , BC ⊥AC 交AF 于点B .(1)设⊙O 是△ABC 的外接圆,求证:FD 是⊙O 的切线; (2)设⊙O 交AD 于点E ,连结BE ,求FDBE的值.四、课堂总结1、图形变化中寻找不变2、数学思想(1)构造思想 (2)方程思想 (3)建模思想图1图5A图3图2A五、课后反馈练习1.如图,已知点O 为Rt △ABC 斜边上一点,以点O 为圆心,OA 长为半径的⊙O 与BC 相切于点E ,与AC 相交于点D ,连接AE .(1)说明:AE 平分∠CAB ;(2)探究图中∠1与∠C 的数量关系,并求当AE=EC 时 tan ∠AEB 的值.2.如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F . (1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形,试判断四边形OFDE 的形状,并说明理由.3.如图1,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,点O 是斜边AB 上一动点,以OA为半径作⊙O 与AC 边交于点P ,(1)当OA=25时,求点O 到BC 的距离; (2)如图1,当OA=815时,求证:直线BC 与⊙O 相切;此时线段AP 的长是多少?(3)若CO 平分∠ACB ,则线段AP 的长是多少?。
2021年九年级中考第二轮数学专题复习:圆的综合 强化训练(一)
2021年九年级中考第二轮数学专题复习:圆的综合强化训练(一)1.如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E,点F分别在半径OC,OD上(不与点O,点C,点D重合),连接AE,EB,BF,FA.(1)若CE=DF,求证:四边形AEBF是菱形.(2)过点O作OG⊥EB,分别交EB,⊙O于点H,点G,连接BG.①若∠COG=∠EBG,判断△OBG的形状,说明理由.②若点E是OC的中点,求的值.2.已知:在半径为2的扇形AOB中,∠AOB=m°(0<m≤180),点C 是上的一个动点,直线AC与直线OB相交于点D.(1)如图1,当0<m<90,△BCD是等腰三角形时,求∠D的大小(用含m的代数式表示);(2)如图2,当m=90点C是的中点时,联结AB,求的值;(3)将沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=1时,求线段AD的长.3.如图,在矩形ABCD中,AB=4,BC=8,点P在边BC上(点P与端点B、C不重合),以P为圆心,PB为半径作圆,圆P与射线BD的另一个交点为点E,直线CE与射线AD交于点G.点M为线段BE的中点,联结PM.设BP=x,BM=y.(1)求y关于x的函数解析式,并写出该函数的定义域;(2)联结AP,当AP∥CE时,求x的值;(3)如果射线EC与圆P的另一个公共点为点F,当△CPF为直角三角形时,求△CPF的面积.4.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).5.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D在AB上,AD =2,以点A为圆心,AD长为半径的弧交AC于点E,与BC交于点F ,G,P是上一点.将AP绕点A逆时针旋转120°,得到AQ,连接CQ,AF.(1)若BP与所在圆相切,判断CQ与所在圆的位置关系.并加以证明;(2)求BF的长及扇形EAF的面积;(3)若∠PAB=m°,当∠ACQ=30°,直接写出m的值.6.如图,⊙O是△ABC的外接圆,AB=AC,BO的延长线交AC于点D.(1)求证:∠BAC=2∠ABD;(2)若=,求tan∠ABD.7.已知:如图,在△ABC中,点I是△ABC的内心(三角形三条角平分线的交点),延长AI与△ABC的外接圆交于点D,连接BD,DC.求证:(1)DI=DB;(2)若∠BAC=60°,BC=2,求DI的长.8.有一些代数问题,我们也可以通过几何方法进行求解,例如下面的问题:已知:a>b>0,求证:>.经过思考,小明给出了几何方法的证明,如图:①在直线l上依次取AB=a,BC=b;②以AC为直径作半圆,圆心为O;③过B点作直线l的垂线,与半圆交于点D,连接OD.请回答:(1)连接AD,CD,由作图的过程判断,∠ADC=90°,其依据是;(2)根据作图过程,试求线段BD、OD(用a,b的代数式表示),请写出过程;(3)由BD⊥AC,可知BD<OD,其依据是,由此即证明了这个不等式.9.如图,⊙O是△ABC的外接圆,∠ACB=90°.D是⊙O上一点,连接CD,与AB交于点F,过点A作⊙O的切线交DC延长线于点E,已知AC=EC.(1)求证:AD=AE;(2)若AE=2,EF=2,求⊙O的直径.10.如图,已知Q是∠BAC的边AC上一点,AQ=15,cot∠BAC=,点P 是射线AB上一点,联结PQ,⊙O经过点A且与QP相切于点P,与边AC 相交于另一点D.(1)当圆心O在射线AB上时,求⊙O的半径;(2)当圆心O到直线AB的距离为时,求线段AP的长;(3)试讨论以线段PQ长为半径的⊙P与⊙O的位置关系,并写出相应的线段AP取值范围.11.如图,已知扇形AOB的半径OA=4,∠AOB=90°,点C、D分别在半径OA、OB上(点C不与点A重合),联结CD.点P是弧AB上一点,PC=PD.(1)当cot∠ODC=,以CD为半径的圆D与圆O相切时,求CD的长;(2)当点D与点B重合,点P为弧AB的中点时,求∠OCD的度数;(3)如果OC=2,且四边形ODPC是梯形,求的值.12.如图,已知半圆O的直径AB=4,点P在线段OA上,半圆P与半圆O 相切于点A,点C在半圆P上,CO⊥AB,AC的延长线与半圆O相交于点D,OD与BC相交于点E.(1)求证:AD•AP=OD•AC;(2)设半圆P的半径为x,线段CD的长为y,求y与x之间的函数解析式,并写出定义域;(3)当点E在半圆P上时,求半圆P的半径.13.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD ∥AC交⊙O于点D,连接CD,OC,且OC交DB于点E.若.(1)求∠COB的大小和⊙O的半径长.(2)求由弦CD,BD与弧BC所围成的阴影部分的面积(结果保留π).14.如图1,▱ABCF的顶点A,B,C在⊙O上,AB=AC.(1)求证:AF为⊙O的切线;(2)如图2,CF与⊙O交于点E,连接BE.若AB=BE,CE=EF,求cos∠BEC的值.15.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB =,BC=1,求PD的长.参考答案1.解:(1)在⊙中,OA=OB=OC=OD,∵CE=DF,∴OC﹣CE=OD﹣DF,∴OE=OF,∵AB⊥CD,即AB⊥EF,∴四边形AEBF是菱形.(2)①△OBG是等边三角形.理由如下:∵AB⊥CD,OG⊥EB,∴∠COB=∠OHB=90°,∴∠COG=90°﹣∠BOH=∠EBO,∵∠COG=∠EBG,∴∠EBO=∠EBG,∵BH=BH,∠BHO=∠BHG=90°∴△BHO≌△BHG(ASA)∴OB=GB,∵OB=OG,∴OB=OG=GB,∴△OBG是等边三角形.②设⊙的半径长为2m,则OC=OG=OB=2m,∵点E是OC的中点,∴OE=m,∴BE==m;∵∠EOH=90°﹣∠BOH=∠EBO,∴==cos∠EBO,∴=,∴HO=m,∴GH=2m﹣m,∴==.2.解:(1)C在AB弧线上,∴∠OBC为锐角,∴∠CBD为钝角,则△BCD是等腰三角形时,仅有BC=BD这一种情况,∴∠D=∠BCD,连接OC则OA=OC=OB,∴∠OAC=∠OCA,∠OCD=∠OBC,∴∠OBC=∠D+∠BCD=2∠D,在△OCD中,∠COD+2∠D+2∠D=180°,∴∠AOC=m°﹣∠COD=m°+4∠D﹣180°,∴∠AOC=×(180°﹣∠AOC)=180°﹣﹣2∠D,在△AOD中,m°+∠OAC+∠D=180°,∴180°+﹣∠D=180°,∴∠D=;(2)过D作DM⊥AB延长线于M,连接OC,∵C为中点,∴AC=BC,∴∠BAC=∠ABC且AO=CO=BO,∴∠OAC=∠OCA=∠OCB=∠OBC,∴∠ACO+∠BCO=×(360°﹣90°)=135°,∴∠BCD=45°,∴45°+∠ODA=∠ABC+∠ABD=45°+∠ABC,∴∠ABC=∠ADO=∠BAC,∴BD=AB=2(勾股定理),∴BM=DM=2(∠MBD=∠OBA=45°,∴BM=DM),∴AM=AB+BM=2+2,∴AN=AB=,又∵CN⊥AB,DM⊥AB,∴△ANC∽△AMD,∴,∴==6+4;(3)图2如下:∵E为弧线AEC与OB切点,∴A、E、C在半径为2的另一个圆上,∵O′E=2,OE=1,∴OO′=(勾股定理),又∵OA=OC=2,O′A=O′C=2,∴四边形AOCO′是菱形,∴AC⊥OO′且AC、OO′互相平分,且∠O′OE共角,∴△O′OE∽△DOP,∴=且OP=OO′=,∴OP=,∴AP==(Rt△APO′的勾股定理)∴AD=AP+PD=.3.解:(1)在矩形ABCD中,CD=AB=4,BC=8,∠BCD=90°,∴BD==4,∵M为弦BE的中点,P为圆心,∴PM⊥BE,∠BMP=90°,∵AD∥BC,∴∠PBM=∠DBC,∴==cos∠DBC,∴=,∴y=x,当点G与点A重合时,则点E为BD中点,此时y=BD=,由x=,得x=,∴y关于x的函数解析式y=x(≤x<8);(2)如图1,当AP∥CE时,则四边形APCG是平行四边形,AG=PC,∴DG=BP=x.由BM=x,得BE=x,DE=4﹣x∵DG∥BC∴△DGE∽△BCE,∴===;∴=,整理,得x2+8x﹣40=0,解得x 1=﹣4+2,x2=﹣4﹣2(不符合题意,舍去).∴x=﹣4+2.(3)如图2,若∠PFC=90°,则点F与点E重合,不符合题意;如图3,当∠PCF=90°时,则点E与点D重合,此时y=×4=2,由x=2,得x=5,∴PC=8﹣5=3,CF=CD=4,∴S△CPF=×3×4=6;如图4,当∠CPF=90°时,过点E作EQ⊥BC交BC的延长线于点Q,在BC边上取一点H,连接DH,使DH=BH,由图3得,当点E与点D重合时,则点P与图4中的点H重合,此时,CH =3,DH=5,∴CH:CD:DH=3:4:5,∵∠EPQ=∠DHC=2∠DBC,∠Q=∠DCH=90°,∴△EPQ∽△DHC,∴PQ:EQ:PE=3:4:5,∵PE=BP=PF=x,∴EQ=x,PQ=x∵PF∥EQ,∴△CPF∽△CQE,∴===,∴PC=PQ=×x=x,∴8﹣x=x,解得x=6,∴PC=8﹣6=2,PF=6,∴S△CPF=×2×6=6.综上所述,△CPF的面积为6.4.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠FAC=∠OCA,∴∠FAC=∠OAC,∴CA平分∠FAB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.5.解:(1)CQ与所在圆相切;证明:由旋转知,AP=AQ,∠PAQ=120°,∵∠BAC=120°,∴∠PAQ=∠BAC,∴∠PAQ﹣∠PAC=∠BAC﹣∠PAC,∴∠ACQ=∠ABP,∵AC=AB,∴△ACQ≌△ABP(SAS),∴∠AQC=∠APB,∵BP与所在圆相切,∴∠APB=90°,∴∠AQC=90°,∵AQ=AP,∴CQ与所在圆相切;(2)如图,过点A作AN⊥BC于N,∵AB=AC=2,∠BAC=120°,∴∠ABC=30°,∴AN=AB=,∴BN=AN=3,①当点F在点G的左边时,过点F作FM⊥AB于M,设FM=m,在Rt△BMF中,BF=2m,BM=m,∴AM=AB﹣BM=(2﹣m),在Rt△AMF中,根据勾股定理得,FM2+AM2=AF2,∴m2+[(2﹣m)]2=22,∴m=1或m=2,∴BF=2m=2或4(舍),∴BF=AF,∴∠BAF=∠ABC=30°,∴∠EAF=90°,∴S扇形EAF==π;②当点F在点G的右边时,同①的方法得,BF=4,S扇形EAF=﹣=;即当BF=2时,扇形EAF的面积为π,当BF=4时,扇形EAF的面积为;(3)由(1)知,△ACQ≌△ABP,∴∠ABP=∠ACQ=30°,∵∠ABP=30°,∴点P在BC上,即点P与点F或G重合,当点P与点F重合时,∠PAB=∠BAF,由(2)知,∠BAF=30°,∴m=30,当点P与点G重合时,∠PAB=∠BAG=90°,∴m=90,即m的值为30或90.6.解:(1)连接AO,并延长交BC于点H,∵AB=AC,∴.∴AH⊥BC.∴AH平分∠BAC.∴∠BAC=2∠BAH.∵OA=OB,∴∠ABD=∠BAH.∴∠BAC=2∠ABD.(2)过A作AE∥BC,交BD延长线于点E,∵AE∥BC,∴.∵AB=AC,AH⊥BC,∴BH=BC.∴.∵AE∥BC,∴.设OB=OA=4a,则OH=3a.∴BH=.AH=OA+OH=7a.∵∠ABD=∠BAH,∴tan∠ABD=tan∠BAH=.7.(1)证明:连接BI,如图1所示:∵点I是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠BID=∠BAI+∠IBA,∠IBD=∠CBI+∠CBD,∠CBD=∠CAD,∴∠BID=∠IBD,∴DI=DB;(2)解:过点D作DE⊥BC于E,如图2所示:由(1)得:∠BAD=∠CAD,∴,∴BD=CD,∵DE⊥BC,∴BE=CE=BC=,∵∠BAC=60°,∴∠BAD=∠CAD=30°,∴∠DBC=∠BCD=30°,∴DE=BE=1,BD=2DE=2,∴DI=BD=2.8.解:(1)∵AC为直径,∴∠ADC=90°(直径所对的圆周角是直角).故答案为:直径所对的圆周角是直角;(2)∵BD⊥AC,∴∠ABD=∠CBD=90°.∴∠BAD+∠ADB=90°.∵∠ADC=90°,∴∠CDB+∠ADB=90°.∴∠BAD=∠CDB.∴△ABD∽△DBC.∴.∴BD2=AB•BC=ab.∴BD=.∵AB=a,BC=b,∴AC=a+b.∴OD=.(3)∵BD⊥AC,∴BD<OD(直线外一点到直线上各点的所有连线中,垂线段最短).∴>.故答案为:垂线段最短.9.(1)证明:∵∠ACB=90°.∴AB是⊙O的直径,∵EA是⊙O的切线,∴BA⊥EA,∴∠EAC+∠CAB=90°,∵∠B+∠CAB=90°,∴∠EAC=∠B,∵AC=EC,∴∠EAC=∠E,∴∠E=∠B,∵∠B=∠D,∴∠E=∠D,∴AD=AE;(2)解:∵∠EAF=90°,AE=2,EF=2,∴AF==2,由(1)知:AD=AE=2,∵∠B=∠E,∠ACB=∠EAF=90°,∴△ACB∽△FAE,∴=,∴AB=AC,如图,过点A作AG⊥CD于点G,设AC=EC=t,则CF=2﹣t,∵tan∠E==,sin∠E===,∴AG=,∴FG==,∴EG=EC+CG,∴CG=CF﹣FG=2﹣t﹣=﹣t,∵AC2=AG2+CG2,∴t2=()2+(﹣t)2,解得t=,∴AB=AC=t=3.∴⊙O的直径是3.10.解:(1)如图1中,∵点O在PA上,PQ是⊙O的切线,∴PQ⊥AP,∵cot∠PAQ==,∴可以假设PA=3k,PQ=4k,则AQ=5k=15,∴k=3,∴PA=9,PQ=12,∴⊙O的半径为.(2)如图2﹣1中,当点O在射线AB的上方时,过点Q作QK⊥AB于K,过点O作OH⊥AB于H.∵PQ是⊙O的切线,∴∠PHO=∠OPQ=∠PKQ=90°,∴∠OPH+∠QPK=90°,∠QPK+∠PQK=90°,∴△PHO∽△QKP,∴=,设PA=2m,则AH=PH=m,PK=9﹣2m,∴=,解得,m=或﹣3,经检验,x=是分式方程的解,且符合题意.∴AP=3.如图2﹣2中,当点O在射线AB的下方时,同法可得AP=.综上所述,满足条件的AP的值为3或.(3)如图3﹣1中,当⊙P与⊙O内切时,由△PHO∽△QKP,可得==,∵OH⊥AP,∴AH=PH,∴AP=2PH,QK=2PH,∴PA=QK=12,如图3﹣2中,当⊙O与AC相切于点A时,∵∠OAQ=∠OPQ=90°,OQ=OQ,OA=OP,∴Rt△OAQ≌Rt△OPQ(HL),∴AQ=PQ,∵OA=OP,∴OQ垂直平分线段AP,∴AP=2AH=18,观察图像可知:当⊙O与⊙P内含时,0<AP<12.当⊙O与⊙P内切时,AP=12.当⊙O与⊙P相交时,12<AP<18.11.解:(1)如图1中,∵∠COD=90°,cot∠ODC==,∴可以假设OD=3k,OC=4k,则CD=5k,∵以CD为半径的圆D与圆O相切,∴CD=DB=5k,∴OB=OC=8k,∴AC=OC=4k=2,∴k=,∴CD=.(2)如图2中,连接OP,过点P作PE⊥OA于E,PF⊥OB于F.∵=,∴∠AOP=∠POB,∵PE⊥OA,PF⊥OB,∴PE=PF,∵∠PEC=∠PFB=90°,PD=PC,∴Rt△PEC≌Rt△PFB(HL),∴∠EPC=∠FPB,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠CPB=90°,∴∠PCB=∠PBC=45°,∵OP=OB,∠POB=45°,∴∠OBP=∠OPB=67.5°,∴∠CBO=67.5°﹣45°=22.5°,∴∠OCD=90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC∥PD时,∵OC∥PD,∴∠PDO=∠AOD=90°,∵CE⊥PD,∴∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,设PC=PD=x,EC=OD=y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD=2﹣2,∴==﹣1.如图3﹣2中,当PC∥OD时,∵PC∥OD,∴∠COD=∠OCE=∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,∵OP=4,OC=2,∴PC===2,∴PD=PC=2,∴PE===2,∴EC=OD=2﹣2,∴===3+,综上所述,的值为﹣1或3+.12.解:(1)连接CP,如图:∵AP=CP,AO=DO,∴∠A=∠ACP=∠ADO,∴△ACP∽△ADO,∴,∴AD•CP=OD•AC,∴AD•AP=OD•AC;(2)∵半圆O的直径AB=4,∴AO=2,∵半圆P的半径为x,∴OP=2﹣x,∵CO⊥AB,∴∠COP=90°,∴CO2=CP2﹣OP2=x2﹣(2﹣x)2=4x﹣4,Rt△AOC中,AC==2,∵∠A=∠ACP=∠ADO,∴CP∥DO,∴,又线段CD的长为y,∴,变形得:y=,x范围是0<x≤2;(3)设半圆P与AB交于G,连接EG,过E作EH⊥AB于H,如图:设半圆P的半径为x,由(2)知AC=2,∵CO⊥AB,∴BC=AC=2,∵CP∥DO,∴,而OB=2,PB=4﹣x,∴,∴BE=,∵点E在半圆P上,∴∠EGB=∠ACB,且∠B=∠B,∴△CAB∽△GEB,∴=,∴,∴EG=,∵AC=BC,∴EG=BG,而BG=AB﹣AG=4﹣2x,∴=4﹣2x,解得x=或(大于2,舍去),∴半圆P的半径为x=.13.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm),∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,∴=,∴OB=5,故⊙O的半径长为5cm;(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°∵∠CED=∠BEO,BE=ED,,∴△CDE≌△OBE(ASA),∴S阴影=S扇形==(cm2).答:阴影部分的面积为cm2.14.(1)证明:连接OB,OC,OA,延长AO交BC于点D,∵AB=AC,OB=OC,∴AD⊥BC,∴∠ADB=90°,∵四边形ABCF为平行四边形,∴AF∥BC,∴∠FAO=∠ADB=90°,∴AF为⊙O的切线;(2)解:连接AE,过点B作BH⊥FC,交FC的延长线于点H,∵四边形ABCF为平行四边形,∴AF=BC,AF∥BC,∴∠FAC=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∵∠AEC+∠AEF=180°,∠AEC+∠ABC=180°,∴∠AEF=∠ABC=∠ACB=∠FAC,∵∠F=∠F,∴△FAE∽△FCA,∴,∴AF2=FE•FC,设CE=EF=1,CH=x,∴AF2=2,∴AF=,∴CF=AB=AC=BE=2,BC=,∵BH2=BC2﹣CH2=BE2﹣EH2,∴,解得,x=,∴EH=,∴cos∠BEC==.15.解:(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD,(2)连接OD交AC于E,如图:∵PD为⊙O切线,∴OD⊥DP,∵AD=CD,∴弧AD=弧CD,∴OD⊥AC,AE=CE,∵∠DEC=90°,∵AB为直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP是矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴==,∴AC=,∴EC=AC=.。
初三数学二模试题分类汇编——圆的综合综合及答案解析
初三数学二模试题分类汇编——圆的综合综合及答案解析一、圆的综合1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.2.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92DE =. 【解析】 【分析】(1)连接AD ,如图1,设∠BDC =α,∠ADC =β,根据圆周角定理得到∠CAB =∠BDC =α,由AB 为⊙O 直径,得到∠ADB =90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE =∠ADC ,等量代换得到∠ACE =∠CAE ,于是得到结论; (3)如图2,连接OC ,根据圆周角定理得到∠COB =2∠CAB ,等量代换得到∠COB =∠ABD ,根据相似三角形的性质得到OH =5,根据勾股定理得到AB =22AD BD +=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD .如图1,设∠BDC =α,∠ADC =β, 则∠CAB =∠BDC =α,∵点C 为弧ABD 中点,∴¶AC =¶CD,∴∠ADC =∠DAC =β,∴∠DAB =β﹣α, ∵AB 为⊙O 直径,∴∠ADB =90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣α),∴∠ABD =2α,∴∠ABD =2∠BDC ;(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB 22AD BD +,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 -【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD平分∠ABC(2)提示:延长BC与AD相交于点F,证明△BCE≌△ACF,BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-,DEBE=DHBCDEBE=212-4.如图,在ABC∆中,90,BAC∠=︒2,AB AC==AD BC⊥,垂足为D,过,A D 的⊙O分别与,AB AC交于点,E F,连接,,EF DE DF.(1)求证:ADE∆≌CDF∆;(2)当BC与⊙O相切时,求⊙O的面积.【答案】(1)见解析;(2)24π.【解析】分析:(1)由等腰直角三角形的性质知AD=CD、∠1=∠C=45°,由∠EAF=90°知EF是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC与⊙O相切时,AD是直径,根据∠C=45°、AC2可得AD=1,利用圆的面积公式可得答案.详解:(1)如图,∵AB=AC,∠BAC=90°,∴∠C=45°.又∵AD⊥BC,AB=AC,∴∠1=12∠BAC=45°,BD=CD,∠ADC=90°.又∵∠BAC=90°,BD=CD,∴AD=CD.又∵∠EAF=90°,∴EF是⊙O的直径,∴∠EDF=90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE和△CDF中.∵123CAD CD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CDF(ASA).(2)当BC与⊙O相切时,AD是直径.在Rt△ADC中,∠C=45°,AC=2,∴sin∠C=ADAC ,∴AD=AC sin∠C=1,∴⊙O的半径为12,∴⊙O的面积为24.点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.5.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF=2242+=25.∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF.∵EF=25,∴DE=25×22=10.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE=EBED,即GE•ED=AE•EB,∴10•GE=8,即GE=410,则GD=GE+ED=910.∴1191011092252S GD DF GD DE=⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.6.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?【答案】(1)522-;(2)52-;(3)20423-【解析】分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B点移动的距离.详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,由切线长定理可知C′E=C′D,设C′D=x,则C′E=x,∵△ABC是等腰直角三角形,∴∠A=∠ACB=45°,∴∠A′C′B′=∠ACB=45°, ∴△EFC′是等腰直角三角形, ∴C′F=2x ,∠OFD=45°, ∴△OFD 也是等腰直角三角形, ∴OD=DF , ∴2x+x=1,则x=2-1,∴CC′=BD -BC-C′D=5-1-(2-1)=5-2, ∴点C 运动的时间为522-; 则经过52-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F , ∵CC′=2t ,DD′=t ,∴C′D′=CD+DD′-CC′=4+t-2t=4-t , 由切线长定理得C′E=C′D′=4-t , 由(1)得:2-1, 解得:2,答:经过2秒△ABC 的边与圆第一次相切; (3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t , 则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t , 由切线长定理得C′E=C′D′=4-1.5t , 由(1)得:2-1, 解得:1022-, ∴点B 运动的距离为1022-2042-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.7.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.8.如图,已知AB为⊙O直径,D是»BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴»»DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.9.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当23时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.【答案】(1)直线FD与以AB为直径的⊙O相切,理由见解析;(2)222.【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD与以AB为直径的⊙O相切;(2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC的长.试题解析:(1)判断:直线FD与以AB为直径的⊙O相切.证明:如图,作以AB为直径的⊙O;∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,∴∠ADB=∠ACB=90°.∵O为AB的中点,连接DO,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.10.在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)求证:△OBC≌△ABD(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F 和直线BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE 的位置不变,AE 的解析式为:33y x =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB ,BC=BD ,∠OBA=∠DBC ,等号两边都加上∠ABC ,得到∠OBC=∠ABD ,根据“SAS”得到△OBC ≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA,则OE=23, ∴点E坐标为(0,-23),设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:0223k b b =+⎧⎪⎨-=⎪⎩, 解得,323k b ⎧=⎪⎨=-⎪⎩ , ∴直线AE 的解析式为:323y x =-.(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,则EF 与EA 所在的直线重合,∴点F 为DE 与BC 的交点,又F 为BC 中点,∴A 为OC 中点,又AO=2,则OC=4,∴当C 的坐标为(4,0)时,EF ∥OB ,这时直线BO 与⊙F 相切,理由如下:∵△BCD 为等边三角形,F 为BC 中点,∴DF ⊥BC ,又EF ∥OB ,∴FB ⊥OB ,∴直线BO 与⊙F 相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.11.如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D ,E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC 、AC .(1)求证:AC 平分∠DAO .(2)若∠DAO=105°,∠E=30°①求∠OCE 的度数;②若⊙O 的半径为2EF 的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23-2.【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=22,∠OCE=45°.等腰直角三角形的斜边是腰长的2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23,则EF=GE-FG=23-2.【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2)35.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225=-=,证明△CDE∽△DBE,根据相似三DE CE角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD225DE CE=-=∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.13.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =n n ,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠o o ,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =n n ,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=o ,求得90OAD DAP ∠+∠=o ,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥Q ,BD CD ∴=n n,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=o Q ,90EDF DFE ∴∠=-∠o ,OD OA =Q , ()111809022ODA AOD AOD ∴∠=-∠=-∠o o , 190902DFE AOD ∴-∠=-∠o o , 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠Q ,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥Q ,BE CE ∴=,BD CD =n n, BD CD ∴=,OA OD Q =,ADO OAD ∴∠=∠,PA Q 切O e 于点A ,90PAO ∴∠=o ,90OAD DAP ∴∠+∠=o ,PFA DFE ∠=∠Q ,90PFA ADO ∴∠+∠=o ,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.14.已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连结CB .[感知]如图①,点A、B在CD同侧,且点B在AC右侧,在射线AM上截取AE=BD,连结CE,可证△BCD≌△ECA,从而得出EC=BC,∠ECB=90°,进而得出∠ABC=度;[探究]如图②,当点A、B在CD异侧时,[感知]得出的∠ABC的大小是否改变?若不改变,给出证明;若改变,请求出∠ABC的大小.[应用]在直线MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的长.【答案】【感知】:45;【探究】:不改变,理由详见解析;【拓展】:BC的长为+1或﹣1.【解析】【分析】[感知]证明△BCD≌△ECA(SAS)即可解决问题;[探究]结论不变,证明△BCD≌△ECA(SAS)即可解决问题;[应用]分两种情形分别求解即可解决问题.【详解】解:【感知】,如图①中,在射线AM上截取AE=BD,连结CE.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°.∴∠CDB+∠CAB=180°,∵∠CAB+∠CAE=180°∴∠D=∠CAE,∵CD=AC,AE=BD,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.故答案为45【探究】不改变.理由如下:如图,如图②中,在射线AN上截取AE=BD,连接CE,设MN与CD交于点O.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°,∵∠AOC=∠DOB,∴∠D=∠EAC,CD=AC,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.【拓展】如图①﹣1中,连接AD.∴∠ACD+∠ABD=180°,∴A,C,D,B四点共圆,∴∠DAB=∠DCB=30°,∴AB=BD=,∴EB=AE+AB=+,∵△ECB是等腰直角三角形,如图②中,同法可得BC=﹣1.综上所述,BC的长为+1或﹣1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.15.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)3323π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•D F=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。
2024年中考二轮专题复习:《圆综合》
2024年中考二轮专题复习:《圆综合》1. 如图,AB为⊙O的直径,BE=CE,CD⊥AB于点D,交BE于点F,连接CB.求证:BC=CF.2. (2023秋•原州区期末)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.3. (2023•武汉模拟)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.4. (2022•北京二模)如图,已知AB是⊙O的直径,点P在BA的延长线上,AB=BE,PD切⊙O于点D,交EB于点C,连接AE,点D在AE上.(1)求证:BE⊥PC;(2)连接OC,如果PD=23,∠ABC=60°,求OC的长.5. (2023秋•仙游县期中)如图,四边形OABC是平行四边形,且AO=2OC,以O为圆心,OC为半径的圆交CB于E点,且E恰好是BC的中点,连接AE,求证:AE是⊙O的切线.6. (2023•聊城)如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D 作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.7. (2021•甘肃模拟)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,交AC于点D,点E 是AB延长线上的一点.且∠BDE=∠A.(1)求证:DE与⊙O相切;(2)若DE=3,∠C=60°,求CD的长.8. (2023年湖南省长沙市长郡滨江中学中考数学3月模拟试题)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=3,求劣弧BD与弦BD所围阴影图形的面积;(3)若AC=4,BD=6,求AE的长.9. (2022•海淀区二模)如图,AB为⊙O的直径,CD为弦,CD⊥AB于点E,连接DO并延长交⊙O 于点F,连接AF交CD于点G,CG=AG,连接AC.(1)求证:AC∥DF;(2)若AB=12,求AC和GD的长.10. (2023·江苏南京·中考真题)如图,在△ABC,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF//BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF=EF11. (2023•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.12. (2023•陕西模拟)如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.13. (2023秋•集贤县期末)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.14. (2021•蒙阴县模拟)如图,已知AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线,交AB的延长线上于点D,连接BC.(1)求证:∠BCD=∠BAC;(2)若∠D=30°,BD=2,求图中阴影部分的面积.15. (2023•天津)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.16. (2023•河东区一模)如图,在O中,点A为弧CD的中点过点B作O的切线BF,交弦CD 的延长线于点F.(Ⅰ)如图①,连接AB,若∠F=50o,求∠ABF的大小;(Ⅱ)如图②,连接CB,若∠F=35o,AC//BF,求∠CBF的度数.17. (2021·河北中考)如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11延长线于点P.(1)通过计算比较直径和劣弧711A A 长度哪个更长;(2)连接A 7A 11,则A 7A 11和PA 1有什么特殊位置关系?请简要说明理由;(3)求切线长PA 7的值.18. (2021•贵阳)如图,在⊙O 中,AC 为⊙O 的直径,AB 为⊙O 的弦,点E 是的中点,过点E 作AB 的垂线,交AB 于点M,交⊙O 于点N,分别连接EB,CN.(1)EM 与BE 的数量关系是 ;(2)求证:=;(3)若AM =,MB =1,求阴影部分图形的面积.19. (2021•内江)如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,且,过点D 的直线DE ⊥AC 交AC 的延长线于点E,交AB 的延长线于点F,连结AD 、OE 交于点G.(1)求证:DE 是⊙O 的切线;(2)若32AG DG ,⊙O 的半径为2,求阴影部分的面积; (3)连结BE,在(2)的条件下,求BE 的长.20. (2021•陕西模拟)问题探究(1)如图①,在△ABC中,AB=AC,∠B=30°,AB=3,则BC的长为;(2)如图②,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,求PC+PD的最小值;问题解决(3)某山庄有一营地,如图③,营地是由等边△ABC和弦AB与其所对的劣弧围成的弓形组成的,其中AC=600m,所对的圆心角为120°,点D是AB上的一个取水点,AD=200m,连接CD交于点E.管理员计划在上建一个入口P,在PC、PB上分别建取水点M、N.由于取水点之间需按D→M→N→D的路径铺设水管,因此,为了节约成本要使得线段DM、MN、ND之和最短,试求DM+MN+ND的最小值.21. (2023年江西中考数学四模试题)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,若AC∥EF,试判断线段KG、KD、GE间的数量关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=23,求⊙O的半径.。
2024年九年级中考数学二轮复习课件 圆(51张PPT)
+
+
=
.
= + =
+ ,解得
19.(8分)如图,AB为⊙ O的直径,C为⊙ O上一点,D为BA延长线上一
点,∠ACD = ∠B,⊙ O的半径为5.
(1)求证:DC为⊙ O的切线;
证明:∵ = ,∴ ∠ = ∠.
∵ ∠ = ∠,∴ ∠ = ∠.
A. π cm2
B. 3π cm2
C. 9π cm2
D. 6π cm2
6.刘徽在《九章算术注》中首创“割圆术”,利用圆的内接
正多边形来确定圆周率,开创了中国数学发展史上圆周率研
究的新纪元.某同学在学习“割圆术”的过程中,作了一个如
图所示的圆内接正八边形.若⊙ O的半径为1,则这个圆内接
正八边形的面积为( D )
=
.
=
.
21.(9分)【概念认识】定义:对角线互相垂直且相等的四边形叫做垂等
四边形.
(1)如图1,已知在垂等四边形ABCD中,对角线AC与BD交于点E,若
AB ⊥ AD,AB = 4 cm,AD = 3 cm,求AC的长度.
解:∵ 四边形是垂等四边形,∴ = .
∴ =
+ = , = = .
∵ ∠ = ∠,
∴△ ∼△ ,∴
= ,∴ = .
在 △ 中,∵ + = ,
∴ =
=
,∴
+
=
=
九年级数学圆的综合复习(二)人教实验版五四制知识精讲
九年级数学圆的综合复习(二)人教实验版五四制【本讲教育信息】一. 教学内容:圆的综合复习(二)二. 重点、难点:1. 重点:圆的有关性质和圆有关的位置关系,正多边形与圆、弧长、扇形面积。
2. 难点:综合运用以上知识解题。
三. 具体内容:1. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
2. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
3. 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
半圆(或直径)所对的圆周角是直角,︒90的圆周角所对的弦是直径。
4. 点和圆的位置关系,设⊙O 半径为r ,点P 到圆心的距离d OP =。
则有:点P 在⊙O 外r d >⇔;点P 在⊙O 上r d =⇔;点P 在⊙O 内r d <⇔。
5. 不在同一直线上的三个点确定一个圆。
6. 直线和圆的位置关系,设⊙O 半径为r ,直线l 到圆心O 的距离为d 。
则有:直线l 和⊙O 相交r d <⇔;直线l 和⊙O 相切r d =⇔;直线l 和⊙O 相离r d >⇔。
7. 切线的性质和判定:经过半径的外端并且垂直于这条半径的直线是圆的切线,圆的切线垂直于过切点的半径。
8. 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
9. 圆和圆的位置关系,如果两圆的半径分别为1r 和2r (21r r <)圆心距为d ,则有:两圆外离21r r d +>⇔;两圆外切21r r d +=⇔;两圆相交2112r r d r r +<<-⇔;两圆内切12r r d -=⇔;两圆内含120r r d -<≤⇔。
10. 弧长、扇形面积:在半径为R 的圆中, n 圆心角所对的弧长为l ,则180R n l π=,3602R n S π=扇【典型例题】[例1] 如图,一条公路的转弯处是一段圆弧⋂CD ,点O 是圆弧所在圆的圆心,E 为⋂CD 上一点,OE ⊥CD 于F ,已知CD=600m ,EF=100m ,求这段弯路的半径。
人教中考数学二轮 圆的综合 专项培优及详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(29);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与圆的综合
一、热身练习
1. 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”,点A,B,C,D分别是“果圆”与坐标轴的
交点,抛物线的解析式为y=0.5x2−3x−8,AB为半圆的直径,点M为半圆的圆心,点P为x轴正半轴上的一点,若△COP∽△CPD,则点P的坐标是___.
2.已知抛物线y=ax2+bx﹣1经过点A(−1,0)、B(m,0)(m>0),且与y轴交于点C.
(1)如图,⊙M经过A. B. C三点,求扇形MBC(阴影部分)的面积S(用含m的式子表示);
选作(2)若抛物线上存在点P,使得△APB∽△ABC,求m的值。
3. 如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E. 若AC:CE=1:2.
(1)求点P的坐标;
(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式。
二、典例分析
例1、已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,CB为半径的圆交x轴于M,N两点(M在N的左侧).
(1)求此二次函数的表达式;
(2)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN 的长;
(3)当△ABM与△ABN相似时,求出M点的坐标。
变式、在平面直角坐标系xOy中,已知二次函数y=0.25x2+mx+n的图象经过点A(2,0)和点B(1,-0.75),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.
(1)求该二次函数的表达式;
(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=-0.75+2t.现以线段OP为直径作⊙C.
①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C是否始终保持这种位置关系?请说明你的理由.
②若在点P开始运动的同时,直线l也向上平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=-1+3t,则当t在什么范围内变化时,直线l与⊙C相交?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.
例2、在平面直角坐标系中,抛物线y=x2+(k−1)x−k与直线y=kx+1交于A,B两点,点A在点B的左侧。
选作(1)如图1,如果B点坐标为(2,3),那么k=___;A点坐标为___;
选作(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图,抛物线y=x2+(k−1)x−k(k>0)与x轴交于C,D两点(点C在点D的左侧).在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由。
三、课外作业
1. 如图:已知抛物线与x轴交于A. B两点(点A在点B左侧),与y轴交于点C,抛物线对称轴与x轴交于点D, 为x轴上一点。
(1)写出点A. B. C的坐标(用m表示);
(2)若以DE为直径的圆经过点C且与抛物线交于另一点F,
①求抛物线解析式;
②P为线段DE上一动(不与D. E重合),过P作PQ⊥EC作PH⊥DF,判断是否为定值,若是,请求出定值,若不是,请说明理由;
2.如图,二次函数 y = x 2+ bx -3 b +3的图象与x轴交于 A 、 B 两点(点 A 在点 B 的左边),交 y 轴于
点 C ,且经过点( b -2,2 b 2-5 b -1).
(1)求这条抛物线的解析式;
(2)⊙ M 过 A 、 B 、 C 三点,交 y 轴于另一点 D ,求点 M 的坐标;
(3)连接 AM 、 DM ,将∠ AMD 绕点 M 顺时针旋转,两边 MA 、 MD 与 x 轴、 y 轴分别交于点 E 、 F ,若△ DMF 为等腰三角形,求点 E 的坐标.。