人教版高二年级(文科)第一学期期末考试数学试题(含参考答案)
人教新课标高二(上)期末数学试卷(文科)【含解析】
人教新课标高二(上)期末数学试卷(文科)一、选择题(每小题5分,只有一个正确答案,共60分)1.(5分)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是()A.B.C.D.2.(5分)直线3x﹣4y=0截圆(x﹣1)2+(y﹣2)2=2所得弦长为()A.4 B.2 C.2 D.23.(5分)α,β,γ是三个平面,m,n是两条直线,下列命题正确的是()A.若α∩β=m,n⊂α,m⊥n,则α⊥βB.若α⊥β,α∩β=m,α∩γ=n,则m⊥nC.若m⊥α,n⊥β,m∥n,则α∥βD.若m不垂直平面,则m不可能垂直于平面α内的无数条直线4.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知命题p:∃x∈R,使sinx=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的是()A.②④B.②③C.③④D.①②③6.(5分)如图,将无盖正方体纸盒展开,线段AB,CD所在直线在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成60°7.(5分)直线l:y=kx与双曲线C:x2﹣y2=2交于不同的两点,则斜率k的取值范围是()A.(0,1) B.C.(﹣1,1)D.[﹣1,1]8.(5分)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率e的取值范围为()A.(0,]B.[,1)C.(0,]D.[,1)9.(5分)若函数f(x)在R上可导,且f(x)=x2+2f'(2)x﹣3,则()A.f(0)<f(4)B.f(0)=f(4)C.f(0)>f(4)D.以上都不对10.(5分)已知点P(x,y)在直线x﹣y﹣1=0上运动,则(x﹣2)2+(y﹣2)2的最小值为()A.B.C.D.11.(5分)已知抛物线y2=8x的准线与双曲线交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是()A.B.2 C. D.12.(5分)过正方形ABCD的顶点A,作PA⊥平面ABCD,若PA=BA,则平面ABP和平面CDP 所成的锐二面角的大小是()A.30°B.45°C.60°D.90°二、填空题(每小题5分共20分)13.(5分)已知直线l1:ax+3y﹣1=0和l2:2x+(a﹣1)y+1=0垂直,则实数a的值为.14.(5分)已知底面是正方形的直四棱柱ABCD﹣A1B1C1D1的外接球的表面积为42π,且,则AC1与底面ABCD所成角的正切值为.15.(5分)函数y=x2(x>0)的图象在点处的切线与x轴的交点的横坐标为a n+1,n 为正整数,若a1=16,则a1+a3+a5=.16.(5分)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么n∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)三、解答题(17题10分,其余各题均为12分共70分)17.(10分)已知命题p:∀x∈R,x2+a≥0,命题q:∃x∈R,使x2+(2+a)x+1=0.若命题“p 且q”为真命题,求实数a的取值范围.18.(12分)已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.(1)求圆C的方程;(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.19.(12分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.20.(12分)四棱锥P﹣ABCD中,PD=PC,底面ABCD为直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M为CD的中点.(1)求证:AM∥平面PBC;(2)求证:CD⊥PA.21.(12分)已知函数f(x)=(x2+mx)e x(其中e为自然对数的底数).(1)当m=﹣2时,求函数f(x)的单调递增区间;(2)若函数f(x)在区间[1,3]上单调递减,求m的取值范围.22.(12分)已知椭圆过点,且离心率e=.(Ⅰ)求椭圆方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点,求k的取值范围.人教新课标高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,只有一个正确答案,共60分)1.(5分)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是()A.B.C.D.【解答】解:由三视图可知几何体为圆台,上底小,下底大,∴向容器内注水时,水位高度h增加的速度越来越快,故选A.2.(5分)直线3x﹣4y=0截圆(x﹣1)2+(y﹣2)2=2所得弦长为()A.4 B.2 C.2 D.2【解答】解:圆(x﹣1)2+(y﹣2)2=2的圆心坐标为(1,2),半径为,则圆心(1,2)到直线3x﹣4y=0的距离d=,由垂径定理可得直线3x﹣4y=0截圆(x﹣1)2+(y﹣2)2=2所得弦长为2×.故选:D.3.(5分)α,β,γ是三个平面,m,n是两条直线,下列命题正确的是()A.若α∩β=m,n⊂α,m⊥n,则α⊥βB.若α⊥β,α∩β=m,α∩γ=n,则m⊥nC.若m⊥α,n⊥β,m∥n,则α∥βD.若m不垂直平面,则m不可能垂直于平面α内的无数条直线【解答】解:由α,β,γ是三个不同的平面,m,n是两条不同的直线,知:在A中,若α∩β=m,n⊂α,m⊥n,则α与β相交但不一定垂直,故A错误;在B中,若α⊥β,α∩β=m,α∩γ=n,则m与n相交、平行或异面,故B错误;在C中,若m⊥α,n⊥β,m∥n,则由面面平行的判定定理得α∥β,故C正确.在D中,若m不垂直平面α,则m有可能垂直于平面α内的无数条平行直线,故D错误;故选:C4.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:对于命题q:由a(a+2)﹣3=0,解得a=1或﹣3.a=﹣3时,两条直线重合,舍去.∴a=1.∴p是q的充要条件.故选:C.5.(5分)已知命题p:∃x∈R,使sinx=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的是()A.②④B.②③C.③④D.①②③【解答】解:∵|sinx|≤1,∴:∃x∈R,使sinx=错误,即命题p是假命题,∵判别式△=1﹣4=﹣3<0,∴∀x∈R,都有x2+x+1>0恒成立,即命题q是真命题,则①命题“p∧q”是假命题;故①错误,②命题“p∧(¬q)”是假命题;故②正确,③命题“(¬p)∨q”是真命题;故③正确,④命题“(¬p)∨(¬q)”是真命题.故④错误,故选:B6.(5分)如图,将无盖正方体纸盒展开,线段AB,CD所在直线在原正方体中的位置关系是()A.平行B.相交且垂直C.异面D.相交成60°【解答】解:把正方体展开图还原成如图所示的正方体,∵AB∥EC,∴∠ECD是线段AB,CD所在直线所成的角,∵EC=CD=ED,∴∠ECD=60°,∴线段AB,CD所在直线在原正方体中的位置关系是异面相交成60°.故选:C.7.(5分)直线l:y=kx与双曲线C:x2﹣y2=2交于不同的两点,则斜率k的取值范围是()A.(0,1) B.C.(﹣1,1)D.[﹣1,1]【解答】解:双曲线C:x2﹣y2=2的渐近线方程为:y=±x,直线l:y=kx与双曲线C:x2﹣y2=2交于不同的两点,则斜率k的取值范围是(﹣1,1).故选:C.8.(5分)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率e的取值范围为()A.(0,]B.[,1)C.(0,]D.[,1)【解答】解:F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,可得以原点为圆心以c为半径的圆与椭圆有交点,可得b≤c,即b2≤c2,a2﹣c2≤c2,a2≤2c2,因为0<e<1,即可得1>e≥,所以则椭圆的离心率e的取值范围为:[,1).故选:B.9.(5分)若函数f(x)在R上可导,且f(x)=x2+2f'(2)x﹣3,则()A.f(0)<f(4)B.f(0)=f(4)C.f(0)>f(4)D.以上都不对【解答】解:函数的导数f′(x)=2x+2f′(2),令x=2,得f′(2)=4+2f′(2),即f′(2)=﹣4,f(x)=x2﹣8x﹣3,∴f(0)=﹣3,f(4)=16﹣32﹣3=﹣19,则f(0)>f(4),故选:C10.(5分)已知点P(x,y)在直线x﹣y﹣1=0上运动,则(x﹣2)2+(y﹣2)2的最小值为()A.B.C.D.【解答】解:∵点(2,2)到直线x﹣y﹣1=0的距离d==,∴(x﹣2)2+(y﹣2)2的最小值为.故选A11.(5分)已知抛物线y2=8x的准线与双曲线交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是()A.B.2 C. D.【解答】解:抛物线y2=8x的焦点F(2,0),准线x=﹣2,代入双曲线,得y=±,不妨设A(﹣2,),B(﹣2,﹣),∵△FAB是等腰直角三角形,∴=4,解得m=,∴c2=a2+b2=+1=,∴e==,故选D.12.(5分)过正方形ABCD的顶点A,作PA⊥平面ABCD,若PA=BA,则平面ABP和平面CDP 所成的锐二面角的大小是()A.30°B.45°C.60°D.90°【解答】解:以A为原点,AB为x轴,AD为y轴,AD为z轴,建立空间直角坐标系,设PA=BA=1,则C(1,1,0),D(0,1,0),P(0,0,1),=(1,1,﹣1),=(0,1,﹣1),设平面PCD的法向量=(x,y,z),则,取y=1,得=(0,1,1),平面ABP的法向量=(0,1,0),设平面ABP和平面CDP所成的锐二面角的大小为θ,则cosθ===,∴θ=45°,∴平面ABP和平面CDP所成的锐二面角的大小为45°.故选:B.二、填空题(每小题5分共20分)13.(5分)已知直线l1:ax+3y﹣1=0和l2:2x+(a﹣1)y+1=0垂直,则实数a的值为.【解答】解:a=1时,两条直线不垂直,舍去.a≠1时,由﹣×=﹣1,解得a=.故答案为:.14.(5分)已知底面是正方形的直四棱柱ABCD﹣A1B1C1D1的外接球的表面积为42π,且,则AC1与底面ABCD所成角的正切值为.【解答】解:设CC1=h,则AC=AB=,AC1==,∴棱柱外接球的半径r=AC1=.∴外接球的表面积S=4πr2=(h2+6)π=42π,解得h=6.∴tan∠C1AC===.故答案为:.15.(5分)函数y=x2(x>0)的图象在点处的切线与x轴的交点的横坐标为a n+1,n 为正整数,若a1=16,则a1+a3+a5=21.【解答】解:依题意,y′=2x,∴函数y=x2(x>0)的图象在点(a n,a n2)处的切线方程为y﹣a n2=2a n(x﹣a n),令y=0,可得x=a n,即a n=a n,+1∴数列{a n}为等比数列a n=16×()n﹣1,∴a1+a3+a5=16+4+1=21.故答案为:21.16.(5分)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么n∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有(2)(4).(填写所有正确命题的编号)【解答】解:(1)如果m⊥n,m⊥α,n∥β,那么α∥β或α、β相交,故(1)错;(2)如果m⊥α,n∥α,过n的平面与α的交线l平行于n,且m⊥l,那么m⊥n,故(2)正确;(3)如果α∥β,m⊂α,由面面平行的性质可得m∥β,故(3)错;(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等,正确.故答案为:(2)(4).三、解答题(17题10分,其余各题均为12分共70分)17.(10分)已知命题p:∀x∈R,x2+a≥0,命题q:∃x∈R,使x2+(2+a)x+1=0.若命题“p 且q”为真命题,求实数a的取值范围.【解答】解:若p为真命题,则﹣a≤x2在x∈R上恒成立,即﹣a≤0,即a≥0;(3分)若q为真命题,则△=(2+a)2﹣4≥0,即a≤﹣4或a≥0…(5分)命题“p且q”为真命题,即p为真命题且q为真命题,所以…(8分)故a的取值范围为[0,+∞)…(10分)18.(12分)已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.(1)求圆C的方程;(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.【解答】解:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣4,E=﹣8,F=﹣5,∴圆C的方程:x2+y2﹣4x﹣8y﹣5=0;(2)动直线l的方程为(x+2y﹣7)m+2x+y﹣8=0.则得,∴动直线l过定点M(3,2),∴直线m:y=x﹣1,∴圆心C(2,4)到m的距离为,∴PQ的长为.19.(12分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.20.(12分)四棱锥P﹣ABCD中,PD=PC,底面ABCD为直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M为CD的中点.(1)求证:AM∥平面PBC;(2)求证:CD⊥PA.【解答】证:(1)∵四边形ABCM为平行四边形…(3分)…(6分)(2)∵…(9分)∴…(12分)21.(12分)已知函数f(x)=(x2+mx)e x(其中e为自然对数的底数).(1)当m=﹣2时,求函数f(x)的单调递增区间;(2)若函数f(x)在区间[1,3]上单调递减,求m的取值范围.【解答】解:(1)当m=﹣2时,f(x)=(x2﹣2x)e x,f′(x)=(x2﹣2)e x,令f′(x)≥0,解得:x≥或x≤﹣,∴f(x)在(﹣∞,﹣),(,+∞)递增;(2)∵f′(x)=[x2+(m+2)x+m]e x,由题意得f′(x)≤0对于x∈[1,3]恒成立,∴x2+(m+2)x+m≤0,即m≤﹣=﹣(x+1)+,令g(x)=﹣(x+1)+,则g′(x)=﹣1﹣<0恒成立,∴g(x)在区间[1,3]递减,g(x)min=g(3)=﹣,∴m的范围是(﹣∞,﹣].22.(12分)已知椭圆过点,且离心率e=.(Ⅰ)求椭圆方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点,求k的取值范围.【解答】解:(Ⅰ)由题意椭圆的离心率∴∴a=2c∴b2=a2﹣c2=3c2∴椭圆方程为又点在椭圆上∴∴c2=1∴椭圆的方程为…(4分)(Ⅱ)设M(x1,y1),N(x2,y2)由消去y并整理得(3+4k2)x2+8kmx+4m2﹣12=0…(6分)∵直线y=kx+m与椭圆有两个交点△=(8km)2﹣4(3+4k2)(4m2﹣12)>0,即m2<4k2+3…(8分)又∴MN中点P的坐标为…(9分)设MN的垂直平分线l'方程:∵p在l'上∴即4k2+8km+3=0∴…(11分)将上式代入得∴即或,∴k的取值范围为。
2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案
2020-2021学年高二(上)期末数学试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a<b<0,那么下列不等式中正确的是()A.ab<b2B.ab>a2C.1a <1bD.1a>1b2. 抛物线y=−4x2的准线方程为()A.y=−116B.y=116C.x=−1D.x=13. 下列求导结果正确的是()A.(cosπ6)′=−sinπ6B.(3x)′=x⋅3x−1C.(log2x)′=log2exD.(sin2x)′=cos2x4. 已知命题p:∃x0∈(1, +∞),使得;命题q:∀x∈R,2x2−3x+5> 0.那么下列命题为真命题的是()A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)5. 已知在△ABC中,角A,B,C的对边分别为a,b,c.若,则B=()A. B. C. D.6. 若变量x,y满足约束条件,则z=2x+y的最小值为()A. B.6 C. D.47. 等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+...+a2n−1)(n∈N∗),a1a2a3=−27,则a5=()A.81B.24C.−81D.−248. 已知a>0,b>0,且3a+2b=ab,则a+b的最小值为()A. B. C. D.9. 已知双曲线的一条渐近线平行于直线,且该双曲线的一个焦点在直线l上,则此双曲线的方程为()A. B. C. D.10. 若函数f(x)=e x−2ax2+1有两个不同的极值点,则实数a的取值范围是()A. B. C. D.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.))11. 已知在数列{a n}中,a5=4,其前n项和为S n,下列说法正确的是()A.若{a n}为等差数列,a2=1,则S10=45B.若{a n}为等比数列,a1=1,则a3=±2C.若{a n}为等差数列,则a1a9≤16D.若{a n}为等比数列,则a2+a8≥812. 已知曲线C:mx2+ny2=1,下列说法正确的是()A.若m=n>0,则C是圆,其半径为.B.若m>0,n=0,则C是两条直线.C.若n>m>0,则C是椭圆,其焦点在y轴上.D.若mn<0,则C是双曲线,其渐近线方程为.三、填空题(每题5分,满分20分,将答案填在答题纸上))13. 设等差数列{a n}的前n项和为S n,若2a5=a3+4,则S13=________.14. 设点P是曲线上的任意一点,曲线在点P处的切线的倾斜角为α,则α的取值范围是________.(用区间表示)15. 若△ABC的三边长分别为3,5,7,则该三角形的内切圆半径等于________.16. 设椭圆的左焦点为F,直线x=m与椭圆C相交于A,B两点.当△ABF的周长最大时,△ABF的面积为b2,则椭圆C的离心率e=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 设命题p:实数x满足x2−4mx+3m2<0(m>0);命题q:实数x满足.若¬p是¬q的充分不必要条件,求实数m的取值范围.18. 已知数列{a n}的前n项和为S n,且2S n=3a n−3.(Ⅰ)求数列{a n}的通项公式;a n,,求数列{c n}的前n项和T n.(Ⅱ)设b n=log319. 已知函数f(x)=x3−2x2+x.(1)求曲线y=f(x)在点(−1, −4)处的切线方程;(2)求曲线y=f(x)过点(1, 0)的切线方程.20. 已知在△ABC中,角A,B,C的对边分别为a,b,c,且a+b+c=12.(Ⅰ)若a=2,b=5,求cos A的值;(Ⅱ)若sin A cos2=2sin C,且△ABC的面积为10sin C,试判断△ABC的形状并说明理由.21. 已知椭圆经过如下四个点中的三个,,P2(0, 1),,.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以线段AB为直径的圆经过椭圆M的右顶点C (A,B均不与点C重合),证明:直线l过定点.22. 已知函数f(x)=ln x+ax2+(2a+1)x+1.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<0时,证明:f(x)≤−−1.参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】利用不等式的基本性质即可判断出.2.【答案】B【解析】利用抛物线的标准方程及其性质即可得出.3.【答案】C【解析】根据基本初等函数和复合函数的求导公式对每个选项的函数求导即可.4.【答案】B【解析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.5.【答案】A【解析】利用正弦定理以及同角三角函数的关系式,直接求角B的大小6.【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.7.【答案】C【解析】设等比数列{a n}的公比为q,由S2n=4(a1+a3+...+a2n−1)(n∈N∗),令n=1,则S2=4a1,可得a2=3a1,根据a1a2a3=−27,可得a23=−27,解得a2.利用等比数列的通项公式即可得出.8.【答案】B【解析】将3a+2b=ab变形为,再由“乘1法”,即可得解.9.【答案】B【解析】根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.10.【答案】C【解析】由导数与极值的关系知可转化为方程f′(x)=0在R上有两个不同根,结合函数的性质可求.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.)11.【答案】A,C【解析】对于A,利用等差数列通项公式列出方程组,求出a1=0,d=1,由此能求出S10;对于B,利用等比数列能通项公式求出q2=2,进而能求出a3;对于C,利用等差数列通项公式得a1+a9=2a5=8,当a1,a9一正一负时,a1a9≤16成立,当a1,a9均大于0时,则a1a9≤()2=16;对于D,{a n}为等比数列时,a2a8==16,当a2,a8均大于0时,a2+a8≥2=8,当a2,a8均小于0时,a2+a8=−(−a2−a8)≤−2=−(8)12.【答案】A,B,D【解析】通过m,n的取值,判断曲线的形状,即可判断选项.三、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】52【解析】利用等差数列{a n}的通项公式列方程求得a1+6d=4,再由S13==13(a1+6d),能求出结果.14.【答案】【解析】求出原函数的导函数,利用配方法求得导函数的值域,再由直线的斜率等于倾斜角的正切值,即可求得曲线在点P处的切线的倾斜角α的范围.15.【答案】【解析】由已知结合余弦定理可求C,易得三角形的面积,所以内切圆半径满足关系:S=(a+b+c)r.16.【答案】【解析】判断三角形周长取得最大值时,求出m的值,利用三角形的面积,列出方程,求解椭圆的离心率即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】由x2−4mx+5m2<0,得(x−m)(x−5m)<0,又m>0,所以m<x<3m,由,得0<4−x<5因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件.设A=(3, m)B=(2,则B是A的真子集,故或即.【解析】求出命题p,q为真命题的等价条件,根据¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,进行转化求解即可.18.【答案】(1)当n=1时,2a6=2S1=2a1−1,∴a8=1当n≥2时,8a n=2S n−2S n−2=(3a n−3)−(8a n−1−3)即:,∴数列{a n}为以3为首项,4为公比的等比数列.∴(2)由(Ⅰ)知,a n=n,所以b n=log3故.即①所以②①②得所以.【解析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式;(Ⅱ)利用乘公比错位相减法的应用求出数列的和.19.【答案】解:(1)由题意得f′(x)=3x2−4x+1,∴f′(−1)=8,∴曲线y=f(x)在点(−1, −4)处的切线方程为y+4=8(x+1),即8x−y+4=0.(2)设切点为(x0, y0),∵切点在函数图象上,∴y0=x03−2x02+x0,故曲线在该点处的切线为y −(x 03−2x 02+x 0)=(3x 02−4x 0+1)(x −x 0).∵ 切线过点(1, 0),∴ 0−(x 03−2x 02+x 0)=(3x 02−4x 0+1)(1−x 0)即(x 0−1)2(2x 0−1)=0,解得x 0=1或x 0=12,当x 0=1时,切点为(1,0),∵ f ′(1)=0,∴ 切线方程为y −0=0⋅(x −1)即y =0.当x 0=12时,切点为(12,18), ∵ f ′(12)=−14, ∴ 切线方程为y −0=−14(x −1)即x +4y −1=0.综上可得,切线方程为y =0或x +4y −1=0.【解析】(Ⅰ)求出原函数的导函数,得到函数在x =−1处的导数,再由直线方程的点斜式得答案;(Ⅱ)设出切点坐标,得到函数在切点处的切线方程,代入已知点的坐标,求得切点坐标,进一步求解过点(1, 0)的切线方程.利用导数研究某一点的切线方程问题(含参问题).20.【答案】(1)∵ a +b +c =12,a =2,∴ c =5. ∴ -(2)∵ △ABC 为直角三角形,, ∴,即sin A +sin B +sin A cos B +cos A sin B =4sin C ,∴ sin A +sin B +sin (A +B)=4sin C ,∵ A +B +C =π,A +B =π−C .∴ sin A +sin B =3sin C ,由正弦定理得a +b =3c ,∵ a +b +c =12,可得8c =12.从而a +b =9.又∵ △ABC 的面积为10sin C ,∴.即ab=20,∴a=5,b=5,又∵c=6,可得cos B==,可得B为直角,∴△ABC为直角三角形.【解析】(1)由题意可求c的值,进而根据余弦定理即可求解cos A的值.(2)由已知利用三角函数恒等变换的应用化简已知等式可得sin A+sin B=3sin C,由正弦定理得a+b=3c,解得c,可得a+b=9,利用三角形的面积公式可求ab=20,解得a,b的值,即可判断得解.21.【答案】(1);由题意,点与点,根据椭圆的对称性且椭圆过其中的三个点可知,点和点,又因为点与点,即椭圆过点,P3(,),P7(0, 1),所以,且,故a6=4,b2=3,所以,椭圆M的方程为.(2)证明:直线l恒过点.由题意,可设直线AB的方程x=ky+m(m≠2),联立消去x2+4)y2+2kmy+m2−4=0,设A(x1, y8),B(x2, y2),则有,①又以线段AB为直径的圆过椭圆的右顶点C,∴,由,,得(x2−2)(x2−8)+y1y2=5,将x1=ky1+m,x6=ky2+m代入上式得,将①代入上式求得或m=2(舍),则直线l恒过点.【解析】(Ⅰ)由椭圆的对称性可得椭圆过点,,P2(0, 1),代入椭圆的方程,列方程组,解得a,b,进而可得椭圆的方程.(Ⅱ)设直线AB的方程x=ky+m(m≠2),A(x1, y1),B(x2, y2),联立直线AB与椭圆的方程可得关于y的一元二次方程,由韦达定理可得y1+y2,y1y2,由线段AB为直径的圆过椭圆的右顶点C,得,用坐标表示,可得m,进而可得答案.22.【答案】(1)因为f(x)=ln x+ax2+(2a+5)x+1,所以,当a≥7时,f′(x)≥0恒成立,+∞)上单调递增;当a<0时,令f′(x)>5,所以,令f′(x)<0,则2ax+2<0,所以f(x)的增区间为,减区间为.综上:当a≥3时,f(x)的增区间为(0;当a<0时,f(x)的增区间为.(2)证明:由(Ⅰ)知,当a<0时max=f(−),,令g(t)=ln t−t+3(t>0),则,令g′(t)>0,则5<t<1,则t>1,所以g(t)在(6, 1)上单调递增,+∞)上单调递减,故g(t)max=g(1)=0,所以ln t−t+3≤0又因为,所以则,从而,所以.【解析】(Ⅰ)对f(x)求得,对a分类讨论,利用导数与单调性的关系求解即可;(Ⅱ)由(Ⅰ)可知f(x)max=f(−),,令g(t)=ln t−t+1(t>0),利用导数可得g(t)的最大值为0,可得,从而可得.。
(完整版)高二第一学期数学期末考试题及答案(人教版文科),推荐文档
2017—2018学年度第一学期高二数学期末考试题文科(提高班)一、选择题(每题5分,共60分)1.在相距2km的A、B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是()A.2km B.3kmC.km D.3km2.已知椭圆()的左焦点为,则()A.9B.4C.3D.23.在等差数列中,,则的前5项和=()A.7B.15C.20D.254.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A.50m2B.100m2C.200m2D.250m25.如图所示,表示满足不等式的点所在的平面区域为()A.B.C.D.6.焦点为(0,±6)且与双曲线有相同渐近线的双曲线方程是()A.B.C.D.7.函数的导数为()A.B.C.D.8.若<<0,则下列结论正确的是()A.b B.D.C.-29.已知命题:命题.则下列判断正确的是()A.p是假命题B.q是真命题C.是真命题D.是真命题10.某观察站与两灯塔、的距离分别为300米和500米,测得灯塔在观察站北偏东30,灯塔在观察站正西方向,则两灯塔、间的距离为()A.500米B.600米C.700米D.800米11.方程表示的曲线为()A.抛物线B.椭圆C.双曲线D.圆12.已知数列的前项和为,则的值是()A.-76B.76C.46D.13二、填空题(每题5分,共20分)13. 若,,是实数,则的最大值是_________14. 过抛物线的焦点作直线交抛物线于、两点,如果,那么=___________.15. 若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是____________.16. 直线是曲线y=ln x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡一、选择题(共12小题,每题5分)题号123456789101112答案C C B C B B B A C C A A二、填空题(共4小题,每题5分)13、2 14、815、 16、三、解答题(共6小题,17题10分,其他每小题12分)17. 已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18. 已知不等式组的解集是,且存在,使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19. 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20. 根据下列条件,求双曲线的标准方程.(1)经过点,且一条渐近线为;(2)与两个焦点连线互相垂直,与两个顶点连线的夹角为.21. 已知函数在区间上有最小值1和最大值4,设.(1)求的值;(2)若不等式在区间上有解,求实数k的取值范围.22. 已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数,使得,恒成立?若存在,求常数的值或取值范围;若不存在,请说明理由.文科(提高班)一.选择题(每题5分,共60分)1.考点:1.2 应用举例试题解析:由题意,∠ACB=180°-75°-60°=45°,由正弦定理得=,所以AC=·sin60°=(km).答案:C2.考点:2.1 椭圆试题解析:,因为,所以,故选C.答案:C3.考点:2.5 等比数列的前n项和试题解析:.答案:B4.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为,则宽为,所以矩形面积为,故选C答案:C5.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:不等式等价于或作出可行域可知选B答案:B6.考点:2.2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为.答案:B7.考点:3.2 导数的计算试题解析:,故选B.答案:B8.考点:3.1 不等关系与不等式试题解析:根据题意可知,对两边取倒数的得,综上可知,以此判断:A.正确;因为:,所以:,B错误;,两个正数相加不可能小于,所以C错误;,D错误,综上正确的应该是A.答案:A9.考点:1.3 简单的逻辑联结词试题解析:当时,(当且仅当,即时取等号),故为真命题;令,得,故为假命题,为真命题;所以是真命题.答案:C10.考点:1.2 应用举例试题解析:画图可知在三角形ACB中,,,由余弦定理可知,解得AB=700.答案:C11.考点:2.1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离,点不在直线上,符合抛物线的定义;答案:A12.考点:2.3 等差数列的前n项和试题解析:由已知可知:,所以,,,因此,答案选A.答案:A二.填空题(每题5分,共20分)13.考点:3.4 基本不等式试题解析:,,即,则,化简得,即,即的最大值是2.答案:214.考点:2.3 抛物线试题解析:根据抛物线方程知,直线过焦点,则弦,又因为,所以.答案:815.考点:2.2 双曲线试题解析:椭圆长轴的端点为,所以双曲线顶点为,椭圆离心率为,所以双曲线离心率为,因此双曲线方程为答案:16.考点:3.2 导数的计算试题解析:设曲线上的一个切点为(m,n),,∴,∴.答案:三、解答题(共6小题,17题10分,其他每小题12分)17.考点:2.3 等差数列的前n项和试题解析:(Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2,公比为4的等比数列(Ⅲ)由答案:(Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1,2,3,4}18.考点:3.2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令,由题意得时,.当即,(舍去)当即,.综上可知,的取值范围是.答案:(Ⅰ);(Ⅱ)的取值范围是19.考点:3.4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时,有最大值为当时,是减函数,∴当时,的最大值为答:每月生产台仪器时,利润最大,最大利润为元.答案:(1);(2)每月生产台仪器时,利润最大,最大利润为元20.考点:双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为,两顶点为由与两个焦点连线垂直得,所以由与两个顶点连线的夹角为得,所以,则所以方程为21.考点:3.2 一元二次不等式及其解法试题解析:(1),因为,所以在区间上是增函数,故,解得.(2)由已知可得,所以,可化为,化为,令,则,因,故,记,因为,故,所以的取值范围是22.考点:3.3 导数在研究函数中的应用试题解析:(1),所求切线的斜率所求切线方程为即(2)由,作函数,其中由上表可知,,;,由,当时,,的取值范围为,当时,,的取值范围为∵,恒成立,∴答案:(1)(2)存在,,恒成立100. 在中,角所对的边分别为,且满足,.(I )求的面积;(II)若,求的值.46.考点:正弦定理余弦定理试题解析:(Ⅰ)又,,而,所以,所以的面积为:(Ⅱ)由(Ⅰ)知,而,所以所以答案:(1)2(2)。
高二第一学期数学(文)期末试卷及答案5套
高二第一学期数学(文)期末试卷及答案5套一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|14,2,1,4,8,9A x Z x B =∈-≤≤=--,设C A B =,则集合C 的元素个数为( )A. 9B. 8C. 3D. 2 2.设复数11z i i=++,则||z =()A .12D. 23.下列全称命题中假命题的个数是( )①21x +是整数()x ∈R ;②对所有的x ∈R ,3x >;③对任意一个x ∈Z ,221x +为奇数. A .0 B .1 C .2 D .3 4、已知0.6222,log 3,log sin5a b c ππ===,则( ) A.c b a << B.c a b << C.b a c << D. a c b <<5.某公司2013—2018年的年利润x (单位:百万元)与年广告支出y (单位:百万元)的统计资料如表所示:A .利润中位数是16,x 与y 有正相关关系B .利润中位数是17,x 与y 有正相关关系C .利润中位数是17,x 与y 有负相关关系D .利润中位数是18,x 与y 有负相关关系6.过点(4,5)P 引圆222410x y x y +--+=的切线,则切线长是 ( )A .3BC .4D .57.已知非零向量(,0)a t =,(1,3)b =-,若4a b =-,则2a b +与b 的夹角为( )A .3π B.2π C.6πD.23π8. 执行如下图的程序框图,那么输出S 的值是( ) A. 2 B.1 C. 12D. -1 9.点(,1)6P π-是函数()sin()(0,)2f x x m ωϕωϕ=++><π的图象的一个对称中心,且点P 到该图象的对称轴的距离的最小值为π.①(f x ②()f x 的值域为[0,2]③(f x ()f x 在5[,2]3ππ上单调递增(A )1(B )2(C )3(D )410.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为 ( ) A .710B .310C .35D .2511.若两个正实数,x y 满足141x y +=,且存在这样的,x y 使不等式234y x m m +<+有解,则实数m 的取值范围是()A .()1,4- B. ()4,1- C.()(),41,-∞-+∞ D.()(),30,-∞-+∞12.已知椭圆和双曲线有共同焦点12,F F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为12,e e ,则121e e 的最大值为()8题图A . 二.填空题:本大共4小题.每小题5分,满分20分.13.已知双曲线C :22221y x a b -=的焦距为()1,2P 在双曲线C 的渐近线上,则双曲线C 的方程为____________________ .22110025y x -=. 14.已知复数z 满足(1)13i z i +=+,则z =________2i - 15.已知函数)(ln 21)(2R a x a x x f ∈+=,若函数)(x f 的图象在2=x 处的切线方程为0=+-b y x ,则实数=a .2-16.已知数列}{n a 的前n 项和为n S ,121,2a a ==,且1(2)2n n nS a n =+≥,则数列}{n a 的通项公式为_____________.1,12(1),2n n a n n =⎧=⎨-≥⎩三.解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17(本题满分10分)某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:(1)试求z 与x +a ′. (2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.参考公式:18(本小题满分12分)如图,在ABC ∆中,点D 在BC 边上,AD AC ⊥,cos 3B =AB =BD =. (1)求ABD ∆的面积; (2)求线段DC 的长.19(本小题满分12分)按规定:车辆驾驶员血液酒精浓度在2080mg /100ml :(不含80)之间,属酒后驾车;在80mg /100ml (含80)以上时,属醉酒驾车.某市交警在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒驾车的驾驶员20人,右图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;(2)从血液酒精浓度在[)70,90范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.20(本小题满分12分)已知等差数列{}n a 的前项和为n S ,且31379,,,S a a a =成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足2nn na b =,求数列{}n b 的前项和n T . 21(本小题满分12分)已知动圆过定点A (0,2),且在x 轴上截得的弦长为4. (1)求动圆圆心的轨迹C 的方程;(2)点P 为轨迹C 上任意一点,直线l 为轨迹C 上在点P 处的切线,直线l 交直线:y =-1于点R ,过点P 作PQ ⊥l 交轨迹C 于点Q ,求△PQR 的面积的最小值. 22.(本小题满分l2分)已知函数212f (x )ln x ax x,a R.=-+∈(1)求函数f (x )的单调区间;AB CD(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,说明理由.答案一.选择题:1. D2. B3. C 4、A 5. B 6.B 7.A 8. A 9. D 10.A 11. C 12.D.2i - 15.2- 16.1,12(1),2n n a n n =⎧=⎨-≥⎩三.解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17(本题满分10分)[解] (1)计算得=3,=2.2,错误!错误!t 错误!=55,错误!错误!t i z i =45,所以b ==1.2,a =2.2-1.2×3=-1.4,所以z =1.2t -1.4.注意到t =x -2 013,z =(y -50)÷10, 代入z =1.2t -1.4,整理得y =12x -24120.(2)当x =2 019时,y =108,即2017年房贷发放的实际值约为108亿元. 18(本小题满分12分) 解:(1)在ABD ∆中,(2)在ABC ∆中,由余弦定理得B BC AB BD AB AD cos 2222⋅⋅-+=ADB ∠ +ADC ∠=180,19(本小题满分12分) 解: (1)由频率分布直方图可知:血液酒精浓度在[)80,90内范围内有:0.0120102⨯⨯=人……………2血液酒精浓度在[)90,100内范围内有:0.00520101⨯⨯=人……………4所以醉酒驾车的人数为213+=人……………6分(2)因为血液酒精浓度在[)70,80内范围内有3人,记为,,,a b c [)80,90范围内有2人,记为,,d e 则从中任取2人的所有情况为(,),(,),(,),(,)a b a c a d a e ,(,),(,)b c b d ,(,)b e ,(,),(,),(,)c d c e d e 共10种………………………………………………………8分恰有一人的血液酒精浓度在[)80,90范围内的情况有(,),(,)a d a e ,(,),(,),(,),(,)b d b e c d ce ,共6种…………………………………10分设“恰有1人属于醉酒驾车”为事件A,则分20(本小题满分12分) 【解析】 (1)由题得,,设等差数列的公差为,则,化简,得或.当时,,得,∴,即;当时,由,得,即;(2)由(1()1n +++ ()1n ⎛+++由①-②可得3112⎛⎫⎛⎫++-⎪⎝⎭21(本小题满分12分)已知动圆过定点A (0,2),且在x 轴上截得的弦长为4. 解:(1)设C (x ,y ),|CA |2-y 2=4,即x 2=4y .∴动圆圆心的轨迹C 的方程为x 2=4y .……………5分 (2)C 的方程为x 2=4y ,即y =x 2,故y ′=x .设P (t ≠0),PR 所在的直线方程为y -=(x -t ),即y =x -,则点R 的横坐标x R =, |PR |=|x R -t |=.……7分PQ 所在的直线方程为y -=-(x -t ),即y =-x +2+,由消去y 得+x -2-=0,由x P +x Q =-得点Q 的横坐标为x Q =--t , ……………9分 又|PQ |=|x P -x Q |==.…10分∴S △PQR =|PQ ||PR |=.不妨设t >0,记f (t )=(t >0),则当t =2时,f (t )min =4.由S △PQR =[f (t )]3,得△PQR 的面积的最小值为16.…12分22.(本小题满分l2分)(1)解:函数f(x)的定义域为),0(+∞.分①当a=0,0)(',0>∴>x f x∴函数f(x)单调递增区间为),0(+∞ . ……2分②当0=/a 时,令f'(x)=001,02=--∴>x ax x . a 41+=∆∴.(i)当0≤∆,即时,得012≤--x ax ,故0)('≥x f ,∴函数f(x)的单调递增区间为)0(∞+,. ……3分 (ii)当0>∆,即时,方程012=--x ax 的两个实根分别为分,则0,021<<x x ,此时,当),0(+∞∈x 时,0)('>x f .∴函数f(x)的单调递增区间为),0(+∞,……………5分 若a>0,则0,021><x x ,此时,当),0(2x x ∈时,0)('>x f ,当),(2+∞∈x x 时,0)('<x f ,∴函数f(x)综上所述,当a>0时,函数f(x)当0≤a 时,函数f(x)的单调递增区间为),0(+∞,无单调递减区间.……………6分 (2)解:由(1)得当0≤a 时,函数f(x)在(0,+∞)上单调递增,故函数f(x)无极值;………7分当a>0时,函数f(x)则f(x)分而01222=--x ax ,即1222+=x ax ,……8分分在),0(+∞上为增函数.又h(1)=0,则h(x)>0等价于x>1.等价于12>x . ………10分即在a>0时,方程012=--x ax 的大根大于1,设1)(2--=x ax x φ,由于)(x φ的图象是开口向上的抛物线,且经过点(0,-1),对称轴,则只需0)1(<φ,即a-1-1<0解得a<2,而a>0,故实数a 的取值范围为(0,2).………12分说明:若采用下面的方法求出实数a 的取值范围的同样给1分.1在),0(+∞是减函数,a=20,2),从而实数a 的取值范围为(0,2).2a>0,通过分类讨论得出实数a 的取值范围为(0,2).高二第一学期数学(文)期末试卷及答案一、选择题(共计10小题,每小题4分,计40分,在每小题给出的4个选项中,只有一个选项是正确的。
高二上学期数学期末试卷
高二上学期数学期末试卷(文科数学)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,x x e x ∀∈>R ”的否定是( )A .x e R x x <∈∃0,0B .,x x e x ∀∈<RC .,x x e x ∀∈≤RD .x e R x x ≤∈∃0,0.2.设实数和满足约束条件,则的最小值为( )A .B .C .D .3.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的()A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a ya x 的渐近线方程为023=±y x ,则a 的值为() A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述:①点P 关于x 轴的对称点的坐标是(x ,-y ,z )②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z )③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z )其中正确的个数是( ) A .3 B .2 C .1 D .0 7.给定下列四个命题: ①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ) A .①和② B .②和③ C .③和④ D .②和④ 8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x 9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 10.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415 B .95 C .6 D .7 x y 1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩23z x y =+26241614二、填空题:本大题共5小题,每小题5分,共25分.11.若圆心在轴上、的圆位于轴左侧,且与直线相切,则圆的方程是 .12.某三棱锥的三视图如图所示,该三棱锥的体积是 。
高二数学第一学期高二期末试题期末数学试卷(文科)
第一学期高二期末试题期末数学试卷(文科)考试内容:必修5中不等式 :必修3中算法初步、统计:占40% :选修2-1:占60%一、选择题:本大题共15小题 :每小题4分 :满分60分.(注:以下每小题给出的四个选项中 :有且只有一项符合题目要求. 请将符合题目要求的那一项的代号选出来填涂在指定地方.)1、已知a>0 :-1<b<0 :则a :ab :ab 2的大小关系是A .a> ab 2>abB .ab>ab 2>aC .ab 2>a>abD .ab 2>ab>a2、已知两定点F 1(-1 :0) 、F 2(1 :0) : 且12F F 是1PF 与2PF的等差中项 :则动点P的轨迹是 AA. 椭圆B. 双曲线C. 抛物线D. 线段3、若双曲线的渐近线方程为043=±y x :则双曲线的离心率为A.45B.35C. 45或35D. 54或534、焦距是10 :虚轴长是8 :过点(23 : 4)的双曲线的标准方程是A 、116922=-y xB 、116922=-x yC 、1643622=-y xD 、1643622=-x y5、已知三角形ABC 的顶点A (2 :4) :B (-1 :2) :C (1 :0) :点P (x :y )在三角形内部及其边界上运动 :则Z=x-y 的最大值和最小值分别是 A .3 :1 B .1 :-3 C .-1 :-3 D .3 :-16、若方程151022=-+-k y k x 表示焦点在y 上的椭圆 :则k 的取值范围是A .(5 :10) B.(215 :10) C.)215,5( D.)10,215()215,5(7、如果命题“p 或q ”为真命题 :则A 、p :q 均为真命题B 、p :q 均为假命题C 、¬p :¬q 中至少有一个为假命题D 、¬p :¬q 中至多有一个为假命题 8、已知p 是r 的充分不必要条件 :s 是r 的必要条件 :q 是s 的必要条件。
新课标人教版高二年级上期末试题(文)含答案(2)
当 k≠0 时,则
,解得 0< k≤2.
综上, k 的取值范围是 [ 0, 2] .
故答案为: [ 0, 2] .
15.( 5 分)已知点 P 到点 F(0,1)的距离比它到直线 y=﹣ 5 的距离小 4,若点 P 的轨迹与直线 x﹣4y+2=0 的交点为 A、B,则线段 AB 的中点坐标为 ( , ) . 【解答】 解:∵点 P 到 F( 0, 1)的距离比它到直线 y=﹣5 的距离小 4, ∴点 P 在直线 l 的上方,点 P 到 F( 0, 1)的距离与它到直线 y=﹣1 的距离相等 ∴点 M 的轨迹 C 是以 F 为焦点, y=﹣ 1 为准线的抛物线, ∴曲线 C 的方程为 x2=4y, 设 A(x1,y1),B(x2, y2), AB的中点为( x0,y0) 将直线 x﹣4y+2=0 代入 x2=4y,可得 x2=x+2, 解得 x1=2 或 x2=﹣ 1, 则 y1=1 或 y2= , ∴ x0= ( 2﹣ 1) = , y0= ( 1+ )= , ∴ AB的中点为( , ), 故答案为:( , )
2017-2018 学年吉林省吉林高二(上)期末数学试卷(文科)
一、选择题(共 12 个小题,每小题 5 分,合计 60 分,每题只有一个正确的选 项!) 1.(5 分)等差数列 { an} 中, a3=4,a7=10,则 a6=( ) A. B. C. D.
2.(5 分)在△ ABC中, a=18,B=60°, C=75°,则 b=( )
y2=4x 的焦点与椭圆一个焦点重合. ( 1)求椭圆的标准方程.
( 2)若直线 m 椭圆左焦点 F1 且斜率为 1,交椭圆于 A、 B 两点,求弦长 | AB| . 22.( 12 分)已知函数 f (x)=lnx+kx2+(2k+1)x ( 1)讨论 f(x)的单调性;
人教版高二上学期数学期末文试题(解析版)
∵在 中, , 是 的中点, 平面 ,
、 与平面 成的角分别是 和 ,
∴ , , 是 与平面 所成角,
∴ , , ,
,
∴ ,
∴ ,
∴ ,
∴ 与平面 所成角的大小为 ,
故选:B.
【点睛】本题主要考查线面角的大小的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.
11.如图,过抛物线 ( )的焦点 的直线交抛物线于点 、 ,交其准线 于点 ,若 ,且 ,则 的值为()
【详解】
如图所示,过B作BF⊥AC,过 作 ,
连接EF,过D作DG⊥EF,连接AG,
在正三棱柱中,有 E⊥面 ,BF⊥面 ,
故DG⊥面 ,
∴∠DAG=α,可求得 ,
,
故
故答案为 .
【点睛】本题主要考查直线与平面所成的角,考查了空间想象能力,属于中档题.
16.双曲线 的左、右焦点分别为 是 左支上一点,且 ,直线 与圆 相切,则 的离心率为__________.
2.下列命题中正确的是()
A. 若一个平面中有无数条直线与另一个平面平行,则这两个平面平行
B. 垂直于同一平面的两个平面平行
C. 存在两条异面直线同时平行于同一平面
D. 三点确定一个平面
【答案】C
【解析】
【分析】
根据空间中的平行与垂直关系,对题目中的命题进行分析、判断正误即可.
【详解】对于A,如果一个平面内有无数条直线有另一个平面平行,则这两个平面也可能相交,故A错误;
【点睛】本题主要考查双曲线的性质和点到直线的距离,解题时要注意公式的灵活运用,属于中档题.
10.在 中, , 是 的中点, 平面 ,如果 、 与平面 成的角分别是30°和60°,那么 与平面 所成的角为()
人教版高二上学期数学期末考试文试题
人教版高中数学测试卷(考试题)咸阳市2019~2020学年度第一学期期末教学质量检测高二数学(文科)试题注意事项:1.本试题共4页满分150分,时间120分钟;2.答卷前,考生须准确填写自己的姓名、准考证号,并认真核准条形码上的姓名、准考证号;3.选择题必须使用2B 铅笔填涂非选择题必须使用0.5毫米黑色墨水签字笔书写,涂写要工整、清晰;4.考试结束,监考员将试题卷答题卡一并收回.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次不等式(1)(2)0x x -+<的解集为( ) A.{|2x x <-或1}x > B.{|1x x <-或2}x > C.{|21}x x -<< D.{|12}x x -<<2.已知等比数列{}n a 中,427a =,公比3q =-,则1a =( ) A.1 B.1- C.3 D.3-3.设,,a b c 是ABC 的内角,,A B C 的对边,若3A π=,4B π=,a =b =( )A.4.不等式202x x -<+的解集是( ) A.(2,2)- B.(2,2]- C.(2,0)- D.(0,2) 5.命题“x ∀∈R ,()()f x g x >”的否定是( ) A.x ∀∈R ,()()f x g x B.x ∀∈R ,()()f x g x < C.0x ∃∈R ,()()00f x g x D.0x ∃∈R ,()()00f x g x < 6.已知函数()sin f x a x =-,且0()()lim2x f x f xππ∆→+∆-=∆,则实数a 的值为( )A.2πB.2π-C.2D.2-7.已知a b >,0c ≠,则下列不等式一定成立的是( )A.22a b > B.11a b > C.ac bc > D.22a b c c> 8.已知函数()f x 的导函数()y f x '=的图像如图所示,则下列叙述正确的是( )A.函数()f x 在(,4)-∞-上单调递减B.函数()f x 在1x =-处取得极大值C.函数()f x 在4x =-处取得极值D.函数()f x 只有一个极值点9.若数列{}n a 满足232n a n n =++,则1n a ⎧⎫⎨⎬⎩⎭的前10项和为( )A.13 B.512 C.12 D.71210.在等差数列{}n a 中,80a >,4100a a +<,则数列{}n a 的前n 项和n S 中最小的是( ) A.4S B.5S C.6S D.7S11.已知{}n a 是等比数列,则“24a a <”是“{}n a 是递增数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知点F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,以F 为圆心的圆过坐标原点O ,且圆F 与双曲线C 的两条渐近线分别交于A B 、两点,若四边形OAFB 是菱形,则双曲线C 的离心率为( ) 23第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题每小题5分,共20分)13.已知函数()f x 的导函数为()f x ',且满足()3(1)ln f x xf x '=+,则(1)f '=_________.14.函数16(0)y x x x=++>的最小值为______. 15.若直线l 过抛物线22y px =的焦点F ,且与抛物线交于不同的两点,A B ,其中点()02,A y ,且||4AF =,则p =__________.16.若函数32()231(0)f x x ax a =-+>在区间(0,)+∞内有两个不同的零点,则a 的取值范围为____. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 求下列函数的导数: (Ⅰ)cos y x x =+; (Ⅱ)2ln xy x =. 18.(本小题满分12分)设等差数列{}n a 的公差为(0)d d ≠,11a =,2a 为14,a a 的等比中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2nn n b a =+,求数列{}n b 的前n 项和n T .19.(本小题满分12分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin cos c B b C =. (Ⅰ)求角C 的大小;(Ⅱ)若13c =,22b =,求ABC 的面积. 20.(本小題满分12分)已知(1,1)Q 是抛物线2:2(0)C x py p =>上一点过抛物线C 的焦点F 作条直线l ,直线l 与抛物线C 交于不同的两点()11,A x y ,()22,B x y ,在点A 处作抛物线C 的切线1l 在点B 处作抛物线C 的切线2l .(Ⅰ)求p 的值及焦点F 的坐标;(Ⅱ)设切线1l 的斜率为1k ,切线2l 的斜率为2k ,求证:121k k ⋅=-. 21.(本小题满分12分)如图,已知1(,0)F c -、2(,0)F c 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,(0,)A b 是椭圆C 的上顶点,点B 在x 轴负半轴上,满足1F 是2BF 的中点,且2AB AF ⊥.(Ⅰ)求椭圆C 的离心率;(Ⅱ)若2Rt ABF 的外接圆恰好与直线:330l x --=相切,求椭圆C 的方程. 22.(本小题满分12分) 已知函数21()ln (0)2f x ax x a =⋅>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)设23()4x x g x e =-,若()f x 的极小值为12e-,证明:当0x >时,()()f x g x >.(其中e 2.71828=…为自然对数的底数)咸阳市2019~2020学年度第一学期期末教学质量检测高二数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C2.B3.A4.A5.C6.C7.D8.D9.B 10.D 11.B 12.A 二、填空题(本大题共4小题,每小题5分,共20分) 13.12-14.8 15.4 16.(1,)+∞ 三、解答题(本大题共6小题,共70分,解答应写岀文字说明、证明过程或演算步骤)17.解:(Ⅰ)(cos )()sin 1y x x x '''=+=-+. (5分)(Ⅱ)()22244312ln (ln )ln 12ln x x xx x x xx x y x x x'''⋅-⋅⋅-⋅-===. (10分) 18.解:(Ⅰ)11a =,2a 为1a 与4a 的等比中项,2214a a a ∴=⋅,即2(1)1(13)d d +=⨯+,得1d =,∴数列{}n a 的通项公式为1(1)1n a n n =+-⨯=. (6分)(Ⅱ)由(Ⅰ)得n a n =,2nn b n ∴=+,()()212(1)(12)221122n n n n n T n -+∴=++++=+--. (12分) 19.解:(Ⅰ)sin cos c B b C =,∴根据正弦定理得sin sin sin cos C B B C =,又sin 0B ≠,tan 1C ∴=,0C π<<,4C π∴=. (6分)(Ⅱ)根据余弦定理有2222cos c a b ab C =+-, 将c =,b =4C π=代入上式,整理得2450a a --=,解得5a =或1a =-(舍去), 故ABC 的面积11sin 55222S ab C ==⨯⨯=. (12分) 20.解:(Ⅰ)将(1,1)Q 代入22x py =中,可得12p =,12p ∴=, (3分) ∴抛物线C 的标准方程为2x y =,故焦点F 的坐标为10,4⎛⎫ ⎪⎝⎭. (6分) (Ⅱ)显然,直线的l 斜率存在,设直线l 的方程为14y kx =+, 联立214y kx x y ⎧=+⎪⎨⎪=⎩,消去y 得,2104x kx --=,则1214x x ⋅=-,由2y x =,得2y x '=,112k x ∴=,222k x =,121241k k x x ∴⋅=⋅=-. (12分)21.解:(Ⅰ)1F 为2BF 的中点,2AB AF ⊥,在2Rt ABF 中,22222BF AB AF =+,即2222(4)9c c b a =++,又222a b c =+,2a c ∴=, 故椭圆C 的离心率12c e a ==. (6分) (Ⅱ)由(Ⅰ)知12c a =,得12c a =,21,02F a ⎛⎫∴ ⎪⎝⎭,3,02B a ⎛⎫- ⎪⎝⎭, 2Rt ABF ∴的外接圆的圆心为1,02a ⎛⎫- ⎪⎝⎭,半径r a =,2Rt ABF的外接圆恰好与直线30x --=相切,1322a a --∴=,解得2a =,1c ∴=,b =∴椭圆C 的方程为22143x y +=. (12分) 22.解:(Ⅰ)由题可知()f x 的定义域为(0,)+∞,11()ln (2ln 1)22f x ax x ax ax x '=+=+, 令()0f x '=,解得12x e -=,当120e x -<<时,()0f x '<,()f x 单调递减;当12x e->时,()0f x '>,()f x 单调递增,()f x ∴的单调递减区间为120,e -⎛⎫ ⎪⎝⎭;单调递增区间为12,e -⎛⎫+∞ ⎪⎝⎭. (6分)(Ⅱ)证明:23()e 4x x g x =-,0x >,则(2)()exx x g x '-=, 当(0,2)x ∈时,()0g x '>,()g x 单调递增;附赠材料必须掌握的试题训练法题干分析法怎样从“做题”提升到“研究”题干分析法,是指做完题目后,通过读题干进行反思总结:这些题目都从哪几个角度考查知识点的?角度不同,容易出错的地方是不是变化了?只有这样,我们才能从单纯的“做题目”上升到“研究”,我们的思维能力和做题效率才能不断提高。
高二数学上学期期末试卷(文科含解析)
高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
(word完整版)高二文科数学试题及答案,推荐文档
高二数学第一学期期末试题(文科)(总分150,时间120分钟)班级------------ 姓名 -------------- 考号-------------- 一、选择题:(每题5分,共60分) 1.下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan 1x =C .∀x ∈R ,3x >0D .∀x ∈R, 2x>02.已知()ln f x x = , 则()f e '的值为( ) A.1 B. 1- C. e D.1e3.设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为 ( )A .0B .1C .2D .34.已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 ( ) A .充分必要条件 B.充分不必要条件C .必要不充分条件 D.既不充分又不必要条件 5.椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为( ) A. 1B.25C.1-D.-256.抛物线x y 122=上与焦点的距离等于8的点的横坐标为( ) A.2 B.3 C.4 D.57.椭圆x 29+y 225=1的焦点为F 1、F 2,AB 是椭圆过焦点F 1的弦,则△ABF 2的周长是( )A .20B .12C .10D .6 8.若椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为( )A. 32B. 22C.53 D. 639.命题:01,2=+-∈∃x x R x 的否定是( )A. 2,10x R x x ∃∈-+≠ B. 2,10x R x x ∀∈-+= C.2,10x R x x ∀∈-+≠ D. 2,10x R x x ∀∈-+= 10.过抛物线24x y =焦点的最短弦长为( )A. 1B. 4C. 2D. 611. 若函数32()f x x x ax =-++在R 上是减函数,则实数a 的取值范围是( )A. 1(,]3-∞- B.1(,)3-∞ C.1[,)3+∞ D.1(,)3+∞12. 设底面为正三角形的直棱柱的体积为V, 那么其表面积最小时,底面边长为( )A.3vB.32vC.34vD.32v 二、填空题(每题5分,共20分)13.已知2()f x x =, 求曲线()y f x =在点(2,4)处的切线方程________. 14.函数2cos y x x =+ 在(0,2)π内的单调递减区间是_______.15.与双曲线 2214y x -= 有共同的渐近线,且过点(2,2)的双曲线的标准方程是______.16.抛物线24y x =上一动点到点(1,1)A -的距离与到直线1x =-的距离之和的最小值是______.高二数学第一学期期末试题答案卷(文科) 二、填空题 (每小题5分,共20分)13. _____________________. 14. _____________________. 15. _____________________. 16. _____________________. 三、解答题:(6道题,共70分)17.(10分)求与椭圆2212516y x +=有共同焦点,且过点(0,2)的双曲线方程。
人教A版高二上学期文科数学期末试卷(含答案)
人教A 版高二上学期文科数学期末试卷考试时间:120分钟 满分:150分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.不等式2230x x +-<的解集为A .{}13x x -<<B .{}31x x -<<C .{3x x <-或}1x >D .{1x x <-或}3x >2.与直线1l :10x -=垂直且过点(-的直线2l 的方程为A .20x --=B 0y +=C .40x --=D 0y +-= 3.抛物线24x y =的焦点是A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)4.直线0443:1=+-y x l 与平行线1286:2--y x l 的距离为A .516B .58C .2D .45.下列结论正确的是A .若x y z >>,则||||xy yz >B .若110a b<<,则2ab b > C .若a b >,c d >,则ac bd > D .若22a x a y >,则x y >6.从编号为01,02,……,49,50的50个个体中利用下面的随机数表选取5个个体,选取方法是从随机数表第1行第5列的数开始由左到右依次选取,则选出来的第5个个体的编号为A.08 B.14 C.28 D.437.若,x y满足约束条件0 2323xx yx y≥⎧⎪+≥⎨⎪+≤⎩则z x y=-的最小值是A.-3 B.0 C.12D.38.已知直线0x y m-+=与圆O:221x y+=相交于A,B两点,若OAB∆为正三角形,则实数m的值为A.2B.2C.2或D.2-9.已知某算法的程序框图如图所示,则该算法的功能是A.求首项为1,公差为2的等差数列前2017项和B.求首项为1,公差为2的等差数列前2018项和C.求首项为1,公差为4的等差数列前1009项和D.求首项为1,公差为4的等差数列前1010项和10.圆22460x y x y+-+=和圆2260x y x+-=交于,A B两点,则直线AB的方程是A.30x y+=B.30x y-=C.390x y--=D.390x y++=11.关于x的不等式23208ax ax+-<对一切实数x都成立,则a的取值范围是A.()3,0-B.()0,3C.[)3,0-D.(]3,0-12.已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为12,F F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,若2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为A .2BCD .3第II 卷(非选择题90分)二、填空题:本题共4小题,每小题5分,共20分。
高中高二数学上学期期末试卷 文(含解析)-人教版高二全册数学试题
2015-2016学年某某省某某市油田高中高二(上)期末数学试卷(文科)一、选择题:在下列各小题的四个选项中,只有一项是符合题目要求的.请将正确选项涂到答题卡上.1.设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b32.满足f(x)=f′(x)的函数是()A.f(x)=1﹣x B.f(x)=x C.f(x)=0 D.f(x)=13.△ABC中,若a=1,c=2,B=60°,则△ABC的面积为()A.B.C.1 D.4.“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.B.C.D.6.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是()A.15 B.30 C.31 D.647.若变量x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣1 B.0 C.1 D.28.在下列函数中,最小值是2的是()A.(x∈R且x≠0)B.C.y=3x+3﹣x(x∈R)D.)9.抛物线x2=4y上与焦点的距离等于4的点的纵坐标是()A.l B.K C.3 D.y﹣1=k(x﹣2)10.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1 B.2 C.4 D.811.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)<0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0) C.(﹣∞,﹣2016)D.(﹣2016,﹣2014)二、填空题:(本题共4个小题,每小题5分,共20分)13.曲线y=x3+x﹣2的一条切线平行于直线y=4x﹣1,则切点P0的坐标为.14.抛物线y=x2的准线方程是.15.函数y=1+3x﹣x3的极大值是,极小值是.16.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF 周长最小时,该三角形的面积为.三、解答题:(本题共6小题,17题10分,18-22每小题10分,共70分)解答题应给出必要的文字说明,证明过程或演算步骤.)17.(10分)(2015秋•某某期末)设双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),求双曲线C的方程,离心率及渐近线方程.18.(12分)(2013•潍坊模拟)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.某某数m的取值X围.19.(12分)(2014•某某二模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.20.(12分)(2015•某某)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.21.(12分)(2015秋•某某期末)已知f(x)=ax﹣lnx,x∈(0,e],a∈R.(1)若a=1,求f(x)的极小值;(2)是否存在实数a,使f(x)的最小值为3.22.(12分)(2015秋•某某期末)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),问直线AP与AQ的斜率之和是否为定值,若是,求出这个定值;若不是,请说明理由.2015-2016学年某某省某某市油田高中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:在下列各小题的四个选项中,只有一项是符合题目要求的.请将正确选项涂到答题卡上.1.设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.2.满足f(x)=f′(x)的函数是()A.f(x)=1﹣x B.f(x)=x C.f(x)=0 D.f(x)=1【考点】导数的运算.【专题】计算题.【分析】分别利用求导法则求出各项的导函数f′(x),即可判断f(x)=f′(x)的函数,得到正确答案.【解答】解:A、由f(x)=1﹣x,得到f′(x)=﹣1≠1﹣x=f(x),本选项错误;B、由f(x)=x,得到f′(x)=1≠x=f(x),本选项错误;C、由f(x)=0,得到f′(x)=0=f(x),本选项正确;D、由f(x)=1,得到f′(x)=0≠1=f(x),本选项错误,故选C【点评】此题考查学生灵活运用求导的法则化简求值,是一道基础题.3.△ABC中,若a=1,c=2,B=60°,则△ABC的面积为()A.B.C.1 D.【考点】三角形的面积公式.【专题】解三角形.【分析】利用三角形面积公式S△ABC=即可得出.【解答】解:S△ABC===.故选B.【点评】本题考查了三角形面积公式S△ABC=,属于基础题.4.“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】不等式的解法及应用.【分析】设A={x|1<x<2},B={x|x<2},判断集合A,B的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【解答】解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.5.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.B.C.D.【考点】椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】由已知可知椭圆的焦点在x轴上,由焦点坐标得到c,再由离心率求出a,由b2=a2﹣c2求出b2,则椭圆的方程可求.【解答】解:由题意设椭圆的方程为.因为椭圆C的右焦点为F(1,0),所以c=1,又离心率等于,即,所以a=2,则b2=a2﹣c2=3.所以椭圆的方程为.故选D.【点评】本题考查了椭圆的标准方程,考查了椭圆的简单性质,属中档题.6.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是()A.15 B.30 C.31 D.64【考点】等差数列.【专题】计算题.【分析】利用通项公式求出首项a1与公差d,或利用等差数列的性质求解.【解答】解:解法1:∵{a n}为等差数列,设首项为a1,公差为d,∴a7+a9=a1+6d+a1+8d=2a1+14d=16 ①;a4=a1+3d=1 ②;由①﹣②得a1+11d=15,即a12=15.解法2:由等差数列的性质得,a7+a9=a4+a12,∵a7+a9=16,a4=1,∴a12=a7+a9﹣a4=15.故选:A.【点评】解法1用到了基本量a1与d,还用到了整体代入思想;解法2应用了等差数列的性质:{a n}为等差数列,当m+n=p+q(m,n,p,q∈N+)时,a m+a n=a p+a q.特例:若m+n=2p(m,n,p∈N+),则a m+a n=2a p.7.若变量x,y满足约束条件,则z=2x﹣y的最小值为()A.﹣1 B.0 C.1 D.2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(0,1).∴z=2x﹣y的最小值为2×0﹣1=﹣1.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.在下列函数中,最小值是2的是()A.(x∈R且x≠0)B.C.y=3x+3﹣x(x∈R)D.)【考点】基本不等式.【专题】计算题.【分析】利用均值定理求函数最值需要满足三个条件即一“正”,二“定”,三“等号”,选项A不满足条件一“正”;选项B、D不满足条件三“等号”,即等号成立的条件不具备,而选项C三个条件都具备【解答】解:当x<0时,y=<0,排除A,∵lgx=在1<x<10无解,∴大于2,但不能等于2,排除B ∵sinx=在0<x<上无解,∴)大于2,但不能等于2,排除D对于函数y=3x+3﹣x,令3x=t,则t>0,y=t+≥2=2,(当且仅当t=1,即x=0时取等号)∴y=3x+3﹣x的最小值为2故选C【点评】本题考察了均值定理求函数最值的方法,解题时要牢记口诀一“正”,二“定”,三“等号”,并用此口诀检验解题的正误9.抛物线x2=4y上与焦点的距离等于4的点的纵坐标是()A.l B.K C.3 D.y﹣1=k(x﹣2)【考点】抛物线的简单性质.【专题】计算题;函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】通过抛物线方程可知其准线方程为y=﹣1,进而利用定义即得结论.【解答】解:由题意,抛物线准线方程为:y=﹣1,设点P在抛物线上,且与焦点的距离等于4,则y P+1=4,即y P=3,故选:C.【点评】本题考查抛物线的简单性质,注意解题方法的积累,属于基础题.10.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1 B.2 C.4 D.8【考点】等比数列的性质;等比数列的通项公式.【分析】由公比为2的等比数列{a n} 的各项都是正数,且a3a11=16,知.故a7=4=,由此能求出a5.【解答】解:∵公比为2的等比数列{a n} 的各项都是正数,且 a3a11=16,∴.∴a7=4=,解得a5=1.故选A.【点评】本题考查等比数列的通项公式的应用,是基础题.解题时要认真审题,仔细解答.11.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;压轴题;圆锥曲线的定义、性质与方程.【分析】依题意,可求得点P的坐标P(﹣c,),由AB∥OP⇒k AB=k OP⇒b=c,从而可得答案.【解答】解:依题意,设P(﹣c,y0)(y0>0),则+=1,∴y0=,∴P(﹣c,),又A(a,0),B(0,b),AB∥OP,∴k AB=k OP,即==,∴b=c.设该椭圆的离心率为e,则e2====,∴椭圆的离心率e=.故选C.【点评】本题考查椭圆的简单性质,求得点P的坐标(﹣c,)是关键,考查分析与运算能力,属于中档题.12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)<0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0) C.(﹣∞,﹣2016)D.(﹣2016,﹣2014)【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】通过观察2f(x)+xf′(x)>x2,不等式的左边像一个函数的导数,又直接写不出来,对该不等式两边同乘以x,∵x<0,∴会得到2xf(x)+x2f′(x)<x3,而这时不等式的左边是(x2f(x))′,所以构造函数F(x)=x2f(x),则能判断该函数在(﹣∞,0)上是减函数.这时F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2),而到这会发现不等式(x+2014)2f(x+2014)﹣4f(﹣2)<0可以变成F(x+2014)<F(﹣2),从而解这个不等式便可,而这个不等式利用F(x)的单调性可以求解.【解答】解:由2f(x)+xf′(x)>x2,(x<0);得:2xf(x)+x2f′(x)<x3即[x2f(x)]′<x3<0;令F(x)=x2f(x);则当x<0时,F'(x)<0,即F(x)在(﹣∞,0)上是减函数;∴F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2);即不等式等价为F(x+2014)﹣F(﹣2)<0;∵F(x)在(﹣∞,0)是减函数;∴由F(x+2014)<F(﹣2)得,x+2014>﹣2,∴x>﹣2016;又x+2014<0,∴x<﹣2014;∴﹣2016<x<﹣2014.∴原不等式的解集是(﹣2016,﹣2014).故答案选D.【点评】本题考查函数的单调性与导数的关系,两个函数乘积的导数的求法,而构造函数是解本题的关键.二、填空题:(本题共4个小题,每小题5分,共20分)13.曲线y=x3+x﹣2的一条切线平行于直线y=4x﹣1,则切点P0的坐标为(1,0)或(﹣1,﹣4).【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】先求导函数,然后令导函数等于4建立方程,求出方程的解,即可求出切点的横坐标,从而可求出切点坐标.【解答】解:由y=x3+x﹣2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=﹣1时,y=﹣4.∴切点P0的坐标为(1,0)或(﹣1,﹣4).故答案为:(1,0)或(﹣1,﹣4)【点评】利用导数研究函数的性质是导数的重要应用之一,导数的广泛应用为我们解决函数问题提供了有力的帮助.本小题主要考查利用导数求切点的坐标.14.抛物线y=x2的准线方程是y=﹣1.【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先将抛物线方程化为标准方程,进而可求抛物线的准线方程.【解答】解:由题意,抛物线的标准方程为x2=4y,∴p=2,开口朝上,∴准线方程为y=﹣1,故答案为:y=﹣1.【点评】本题的考点是抛物线的简单性质,主要考查抛物线的标准方程,属于基础题.15.函数y=1+3x﹣x3的极大值是3,极小值是﹣1.【考点】利用导数研究函数的极值.【专题】计算题;函数思想;方程思想;转化思想;导数的综合应用.【分析】求导数得y'=﹣3x2+3,从而得到函数的增区间为(﹣1,1),减区间为(﹣∞,﹣1)和(1,+∞).由此算出函数的极大值和极小值,可得M﹣N的值.【解答】解:∵函数y=1+3x﹣x3求导数,得y′=﹣3x2+3,∴令y′=0得x=±1,当x<﹣1时,y'<0;当﹣1<x<1时,y′>0;当x>1时,y′<0∴函数在区间(﹣∞,﹣1)和(1,+∞)上为减函数,在区间(﹣1,1)上为增函数.因此,函数的极大值M=f(1)=3,极小值N=f(﹣1)=﹣1,故答案为:3;﹣1;【点评】本题给出三次多项式函数,求函数的极大值与极小值之差.着重考查了利用导数研究函数的单调性和函数极值求法等知识,属于中档题.16.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.【考点】双曲线的简单性质.【专题】计算题;开放型;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:(本题共6小题,17题10分,18-22每小题10分,共70分)解答题应给出必要的文字说明,证明过程或演算步骤.)17.(10分)(2015秋•某某期末)设双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),求双曲线C的方程,离心率及渐近线方程.【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),可得a=1,c=,b=1,即可求双曲线C的方程,离心率及渐近线方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(),一个顶点(1,0),∴a=1,c=,∴b=1,∴双曲线C的方程为x2﹣y2=1,离心率e=,渐近线方程:y=±x.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,正确求出双曲线的几何量是关键.18.(12分)(2013•潍坊模拟)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.某某数m的取值X围.【考点】复合命题的真假;一元二次方程的根的分布与系数的关系.【专题】分类讨论;简易逻辑.【分析】根据题意,首先求得p、q为真时m的取值X围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案.【解答】解:由题意p,q中有且仅有一为真,一为假,若p为真,则其等价于,解可得,m>2;若q为真,则其等价于△<0,即可得1<m<3,若p假q真,则,解可得1<m≤2;若p真q假,则,解可得m≥3;综上所述:m∈(1,2]∪[3,+∞).【点评】本题考查命题复合真假的判断与运用,难点在于正确分析题意,转化为集合间的包含关系,综合可得答案.19.(12分)(2014•某某二模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【考点】余弦定理;正弦定理.【专题】计算题;解三角形.【分析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.【解答】解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【点评】本题给出三角形的边角关系,求A的大小并依此求三角形的面积,着重考查了正余弦定理的运用和三角形的面积公式等知识,属于中档题.20.(12分)(2015•某某)等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【考点】等差数列的性质.【专题】计算题;等差数列与等比数列.【分析】(Ⅰ)建立方程组求出首项与公差,即可求数列{a n}的通项公式;(Ⅱ)b n=2+n=2n+n,利用分组求和求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.【点评】本题考查等差数列的通项,考查数列的求和,求出数列的通项是关键.21.(12分)(2015秋•某某期末)已知f(x)=ax﹣lnx,x∈(0,e],a∈R.(1)若a=1,求f(x)的极小值;(2)是否存在实数a,使f(x)的最小值为3.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(1)当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,利用极值与函数的单调性的关系即可得出;(2)对a分类讨论:当a≤0时,当0<<e时,≥e时,利用导数研究函数的单调性即可得出.【解答】解:(1)当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,∴当0<x<1时,f′(x)<0,此时f(x)单调递减;当1<x<e时,f′(x)>0,此时f(x)单调递增.∴f(x)的极小值为f(1)=1.(2)假设存在实数a,使f(x)=ax﹣lnx,x∈[0,e]有最小值3,f′(x)=a﹣=,①当a≤0时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a=(舍去),∴此时f(x)最小值不为3;②当0<<e时,f(x)在(0,)上单调递减,在上单调递增,∴f(x)2,满足条件;min==3,解得a=e③≥e时,f′(x)≤0,函数f(x)在(0,e]上单调递减,∴f(x)min=f(e)=ae﹣1=3,解得a=,舍去.综上可得:存在实数a=e2,使得当x∈(0,e]时,f(x)有最小值为3.【点评】本题考查了利用导数研究函数的单调性极值与最值,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.22.(12分)(2015秋•某某期末)如图,椭圆E:+=1(a>b>0)经过点A(0,﹣1),且离心率为.(I)求椭圆E的方程;(II)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),问直线AP与AQ的斜率之和是否为定值,若是,求出这个定值;若不是,请说明理由.【考点】椭圆的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得b=1,结合椭圆的离心率及隐含条件求得a,则椭圆E的方程可求;(Ⅱ)设出直线PQ的方程,联立直线方程和椭圆方程,然后借助于根与系数的关系整体运算得答案.【解答】解:(Ⅰ)由题意知,b=1,结合a2=b2+c2,解得,∴椭圆的方程为;(Ⅱ)由题设知,直线PQ的方程为y=k(x﹣1)+1 (k≠2),代入,得(1+2k2)x2﹣4k(k﹣1)x+2k(k﹣2)=0,由已知△>0,设P(x1,y1),Q(x2,y2),x1x2≠0,则,,从而直线AP与AQ的斜率之和:==.【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,涉及直线和圆锥曲线位置关系的问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,是中档题.。
(完整word版)高二第一学期数学期末考试题及答案(人教版文科)
2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。
最新人教版高二数学上学期期末考试试题(文科 附答案)
最新人教版高二数学上学期期末考试试题(文科附答案)(全卷满分:150分考试用时:120分钟)一、选择题:(共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
)1、若直线经过两点,则直线斜率为()A. B.1 C.D.-2、设变量,满足约束条件错误!未找到引用源。
则目标函数的最大值为( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
3下列说法错误的是()A.对于命题,则B.“”是“”的充分不必要条件C.若命题为假命题,则p,q都是假命题D.命题“若则”的逆否命题为:“若则”4、在空间中,两不同直线a、b,两不同平面、,下列命题为真命题的是()A.若,则B. 若,则C. 若,则D. 若,则5.某几何体的三视图如图所示, 则该几何体的体积为()A .B.C.D.6.送快递的人可能在早上之间把快递送到张老师家里, 张老师离开家去工作的时间在早上之间, 则张老师离开家前能得到快递的概率为()A.B.C.D.7、以两点和为直径端点的圆的方程是( )A.B.C.D.8、对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53C.47,45,56 D.45,47,539、现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样10、有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为()A.B.C.D.11、在正三棱柱ABC﹣A1B1C1中,若,则AB1与C1B所成的角的大小为( )A.60°B.90°C.75°D.105°12、已知分别是椭圆的左、右焦点,若椭圆上存在点,使得线段的垂直平分线恰好过焦点,则椭圆的离心率的取值范围是()A.B.[,] C.D.二、填空题(共4小题,每题5分,共20分)13、已知直线(3a+2)x+(1-4a)y+8=0与(5a-2)x+(a+4)y-7=0垂直,则a=。
高二数学上学期期末考试试题文含解析_1(共20页)
一中2021-2021-1学期期末考试(qī mò kǎo shì)试题高二数学〔文科〕第一卷〔选择题〕一、选择题〔本大题一一共12 小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,请将正确答案涂.......在答题卡上......〕 1.抛物线的焦点坐标是〔 〕A.B.C.D.【答案】A 【解析】 【分析】抛物线22y x =焦点在轴上,那么得到答案.【详解】因为抛物线的方程为22y x =,所以其焦点在y 轴上,128p = 那么抛物线的焦点坐标是10,8⎛⎫⎪⎝⎭.应选:【点睛】此题考察了抛物线的焦点,属于简单题. 2.假设命题“〞为真命题,那么( )A.为假命题B. 为假命题C. q 为真命题D.为真命题【答案(dá àn)】B【解析】【分析】命题“p∧(¬q)〞为真命题,根据且命题的真假判断得到p为真命题,¬q也为真命题,进而得到结果.【详解】命题“p∧(¬q)〞为真命题,根据且命题的真假判断得到p为真命题,¬q也为真命题,那么q为假命题,故B正确;p∨q为真命题;¬p为假命题,¬q 为真命题,故得到(¬p)∧(¬q)为假命题.故答案为B.【点睛】〔1〕由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假假设p且q 真,那么p 真,q也真;假设p或者q真,那么p,q至少有一个真;假设p 且q假,那么p,q至少有一个假.〔2〕可把“p或者q〞为真命题转化为并集的运算;把“p且q〞为真命题转化为交集的运算.3.条件,条件,那么是的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】:;【详解(xiánɡ jiě)】因为,p,q ⌝:,因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A. 4.曲线与的关系是( )A. 有相等的焦距,一样的焦点B. 有相等的焦距,不同的焦点C. 有不等的焦距,不同的焦点D. 以上都不对【答案】B 【解析】 【分析】判断两个椭圆的焦点坐标与焦距的大小即可得到结果. 【详解】曲线与0<k <9〕都是椭圆方程,焦距为:2c=8,2=8,焦距相等,221259x y +=的焦点坐标在x 轴,的焦点坐标在y 轴,故两者的焦点不同.应选B .【点睛】此题考察椭圆简单性质的应用,考察计算才能.注意和椭圆方程有关的题目,通常会应用到注意.5.i 是虚数单位,A. iB.C. 1D.【答案】B 【解析】 【分析(fēnxī)】利用复数代数形式的乘除运算化简,再由虚数单位i 的性质计算. 【详解】, .应选B .【点睛】此题考察复数代数形式的乘除运算,考察虚数单位i 的运算性质,是根底题. 6.复数 z 满足条件,那么复数z 所对应的点Z 的轨迹是〔 〕 A. 双曲线 B. 双曲线的右支C. 线段D. 一条射线 【答案】D 【解析】 【分析】利用224z z +--= 表示复数Z 对应的点Z 到点和到点的间隔之差等于,得到Z 的轨迹是一条射线.【详解】复数Z 满足条件224z z +--=, 设,为虚数的单位, 那么,它表示复数Z 对应的点到点(2,0)A -和到点(2,0)B 的间隔 之差等于4=||AB ,故点Z的轨迹是一条射线.应选:D【点睛(diǎn jīnɡ)】题考察两个复数差的绝对值的几何意义,复数与复平面内对应点之间的关系,复数的模的定义,判断条件代表的几何意义,是解题的关键,属于根底题.7.以下说法错误的选项是〔〕A. 回归直线过样本点的中心.B. 对分类变量X与Y,随机变量K2的观测值k越大,那么判断“X与Y有关系〞的把握程度越小C. 两个随机变量的线性相关性越强,那么相关系数的绝对值就越接近于1D. 在回归直线方程=x+中,当解释变量x每增加1个单位时,预报变量y 平均增加个单位【答案】B【解析】【分析】利用线性回归的有关知识即可判断出.【详解】A.回归直线过样本点的中心(),x y,故A正确;B.对分类变量X与Y的随机变量K2的观测值k来说,k越大,“X与Y有关系〞可信程度越大,故B不正确;C.两个随机变量相关性越强,那么相关系数的绝对值越接近1,故C正确;D.在线性回归方程y=x+中,当x每增加1个单位时,预报量平均增加0.2个单位,故D正确.应选(yīnɡ xuǎn):B【点睛】此题考察了线性回归的有关知识,考察了推理才能,属于根底题.8.对变量x, y 有观测数据理力争〔,〕〔i=1,2,…,10〕,得散点图1;对变量u ,v 有观测数据〔,〕〔i=1,2,…,10〕,得散点图2. 由这两个散点图可以判断.A. 变量x 与y 正相关,u 与v 正相关B. 变量x 与y 正相关,u 与v 负相关C. 变量x 与y 负相关,u 与v 正相关D. 变量x 与y 负相关,u 与v 负相关【答案】C【解析】变量x 与中y随x增大而减小,为负相关;u 与v中,u 随v的增大而增大,为正相关.9.过抛物线y2=8x的焦点(jiāodiǎn)的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,假如x1+x2=6,那么|PQ|=〔〕A. 6B. 8C. 10D. 12【答案】C 【解析】 【分析】根据抛物线方程,算出焦点为,准线方程为.利用抛物线的定义,有,结合PQ 经过焦点且,即可得答案.【详解】由抛物线方程为y 2=8x ,可得,抛物线的焦点为(2,0)F ,准线方程为2x =-. 根据抛物线的定义,得所以又PQ 经过焦点F ,且126x x +=,.应选:C【点睛】此题经过抛物线的焦点的弦PQ ,在P 、Q 横坐标之和的情况下求PQ 的长.着重考察了抛物线的定义与HY 方程的知识,属于根底题. 10.对于实数x ,规定表示不大于x 的最大整数,那么不等式成立的充分不必条件要是〔 〕A.B.C.D.【答案(dá àn)】B 【解析】【分析】先求出关于[x]的不等式的解集,然后根据新定义得到的范围,从而得到答案.【详解】由[][]241670x x -+<,得. 又[]x 表示不大于x 的最大整数,所以.那么不等式[][]241670x x -+<成立的充分不必条件, 即选出不等式[][]241670x x -+<的解集的一个非空真子集即可.根据选项那么B 选项满足. 应选:B.【点睛】此题考察一元二次不等式的解法和充分条件的选择,考察学生理解新定义的才能,是一道中档题. 11.F 是双曲线:的一个焦点,那么点F 到C 的一条渐近线的间隔 为〔 〕 A.B. 3C.D.【答案】A 【解析】 【分析】根据题意,由双曲线的几何性质可得焦点坐标以及渐近线的方程,进而由点到直线的间隔 公式计算可得答案.【详解(xiánɡ jiě)】双曲线C :225(0)x my m m -=>的方程化为:.所以双曲线C 的焦点在x 轴上,且.渐近线方程为:,取F 的坐标为,取一条渐近线. 那么点F 到C 的一条渐近线的间隔 ,应选:A【点睛】此题考察双曲线的几何性质,关键是利用双曲线的HY 方程,计算出焦点坐标以及渐近线的方程.属于根底题. 12.椭圆,的一条弦所在的直线方程是,弦的中点坐标是,那么椭圆的离心率是〔 〕 A.B.C.D.【答案】C 【解析】 【分析】 设出以为中点的弦的两个端点的坐标,代入椭圆的方程相减,把中点公式代入,可得弦的斜率与a ,b 的关系式.从而求得椭圆的离心率. 【详解】显然(2,1)M - 在椭圆内, 设直线30x y -+=与椭圆的交点为,由M 是的中点有:,将,A B 两点的坐标代入椭圆方程得:,。
高二年级文科数学上学期期末考试试卷
高二年级数学上学期期末考试试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.椭圆2212x y +=的离心率是 ( )B. C. 12D. 2 2. 双曲线19422=-y x 的渐近线方程是 ( ) A .x y 32±= B . x y 23±= C .x y 49±= D .x y 94±= 3.椭圆2241x y +=的离心率为 ( ) A.22 B.43C. 23 D.32 4. 过抛物线y=x 2上的点M (21,41)的切线的倾斜角是 ( ) A ︒30 B ︒45 C ︒60 D ︒905.设()f x 在[],a b 上的图象是一条连续不间断的曲线,且在(),a b 内可导,则下列结论中正确的是 ( )A. ()f x 的极值点一定是最值点B. ()f x 的最值点一定是极值点C. ()f x 在此区间上可能没有极值点D. ()f x 在此区间上可能没有最值点6.集合{}2|230A x x x =--<,{}2|B x x p =<,若A B ⊆则实数P 的取值范围是( ) A. 13p p ≤-≥或 B. 3p ≥ C. 9p ≥ D. 9p >7. 椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )A .8B .9C .10D .128.已知椭圆2222135x y m n +=和双曲线2222123x y m n -=有公共的焦点,那么双曲线的渐近线方程为 ( )A. 152x y =±B. 152y x =± C. 34x y =± D. 34y x =± 9.设)()(,)()(x f y x f y x f x f '=='和将的导函数是函数的图象画在同一个直角坐标系 中,不可能正确的是( )10.已知直线y=kx-k 及抛物线22y x =,则 ( )A.直线与抛物线有且只有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点11在椭圆1204022=+y x 上有一点P ,F 1、F 2是椭圆的左、右焦点,△F 1PF 2为直角三角形,则这样的点P 有 ( )A 4个B 6个C 8个D 2个12.有关命题的说法错误的是 ( )A .命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则”B .“x=1”是“0232=+-x x ”的充分不必要条件C .若q p ∧为假命题,则p 、q 均为假命题D .对于命题使得R x p ∈∃:012<++x x ,则01,:2≥++∈∀⌝x x R x p 均有 二、填空题:本大题共4小题,每小题4分,共16分.13.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 14.抛物线x y 82-=的焦点坐标为 .15. 已知5221)(23+--=x x x x f ,则函数)(x f 的单调递减区间是 . 16. 给出下列三个命题 (1)设()f x 是定义在R 上的可导函数.()/00f x =是0x 为()f x 极值点的必要不充分条件(2)双曲线22221124x y m m -=+-的焦距与m 有关 (3)命题“中国人不都是北京人”的否定是“中国人都是北京人”。
人教版高二数学期末考试文科试卷及答案
⼈教版⾼⼆数学期末考试⽂科试卷及答案2010学年第⼀学期温州⼗校联合体⾼⼆期末联考数学试卷(⽂科)(满分120分,考试时间:100分钟)⼀.选择题:本⼤题共10题,每⼩题4分,共40分. 1. 已知命题甲为x >0;命题⼄为0||>x ,那么()A .甲是⼄的充分⾮必要条件B .甲是⼄的必要⾮充分条件C .甲是⼄的充要条件D .甲既不是⼄的充分条件,也不是⼄的必要条件 2.过点(1,3)P -且垂直于直线032=+-y x 的直线⽅程为()A .052=-+y xB .012=-+y xC .052=-+y xD .072=+-y x3.抛物线28y x =的焦点到准线的距离是()(A) 1 (B)2 (C)4 (D)8 4.函数13)(23+-=x x x f 是减函数的区间为 ( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)5.抛物线x y 82-=的准线与双曲线12822=-y x 的两条渐近线所围成的三⾓形的⾯积为A.8 B.6 C.4 D. 2 6.已知,m n 为直线,βα,为平⾯,给出下列命题:学科⽹①//m n m n αα⊥⊥? ②//m m n n ββ⊥⊥? ③//m m ααββ⊥⊥? ④////m n m n αβαβ其中的正确命题序号是()A .③④ B .②③ C .①② D .①②③④7.曲线32y x x =+-在点(1,0)A 处的切线⽅程是()A .40x y -=B .440x y --=C .420x y --=D .440x y +-=8.将棱长为1的正⽅体⽊块切削成⼀个体积最⼤的球,则该球的体积为()A.π23B.π32C. 34πD. 6π9.已知点A 、B 在抛物线0,,22=?=OB OA O x y 为原点上,则直线AB 恒过()A .(2,0)B .(0,2)C .)81,0(D .(21,0)10.我国于2010年10⽉1⽇成功发射嫦娥⼆号卫星,卫星飞⾏约两⼩时到达⽉球,到达⽉球以后,经过⼏次变轨将绕⽉球以椭圆型轨道飞⾏,其轨迹是以⽉球的⽉⼼为⼀焦点的椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高二年级(文科)第一学期期末考试数学试题
一. 单项选择题(每题5分,共60分)
1.设全集U =R ,集合A ={x |7-6x ≤0},集合B ={x |y =lg(x +2)},则(∁U A )∩B 等于( ) A.⎝
⎛⎭⎫-2,76 B.⎝⎛⎭⎫76,+∞ C.⎣
⎡⎭⎫-2,76 D.⎝
⎛⎭⎫-2,-7
6 2. 下列命题中是假命题的是( ) A .∀x ∈⎝⎛⎭⎫0,π
2,x >sin x B .∀x ∈R,3x >0 C .∃x 0∈R ,sin x 0+cos x 0=2
D .∃x 0∈R ,lg x 0=0 3. 设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11
S 9=( )
A .1
B .-1
C .2
D .12
4.已知sin(π+θ)=-3cos(2π-θ),|θ|<π
2,则θ等于( )
A .-π6
B .-π3
C .π6
D .π3
5. 函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )
6. 若将函数y =2sin 2x 的图象向左平移π
12个单位长度,则平移后图象的对称轴为( )
A .x =k π2-π
6(k ∈Z)
B .x =
k π2+π
6(k ∈Z) C .x =k π2-π
12
(k ∈Z)
D .x =
k π2+π
12
(k ∈Z)
7.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )
A .4
B .5
C .2
D .3
8.已知正方体ABCD A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为( )
A .3
2 B .
330
10
C .
3010
D .12
9. 已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积最大的是( )
A .3
B .25
C .6
D .8
10.设变量x ,y 满足⎩⎪⎨⎪
⎧
x -y +1≥0,x +y -3≥0,
2x -y -3≤0,则目标函数z =2x +3y 的最大值为( )
A .7
B .8
C .22
D .23
11. 过椭圆x 2a 2+y 2
b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为椭圆的右焦
点,若∠F 1PF 2=60°,则椭圆的离心率为( )
A .
22
B .
33
C .12
D .13
12.正数a ,b 满足1a +9
b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )
A .[3,+∞)
B .(-∞,3]
C .(-∞,6]
D .[6,+∞)
二.填空题(共20分,每题5分)
13.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为
14. 如图,平行六面体ABCD A 1B 1C 1D 1中,既与AB 共面又与CC 1共面的棱有________条.
15. 欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为2 cm 的圆,中间有边长为0.5 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为________.
16. 已知函数f (x )=⎩⎪⎨⎪
⎧
-x 2+2x ,x >0,0,x =0,
x 2+2x ,x <0,若函数f (x )在区间[-1,a -2]上单调递增,
求实数a 的取值范围 三.解答题(共70分)
17. (10分)已知命题“∀x ∈R ,x 2-5x +15
2
a >0”的否定为假命题,则实数a 的取值范围.
18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .
(1)求C ;
(2)若c =7,△ABC 的面积为33
2
,求△ABC 的周长.
19.(12分)某高级中学共有学生2 000名,各年级男、女生人数如下表:
高一年级 高二年级
高三年级
女生 373 x y 男生
377
370
z
19. (1)求x 的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
20.(12分)如图,四棱锥P ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.
(1)求证:CE ∥平面PAD .
(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.
21.(12分)等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n ;数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.
(1)求数列{a n }与{b n }的通项公式; (2)求1S 1+1S 2+…+1S n .
22.(12分)如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.
(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.
参考答案
二.填空题;
13. 100 14. 5
15. 1
4π. 16. (1,3]。