半导体器件知识点归纳二

合集下载

半导体器件的基本知识

半导体器件的基本知识

半导体器件的基本知识半导体器件的基本知识,真是个神奇的世界。

咱们常常提到“半导体”,脑海里浮现出那些小小的芯片,觉得它们离我们有点遥远。

其实,半导体就在我们身边,像个无形的助手,让生活变得更加便利。

一、半导体的基本概念1.1 半导体是什么?半导体,简单来说,就是一种介于导体和绝缘体之间的材料。

它们在某些条件下能导电,在其他情况下又不导电。

是不是听上去有点神秘?其实,最常见的半导体材料就是硅。

我们用的手机、电脑,里面的处理器,几乎都离不开硅的身影。

1.2 半导体的特性半导体有很多奇妙的特性,比如它的电导率。

温度变化、杂质掺入,都会影响它的导电性能。

说白了,半导体的电性就像人心一样,瞬息万变。

通过控制这些特性,工程师们可以设计出各种各样的电子器件。

二、半导体器件的类型2.1 二极管咱们来聊聊二极管。

这小家伙看似简单,却是半导体世界的基石。

二极管只允许电流朝一个方向流动。

它就像个单行道,确保电流不走回头路。

常见的应用就是整流器,把交流电转成直流电。

这在生活中非常重要,大家用的手机充电器,就离不开二极管的帮助。

2.2 晶体管接下来是晶体管。

晶体管的发明可谓是科技界的一场革命。

它不仅能放大电信号,还能用作开关,控制电流的流动。

晶体管的出现,让电子产品变得更小、更快。

你知道吗?现代计算机的核心,CPU,里面就有成千上万的晶体管在默默工作。

2.3 其他器件还有很多其他的半导体器件,比如场效应管、光电二极管等。

每种器件都有其独特的用途和应用领域。

它们一起构成了一个复杂而又和谐的生态系统。

可以说,半导体器件的多样性是现代科技发展的动力。

三、半导体的应用3.1 消费电子说到应用,咱们首先想到的就是消费电子。

手机、平板、电视,都是半导体的舞台。

随着科技的进步,半导体技术不断演变,产品功能越来越强大,性能越来越高。

可以说,半导体让我们的生活变得丰富多彩。

3.2 工业应用除了消费电子,半导体在工业中也大显身手。

自动化设备、传感器、控制系统,全都依赖于半导体技术的支持。

半导体物理与器件知识点

半导体物理与器件知识点

半导体物理与器件知识点
一、肖特基势垒二极管
欧姆接触:通过金属-半导体的接触实现的连接。

接触电阻很低。

金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。

之间形成势垒为肖特基势垒。

在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。

影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。

金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。

半导体器件基础

半导体器件基础

自由电子 带负电荷 电子流
载流子
空穴 带正电荷 空穴流 +总电流
6
N型半导体和P型半导体
多余电子
N型半导体
硅原子
【Negative电子】
+4
+4 +4
在锗或硅晶体内
掺入少量五价元素
杂质,如磷;这样
+4
在晶体中就有了多 磷原子 余的自由电子。
+4
+5 +4 +4 +4
多数载流子——自由电子
少数载流子——空穴
不失真——就是一个微 弱的电信号通过放大器 后,输出电压或电流的 幅度得到了放大,但它 随时间变化的规律不能 变。
放大电路是模拟电路中最主要的电路,三极管是 组成放大电路的核心元件。
具有放大特性的电子设备:收音机、电视机、
手机、扩音器等等。
36
利用三极管组成的放大电路,最常用的接法是:基 极作为信号的输入端,集电极作为输出端,发射极 作为输入回路、输出回路的共同端(共发射极接法)
38
饱和工作状态
调节偏流电阻RP的阻值, 使基极电流充分大时,集电 极电流也随之变得非常大, 三极管的两个PN结则都处于 正向偏置。集电极与发射极 之间的电压很小,小到一定 程度会削弱集电极收集电子 的能力,这时Ib再增大, Ic也不能相应地增大了, 三极管处于饱和状态,集电 极和发射极之间电阻很小, 相当开关接通。
27
▪ 几种常见三极管的实物外形
大功率三极管
功率三极管
普通塑封三极管
28
▪ 三极管的分类
① 按频率分
高频管 低频管
硅管 ③ 按半导
体材料分 锗管
② 按功率分

半导体器件复习.

半导体器件复习.

2.组成开关电路及工作原理
〔a〕当be间加上正向电压,cb间加上 反向电压时,三个电极将产生图示方向 的三个电流IB、IC、IE。
IB
VBB VBE Rb
IC=IB
VCE=VCC-ICRc
IE=IC+IB
当Rb↓ IB↑ IC↑ ICRc↑ VCE↓ 0.7V
〔b〕当IB足够大时,三极管可以作开关 运用,其等效电路如图:
输出特性分为三个工作区: 可变电阻区、放大区和夹断区
增加型NMOS管转移特性和输出特性 UT 2V ID0 50A
〔a〕可变电阻区
需要满足的条件是:
U G SU T,U D S U G S U T
此时,沟道未预夹断,沟道较宽, 用一个体电阻等效。
R UI DS
DS
UGSCon.st D
〔b〕放大区 〔恒流区、饱和区〕 工作条件:
三、场效应管的构造、特点与参数
场效应晶体管是电压掌握电流型器件。其工 作电流主要由多数载流子的漂移运动形成, 故又称为单极型晶体管。 依据构造和制造工艺的不同,场效应管分为 两大类:
结型场效应管〔J-FET〕 绝缘栅场效应管〔MOS-FET〕
场效应管的分类:
增强型
N 型 FET
MOSFET
当正极电压高于负极,二极管就 导电,相当于开关闭合,二极管两端 压降为0;当正极电压低于负极,二极 管截止,相当于开关断开。
3. 组成“与”门电路
VA VB DA DB VO 0 0 导电 导电 0 0 3 导电 截止 0 3 0 截止 导电 0 3 3 导电 导电 3
A BO 0 00 0 10 1 00 111
放射结正向偏置,集电结反向偏置—三极 管于放大状态

半导体器件基础知识

半导体器件基础知识

半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。

半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。

用于制作半导体元件的材料通常用硅或锗材料。

(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。

掺入杂质后的半导体称为杂质半导体。

根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。

(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。

它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。

2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。

称这时的PN结处于导通状态。

当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。

称这时的PN结处于截止状态。

当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。

这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。

3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。

导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。

二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。

其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。

以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。

半导体器件基础知识

半导体器件基础知识

半导体器件基础知识目录一、半导体器件概述 (2)1.1 半导体的定义与特性 (3)1.2 半导体的分类 (3)1.3 半导体的应用领域 (4)二、半导体器件基础理论 (5)2.1 二极管 (6)2.1.1 二极管的分类与结构 (8)2.1.2 二极管的特性与应用 (9)2.2 晶体管 (10)2.2.1 晶体管的分类与结构 (11)2.2.2 晶体管的特性与应用 (13)2.3 集成电路 (15)2.3.1 集成电路的分类与结构 (16)2.3.2 集成电路的特性与应用 (18)三、半导体器件制造工艺 (19)3.1 晶圆制备 (20)3.2 淀积与光刻 (21)3.3 蚀刻与退火 (22)3.4 封装与测试 (23)四、半导体器件设计 (24)4.1 设计流程与方法 (24)4.2 特征尺寸与制程技术 (25)4.3 低功耗设计 (27)4.4 高性能设计与优化 (28)五、半导体器件测试与可靠性 (29)5.1 测试方法与设备 (30)5.2 可靠性评估与提升 (32)5.3 环境与寿命测试 (33)六、新兴半导体器件与发展趋势 (34)6.1 量子点半导体器件 (36)6.2 纳米半导体器件 (37)6.3 光电半导体器件 (38)6.4 三维集成与先进封装技术 (39)一、半导体器件概述半导体器件是现代电子工业中的核心组件,它们在各种电子设备中发挥着至关重要的作用。

半导体器件基于半导体材料,如硅(Si)和锗(Ge),这些材料的导电性介于导体和绝缘体之间。

通过控制半导体器件中掺杂离子的浓度和类型,可以实现其电学特性的精确调整,从而满足不同电子系统的需求。

半导体器件广泛应用于放大器、振荡器、开关、光电器件、传感器等多种功能模块。

集成电路(IC)是半导体器件的一种重要形式,它将成千上万的半导体器件紧密地封装在一个微小的芯片上,形成了一个高度集成化的电子系统。

集成电路在计算机、手机、汽车电子等领域的应用尤为广泛,极大地推动了信息技术的发展。

半导体器件 基本知识

半导体器件 基本知识
U
(1-32)
(3)、主要参数 (1)最大整流电流 IOM
二极管长期使用时,允许流过二极管的最大正 向平均电流。
(2)反向击穿电压VBR
二极管反向击穿时的电压值。击穿时反向电流 剧增,二极管的单向导电性被破坏,甚至过热而 烧坏。手册上给出的最高反向工作电压VWRM一般 是VBR的一半。
(1-33)
N中的电子(都是多子)向对方运动 (扩散运动)。 3、P中的电子和N中的空穴(都是少子), 数量有限,因此由它们形成的电流很 小。
(1-26)
2.2 PN结的单向导电性 PN结加上正向电压、正向偏置的意
思是: P区加正、N区加负电压。 PN结加上反向电压、反向偏置的意
思是: P区加负、N区加正电压。
结构特点:
集电区: 面积较大
B 基极
C 集电极
N P N
E 发射极
基区:较薄, 掺杂浓度低
发射区:掺 杂浓度较高
(1-46)
C 集电极
N
B
P基极NFra bibliotekE 发射极
集电结 发射结
(1-47)
4.2 电流放大原理
基区空
穴向发
射区的
扩散可
B
忽略。
进入P区的电子
少 空部穴分复与合R基,B 区形的成 电 扩流散I到BE集E,B电多结数。
(2)电压温度系数U(%/℃) 稳压值受温度变化影响的的系数。
(3)动态电阻
r UZ
Z
I Z
(1-41)
(4)稳定电流IZ、最大、最小稳定电流Izmax、 Izmian。
(5)最大允许功耗
PZM U Z I Z max
(1-42)
3.2 光电二极管 反向电流随光照强度的增加而上升。

半导体器件基本知识

半导体器件基本知识

模拟电路
2009/03
1.2 半导体二极管
结构
二极管 = PN结 + 管壳 + 引线 结
P
N
符号
+
阳极
阴极
模拟电路
2009/03
二极管按结构分三大类: 二极管按结构分三大类:
PN结面积小,结电容小, 结面积小,结电容小, 结面积小 用于检波和变频等高频电路。 用于检波和变频等高频电路。
(1) 点接触型二极管
代表器件的材料, 为 型 , 为 型 , 代表器件的材料,A为N型Ge,B为P型G, C为N型Si, D为P型Si。 为 型 , 为 型 。
2代表二极管,3代表三极管。 代表二极管, 代表三极管 代表三极管。 代表二极管
模拟电路
2009/03
一 、半导体二极管的V—A特性曲线 半导体二极管的 特性曲线
铝金金金 正正正正
负正正正 N型型 型
外外
模拟电路
2009/03
(2) 面接触型二极管
正正正正 P型型 型 铝铝铝铝铝 N型型 型
PN结面积大,用于 结面积大, 结面积大 工频大电流整流电路。 工频大电流整流电路。 用于集成电路制造工艺中。 用于集成电路制造工艺中。 PN 结面积可大可小,用 结面积可大可小, 于高频整流和开关电路中。 于高频整流和开关电路中。
ui − U REF-U D 4V − 2V − 0.7 V I= = = 1.3mA R 1k
I
UREF
+
uO -
u o = U REF + U D = 2V + 0.7V = 2.7V
模拟电路 2009/03
如果u 为幅度± 的交流三角波 波形如图( )所示, 的交流三角波, (2 如果 i为幅度±4V的交流三角波,波形如图(b)所示, 分别采用理想二极管模型和理想二极管串联电压源模型 分析电路并画出相应的输出电压波形。 分析电路并画出相应的输出电压波形。 ui

半导体知识点总结大全

半导体知识点总结大全

半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。

它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。

本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。

一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。

原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。

2. 能带:在固体中,原子之间的电子形成了能带。

能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。

3. 半导体中的能带:半导体材料中,能带又分为价带和导带。

价带中的电子是成对出现的,导带中的电子可以自由运动。

(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。

典型的本征半导体有硅(Si)和锗(Ge)。

2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。

常见的杂质有磷(P)、硼(B)等。

(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。

P型半导体中导电的主要载流子是空穴。

2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。

N型半导体中导电的主要载流子是自由电子。

3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。

4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。

二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。

2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。

3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。

常用半导体器件重点知识

常用半导体器件重点知识

常用半导体器件重点知识在现代电子技术的领域中,半导体器件扮演着至关重要的角色。

从我们日常使用的智能手机、电脑,到工业生产中的各种自动化设备,都离不开半导体器件的应用。

接下来,让我们一同深入了解一些常用半导体器件的重点知识。

首先,我们来谈谈二极管。

二极管是一种最简单的半导体器件,它具有单向导电性。

这意味着电流只能从二极管的正极流向负极,而不能反向流动。

二极管在电路中有着广泛的应用,比如整流电路,它能将交流电转换为直流电。

在电源电路中,二极管常用于防止电流反向流动,起到保护电路的作用。

三极管是另一种常见的半导体器件,它分为 NPN 型和 PNP 型。

三极管的主要作用是放大信号和作为电子开关。

当三极管工作在放大区时,小的基极电流变化可以引起较大的集电极电流变化,从而实现信号的放大。

而在开关状态下,三极管可以快速地导通和截止,控制电路的通断。

场效应管也是常用的半导体器件之一,它分为结型场效应管和绝缘栅型场效应管。

与三极管相比,场效应管具有输入电阻高、噪声低、功耗小等优点。

在集成电路中,场效应管得到了广泛的应用。

接下来要说的是集成电路。

集成电路是将多个半导体器件和电路元件集成在一块芯片上的电子器件。

它极大地提高了电路的性能和可靠性,减小了电路的体积和重量。

集成电路的发展使得电子设备变得越来越小巧、功能越来越强大。

在了解这些半导体器件的基本原理后,我们还需要知道它们的特性参数。

对于二极管,重要的参数有正向压降、反向击穿电压、最大整流电流等。

三极管的特性参数包括电流放大倍数、集电极发射极击穿电压、集电极最大允许电流等。

而场效应管的特性参数有开启电压、跨导、漏极饱和电流等。

在实际应用中,选择合适的半导体器件非常重要。

需要根据电路的工作条件、性能要求、成本等因素进行综合考虑。

例如,在高频率的电路中,通常会选择性能较好的场效应管;而在一些对成本要求较为严格的电路中,可能会选择价格相对较低的三极管。

此外,半导体器件的封装形式也会影响其性能和使用。

半导体器件的基本知识

半导体器件的基本知识

半导体器件的基本知识
半导体器件是一种利用半导体材料制成的电子元件,具有电流控制和电压放大的特性。

在半导体器件中,最常见的是二极管和晶体管。

一、二极管
二极管是一种由P型半导体和N型半导体组成的电子元件,具有单向导电性。

当二极管的正极连接正电压时,P型半导体中的空穴向N型半导体中的电子流动,形成电流;当二极管的正极连接负电压时,P型半导体中的空穴被吸收,N 型半导体中的电子也被吸收,电流被截止。

二、晶体管
晶体管是一种由P型半导体、N型半导体和中间夹层组成的电子元件,具有电流放大和控制的特性。

晶体管的夹层被称为基区,当基区加上正电压时,P型半导体中的空穴向基区流动,N型半导体中的电子向基区流动,形成电流;当基区加上负电压时,P型半导体中的空穴被吸收,N型半导体中的电子也被吸收,电流被截止。

晶体管的电流放大是通过控制基区电压来实现的。

三、场效应管
场效应管是一种利用场效应原理制成的电子元件,具有电流放大和控制的特性。

场效应管的主要部分是栅极和源极之间的沟道,当栅极加上正电压时,沟道中的电子会被吸引到栅极附近,形成导电通道,电流得以通过;当栅极加上负电压时,
沟道中的电子被排斥,导通被截止。

四、集成电路
集成电路是一种将多个半导体器件集成在一起的电子元件,可以实现多种功能。

集成电路的制造需要先在单晶硅片上形成多个半导体器件,然后通过金属线连接这些器件,形成一个完整的电路。

集成电路的种类很多,包括数字集成电路、模拟集成电路、混合集成电路等。

以上是半导体器件的基本知识,半导体器件的应用非常广泛,涉及到电子、通讯、计算机、医疗、汽车等领域。

半导体器件重要知识点总结

半导体器件重要知识点总结

半导体器件重要知识点总结一、半导体基础知识1. 半导体的概念及特性:半导体是指导电性介于导体和绝缘体之间的一类材料。

由于半导体材料的导电性能受温度、光照等外部条件的影响比较大,它可以在不同的条件下表现出不同的导电特性。

半导体材料常见的有硅、锗等。

2. P型半导体和N型半导体:P型半导体是指在半导体材料中掺入了3价元素,如硼、铝等,使其成为带正电荷的空穴主导的半导体材料。

N型半导体是指在半导体材料中掺入了5价元素,如磷、砷等,使其成为自由电子主导的半导体材料。

3. 掺杂:半导体器件在制造过程中一般都要进行掺杂,以改变其导电性能。

掺杂分为N型掺杂和P型掺杂,通过掺杂可以使半导体材料的导电性能得到调控,从而获得所需要的电子特性。

4. pn结:pn结是指将P型半导体和N型半导体直接连接而成的结构,它是构成各类半导体器件的基础之一。

pn结具有整流、发光、光电转换等特性,在各类器件中得到了广泛的应用。

二、半导体器件的基本知识1. 二极管(Diode):二极管是一种基本的半导体器件,它采用pn结的结构,在正向偏置时可以导通,而在反向偏置时则将电流阻断。

二极管在各类电子电路中具有整流、电压稳定、信号检测等重要作用。

2. 晶体管(Transistor):晶体管是一种由半导体材料制成的三电极器件,它采用多个pn结的结构,其主要功能是放大信号、开关电路和稳定电路等。

晶体管在各类电子器件中扮演着至关重要的作用,是现代电子技术的重要组成部分。

3. 集成电路(IC):集成电路是将大量的半导体器件集成在一块半导体芯片上的器件,它可以实现各种功能,如存储、计算、通信等。

集成电路在现代电子技术中已成为了各类电子产品不可或缺的一部分,是现代电子产品的核心之一。

4. MOS场效应管(MOSFET):MOSFET是一种基于金属-氧化物-半导体的结构的场效应晶体管,它在功率控制、开关电路、放大器等方面有着重要的应用。

MOSFET在各类电源、电动机控制等领域得到了广泛的应用。

半导体主要知识点总结

半导体主要知识点总结

半导体主要知识点总结一、半导体的基本概念1.1半导体的定义与特点:半导体是介于导体和绝缘体之间的一类材料,具有介于导体和绝缘体之间的电阻率。

与导体相比,半导体的电阻率较高;与绝缘体相比,半导体的电子传导性能较好。

由于半导体具有这种特殊的电学性质,因此具有重要的电子学应用价值。

1.2半导体的晶体结构:半导体晶体结构通常是由离子键或共价键构成的晶体结构。

半导体的晶体结构对其电学性质有重要的影响,这也是半导体电学性质的重要基础。

1.3半导体的能带结构:半导体的电学性质与其能带结构密切相关。

在半导体的能带结构中,通常存在导带和价带,以及禁带。

导带中的载流子为自由电子,价带中的载流子为空穴,而在禁带中则没有载流子存在。

二、半导体的掺杂和电子输运2.1半导体的掺杂:半导体的电学性质可以通过掺杂来调控。

通常会向半导体中引入杂质原子,以改变半导体的电学性质。

N型半导体是指将少量的五价杂质引入四价半导体中,以增加自由电子的浓度。

P型半导体是指将少量的三价杂质引入四价半导体中,以增加空穴的浓度。

2.2半导体中的载流子输运:在半导体中,载流子可以通过漂移和扩散两种方式进行输运。

漂移是指载流子在电场作用下移动的过程,而扩散是指载流子由高浓度区域向低浓度区域扩散的过程。

这两种过程决定了半导体材料的电学性质。

三、半导体器件与应用3.1二极管:二极管是一种基本的半导体器件,由N型半导体和P型半导体组成。

二极管具有整流和选择通道的功能,是现代电子设备中广泛应用的器件之一。

3.2晶体管:晶体管是一种由多个半导体材料组成的器件。

它通常由多个P型半导体、N型半导体和掺杂层组成。

晶体管是目前电子设备中最重要的器件之一,具有放大、开关和稳定电流等功能。

3.3集成电路:集成电路是将大量的电子器件集成在一块芯片上的器件。

它是现代电子设备中最重要的组成部分之一,可以实现各种复杂的功能,如计算、存储和通信等。

3.4发光二极管:发光二极管是一种将电能转化为光能的半导体器件,具有高效、省电和寿命长的特点。

半导体器件物理II必背公式+考点摘要

半导体器件物理II必背公式+考点摘要

半二复习笔记1.1MOS结构1.费米势:禁带中心能级(EFi)与费米能级(EF)之差的电势表示2.表面势:半导体表面电势与体内电势之差,体内EFi和表面EFi之差的电势表示3.金半功函数差4.P沟道阈值电压注意faifn是个负值1.3 MOS原理1. MOSFET非饱和区IV公式2. 跨导定义:VDS一定时,漏电流ID随VGS变化率,反映了VGS 对ID 的控制能力3. 提高饱和区跨导途径4.衬底偏置电压VSB>0,其影响5. 背栅定义:衬底能起到栅极的作用。

VSB变化,使耗尽层宽度变化,耗尽层电荷变化;若VGS不变,则反型沟道电荷变化,漏电流变化1.4 频率特性1. MOSFET频率限制因素:①沟道载流子的沟道运输时间(通常不是主要的限制因素)②栅电容充放电需要时间2. 截止频率:器件电流增益为1时的频率高频等效模型如下:栅极总电容CG看题目所给条件。

若为理想,CgdT为0,CgsT约等于Cox,即CG=Cox;非理想情况即栅源、栅漏之间有交叠,产生寄生电容:①CgdT的L为交叠部分长度②CgsT的L为L+交叠部分长度(CgsT=Cgs+Cgsp)。

3. 提高截止频率途径1.5 CMOS1.开关特性2.闩锁效应过程2.1 非理想效应1. MOSFET亚阈特性①亚阈值电流:弱反型态:势垒较低→电子有一定几率越过势垒→形成亚阈值电流②关系式:③注:若VDS>4(kT/e),最后括号部分≈1,IDsub近似与VDS无关④亚阈值摆幅S:漏电流减小一个数量级所需的栅压变化量,S是量化MOS管能否随栅压快速关断的参数。

⑤快速关断:电流降低到Ioff所需VGS变化量小。

因此S越小越好⑥亚阈特性的影响:开关特性变差:VGS=0时不能理想关断;静态功耗增加⑦措施:提高关断/待机状态下器件的阈值电压VT(如通过衬底和源之间加反偏压,使VT增加)、减小亚阈值摆幅2. 沟长调制效应(VDS↑⇒ID↑)①机理理想长沟:L`≈L,导电沟道区的等效电阻近似不变,饱和区电流饱和;实际器件(短沟):L` <L ,导电沟道区的等效电阻减小,ID增加,②夹断区长度③修正后的漏源电流④影响因素衬底掺杂浓度N 越小⇒ΔL的绝对值越大⇒沟道长度调制效应越显著;沟道长度L越小⇒ΔL的相对值越大⇒沟道长度调制效应越显著3. 迁移率变化①概念:MOSFET载流子的迁移率理想情况下:近似为常数;实际受沟道内电场的影响,迁移率非常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、双极结型晶体管
1、BJT的分类
代表工艺、名称、代表类型
2、偏压与工作状态
各种偏压与所对应的工作状态、模拟电路和数字电路应用
3、少子浓度分布与能带图
各个区的少子浓度分布
均匀基区和缓变基区各种工作状态下的能带图画法
4、放大系数
放大电路的两种基本类型:共基极和共发射极
两种基本类型下的直流短路电流放大系数和静态电流放大系数的定义及其计算
两类放大系数间的关系及其典型范围
5、基区输运系数
基区输运系数的定义及近似计算公式
6、基区渡越时间
基区渡越时间的定义及其计算公式
计算公式中各表达式的物理意义
7、发射结注入效率
发射结注入效率的定义及其计算公式
8、缓变基区晶体管的电流放大系数
自建场因子(基区漂移系数)的概念
缓变基区晶体管的基区输运系数、基区渡越时间、发射结注入效率、电流放大系数与均匀基区大致相同,注意区分即可
9、小电流时放大系数的下降
解释产生该现象的原因
10、发射区重掺杂效应
解释其现象、原因及减轻措施
11、BJT的直流电流电压方程
共基极和共发射极的直流电流电压方程
倒向晶体管的概念
倒向晶体管放大系数比正向晶体管小的多的原因
倒向晶体管和正向晶体管的互易关系
12、BJT的直流输出特性
熟悉集电极电流的推导
共基极和共发射极输出特性图
13、基区宽度调变效应
厄尔利效应产生的现象
厄尔利电压的定义及其计算
减小厄尔利效应的方法
14、BJT反向特性
浮空电势的概念
三种反向电流的定义与测量及他们之间的相互关系(物理图像)
共基极和共发射极接法的雪崩击穿电压的定义及测量
发射结击穿电压
15、基区穿通效应
基区穿通电压的计算
基区穿通效应对BJT反向特性的影响
16、基极电阻
基极电阻的定义
基极电阻的主要组成
方块电阻的定义及其计算
17、大注入效应
稍微了解,基本同PN结
大注入效应对电流放大系数的影响
18、基区扩展效应
基区扩展(Kirk)效应的定义
基区扩展效应对电流放大系数的影响
19、基区输运系数与频率的关系
渡越时间的三个作用
基区输运系数的准确表达式(包括缓变基区)
20、四个主要时间常数
发射结势垒电容充放电时间常数(影响注入效率)
发射结扩散电容充放电时间常数(基区渡越时间,影响基区输运系数)
集电结耗尽区延迟时间
集电结势垒电容经集电区充放电的时间常数
理解定义及物理意义
21、晶体管电流放大系数与频率的关系
共基极和共发射极高频小信号下短路电流放大系数及其截止频率
截止频率的定义
22、高频晶体管特征频率的定义、计算与测量
23、高频小信号电流电压方程
共基极和共射极高频小信号下的电流电压方程,理解公式中各符号意义及其表达式小信号等效电路示意图
24、高频晶体管最大功率增益与最高震荡频率
最大功率增益的定义及计算
高频优值的定义及计算
最高震荡频率的定义及计算
理解的基础上记住公式为主,不要求推导
25、影响特征频率与功率增益的因素
对高频晶体管结构的基本要求:浅结、细线条、无源基区重掺杂、N+沉底上生长N-外延层
第三部分的知识点比较繁多而且是考试重点,在理解内容的基础上多总结,对比各个知识点总结出规律,得出相关结论。

相关文档
最新文档