自准直平行光管

合集下载

(光学测量技术)第2章常用光学测量仪器及基本部件

(光学测量技术)第2章常用光学测量仪器及基本部件
一、 平行光管的光学原理图 图 2.1 所示为典型的平行光管光学原理图。
图 2.1 典型的平行光管光学原理图
第2章 用光学测量仪器及基本部件 二、 平行光管的基本结构及主要组成部分 图 2.2 所示为国内常用的 CPG — 550 型平行光管光路
结构示意图,并附有高斯目镜和可调式平面反射镜。
图 2.2 CPG — 550 型平行光管结构示意图
第2章 用光学测量仪器及基本部件
1. 物镜 物镜是平行光管中起折光作用的元件。它把自分划板上 的物点发出的发散光束变成平行光束射出,从而给出无限远 的“点”目标,即把有限远的物转化为无限远的目标。
第2章 用光学测量仪器及基本部件
根据使用要求的不同,物镜有多种形式,例如:孔径较 小,要求不太高时,使用一般的双胶合物镜;当孔径较大时, 胶合很困难,一般用双分离的形式,即两片互相分离的镜片 构成物镜;在某些应用场合,希望能调节(改变)物镜的焦距, 就要设计可调焦距物镜;对于要求较高的物镜,同时要求复 消色差,这时使用复消色差物镜;当要求大视场时,则可使 用照相物镜作为平行光管的物镜;在某些要求特大孔径、长 焦距的情况下,透射式常难于实现,就可采用反射面作为物 镜,即所谓的反射物镜。
第2章 用光学测量仪器及基本部件
1. 自准直法的调校原理 用自准直法调校平行光管,是将平行光管的分划板配上 带有分划板照明装置的目镜构成所谓自准直目镜(见 2.2 节), 该自准直目镜和平行光管物镜就构成了自准直前置镜。将 该准直前置镜对向一个标准平面反射镜,并用分划板的分划 对反射像调焦,实现自准直,从而达到校正的目的。其原理 见图 2.4 。 调焦完毕,就认为平行光管已调校好。
自准直法有较高的精度,并且除了标准平面反射镜外, 不需要其它标准设备,而在通常的孔径下,标准平面反射镜 也是不难找到的,因此自准直法是平行光管调校中的重要方 法。

试验一平行光管调校

试验一平行光管调校

实验一 平行光管调校一. 实验目的1. 了解平行光管的结构及工作原理,掌握平行光管的调整方法。

2. 了解利用自准直法、五角棱镜法调校平行光管的原理,并熟练掌握它们的调校方法。

3. 分析自准直法、五角棱镜法的调校误差,并比较这两种方法的优缺点。

二. 测量原理和方法平行光管是最基本的测试设备,用来提供无限远的目标或给出一束平行光。

其外貌如图1所示。

平行光管使用时,因测试的需要,常常要换上不同的分划板(平行光管常用分划板如图2所示),每次更换后都必需对平行光管进行调校。

包括两个方面的调校,1.纵向调校,其目的是使平行光管分化板的刻线面准确地调整到平行光管物镜的焦面位置上。

2.横向调校,其目的是调整十字分划板中心在平行光管主光轴上。

图 1 平行光管外貌1. 纵向调校。

调整分划板座的中心使其位于平行光管的主光轴上,且使分划板严格位于物镜的焦平面上。

实现该调校方法很多,这里只介绍最常见的两种方法:自准直法和五角棱镜法。

(1)自准直法将待调校的平行光管的分划板座上装上一十字分划板,并在该分划板后面配置一自准直目镜,这时由平行光管和自准直目镜一起构成自准直望远镜。

调校时,在平行光管物镜前放置一个平面度良好的平面反射镜,如图3所示。

人眼通过自准直目镜观察分划板和由平面镜反射回来的分划板的像,当人眼判断分划板和分划板的像在纵向(即平行光管的分划板图2十字分划板)(a 号鉴别率板2)(b 玻罗板)(e 号鉴别率板3)(c 星点板)(d 插头变压器 照明灯座 分划板调节螺钉 镜管底座 十字旋手 物镜组 .8.7.6.5.4.3.2.1光轴方向)一致时,则认为平行光管已调校好。

4-平行光管分划板 5-自准直目镜(2)五角棱镜法不同方向入射的光线,经五角棱镜后,其出射光线相对于入射光线转折90°。

五角棱镜法即是利用这一特点对平行光管进行调校的,调校原理如图4所示。

将五角棱镜放置在平行光管物镜前的工作台上,五角棱镜可在工作台上平滑地移动。

第四章 校正用的基本光学工具

第四章 校正用的基本光学工具
综合考虑分辨率、视放大率和数值孔径之间的关系。 读数显微镜必须根据测量精度的要求,规定显微镜的
放大率精度。
§ 4.6象限仪和水准仪
在产品的装校过程中,有时需要利用与水 平面有一定关系的基准来作为装配基准, 下面介绍两种确定与水平基准有关的仪器, 象限仪和水准仪。
一、光学象限仪
象限仪是用来确定某一基准面与水平面倾角的仪器,其原理如图 4-20所示。水准器1固定在回转刻度盘2上,度盘周围刻有 ±120°分划,格值为1′。回转刻度盘2的回转轴与基体3配合, 基体3上有指标。当水泡居中并指示的角度值为零时,则基体3的 基准面与水准器的轴线(即水平线)平行。当需要确定某一基面与 水平线夹角为a时,可先将象限仪的指标指示a角,再把象限仪放 在需要确定的基准面上,然后调整此面使象限仪的水泡居中,此 时,被确定的基准面的位置即达到要求。 图4-21表示基准面4与水准器夹角为a。 上述象限仪属于金属度盘式,它的读数精度不高。这种象限仪一 般用在要求不高的校正工作中。
二、水准仪
水准仪一般在大地测 量中测量高差用,而 在产品的装校中,则 用来给出一个水平基 准。
水准仪的基本构造如 图4-24所示。
图4-25为简单水准 仪的光学系统原理图。
上述系统属于最简单的内调焦式水准仪光学系统,对于要求高的精密水准仪 的光学系统,还要在系统中配备测微平板玻璃,作为补偿读出高差尾数之用。 为了读出高差尾数,在镜内配有显微系统和刻尺。并采用“符合水泡”。所 谓“符合水泡”就是通过棱镜系统把水泡反射象纵向分成两半,再将两端的 象并列。当水准器居中时,水泡两端反射象就对齐(即符合),如图4-26(a) 所示,图中(b)表示水泡反射象未符合,说明水准器未安平。由于人眼横向对 准精度高,这种结构提高了安平精度。

平行光管仪器内校指导书

平行光管仪器内校指导书

平行光管仪器内校指导书
平行光管是用于测量光的偏振方向和强度的仪器。

校准平行光管的目的是确定其准确性和精度,确保测量结果的可靠性。

以下是平行光管仪器内校的指导书的一般内容:
一、引言:
1.介绍平行光管的作用和原理,以及校准的目的和重要性。

二、设备准备:
1.列出所需的校准设备,如光源、偏振片、光探测器等。

2.检查设备的完整性和正常运行,确保校准的准确性。

三、校准步骤:
1.第一步:设置透射方向
⏹使用光源放置一个光强恒定的透射方向。

⏹调整透射方向直到光线平行且垂直于平行光管的方向。

2.第二步:测量和记录光强
⏹选取标准光源,将其透射至平行光管中。

⏹使用光探测器测量不同偏振状态下的光强,并记录测量
结果。

3.第三步:校准光路
⏹使用偏振片逐渐旋转,记录每个旋转位置下的光强变化。

⏹将记录的光强与旋转角度建立光强与偏振角的对应关系。

四、数据处理与分析:
1.统计所有的测量数据,并计算平均值、标准差等统计量。

2.分析结果,确保校准结果符合设备规格和要求。

五、结果和结论:
1.总结校准的结果和数据分析,得出关于平行光管性能的结论。

2.如果需要进行调整或修理,提供相应的建议和措施。

六、安全注意事项:
1.列出在校准过程中应注意的安全事项,如避免直接观察强光、
规避电击风险等。

七、参考文献和附录:
1.列出使用的参考文献和相关资料,并提供所需公式和图表的
附录。

在编写指导书时,应根据具体的平行光管型号、设备要求和校准流程进行修改和调整。

实验三自准直法测量透镜焦距实验

实验三自准直法测量透镜焦距实验
轮上读取
竖线为基准线,测 量时,竖线对准读 数,数值均在鼓轮 上读取。注意:整
数位是反的。
10 5 0
4.059mm (a)
5 10
70 75 80
3.737mm (b)
实验仪器
(1) 测量时,鼓轮应沿同一方向旋转,不得中途反向,以避免空
(2) 被测量物的线度方向必须与基准线方向平行,否则会引入系
组线对,各线对间距名义值分别是:1mm, 2mm,4mm,10mm,20mm。
实验仪器
(二)
带测微装置的目镜,由目镜、 可动分划板、读数鼓轮与连接装置等组成。目 镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高 测量准确程度。旋转鼓轮,刻有十字叉丝的可动分划板就可以左右移动。它的位 置可以在外面直接读出。测量时,应先调节目镜,看清楚叉丝,然后转动鼓轮, 使基准线与被测物的像的一端重合,便可得到一个读数。再转动鼓轮,使基准线 与被测物像的另一端重合,又可得到一个读数。两读数之差,即被测物的尺寸。 实验中用两种测微目镜,如图示。
实验三 利用平行光管测量透镜焦距
实验目的和教学要求 实验仪器 实验原理 实验内容与步骤 思考题
实验目的和教学要求
了解平行光管的结构,掌握平行光管的 学习使用平行光管测定薄透镜的焦距。
实验仪器
2
4
5
6
13
7 8
1.物镜组 2.十字旋手 3.底座 4.镜管
5.分划板调节螺钉 6.照明灯座 7.变压器 8.插头
2)将玻罗板放入平行光管中,罩上直筒形光源。 3)转动测微目镜的调节螺丝,直到从测微目镜里面能看到清晰
的叉丝或标尺为止。 4)前后移动凸透镜,使被测凸透镜在平行光管中的玻罗板成像

平行光管法测量透镜焦距研究性报告

平行光管法测量透镜焦距研究性报告

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载平行光管法测量透镜焦距研究性报告地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容【目录】TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc374486357" 【目录】 PAGEREF _Toc374486357 \h 1HYPERLINK \l "_Toc374486358" 【摘要】 PAGEREF_Toc374486358 \h 2HYPERLINK \l "_Toc374486359" 【关键词】 PAGEREF_Toc374486359 \h 2HYPERLINK \l "_Toc374486360" 【Summary】 PAGEREF_Toc374486360 \h 2HYPERLINK \l "_Toc374486361" 【Key words】 PAGEREF_Toc374486361 \h 2HYPERLINK \l "_Toc374486362" 一、【实验目的】 PAGEREF _Toc374486362 \h 3HYPERLINK \l "_Toc374486363" 二、【实验原理】 PAGEREF _Toc374486363 \h 3HYPERLINK \l "_Toc374486364" 1.测量凸透镜的焦距 PAGEREF _Toc374486364 \h 4HYPERLINK \l "_Toc374486365" 2.测量凹透镜的焦距 PAGEREF _Toc374486365 \h 4HYPERLINK \l "_Toc374486366" 三、【实验仪器】 PAGEREF _Toc374486366 \h 5HYPERLINK \l "_Toc374486367" 四、【实验步骤】 PAGEREF _Toc374486367 \h 5HYPERLINK \l "_Toc374486368" 1.等高共轴调节 PAGEREF_Toc374486368 \h 5HYPERLINK \l "_Toc374486369" 2.测量凸透镜的焦距 PAGEREF _Toc374486369 \h 6HYPERLINK \l "_Toc374486370" 3.测量凹透镜的焦距 PAGEREF _Toc374486370 \h 6HYPERLINK \l "_Toc374486371" 五、【数据记录与处理】PAGEREF _Toc374486371 \h 6HYPERLINK \l "_Toc374486372" 1.测量L1凸透镜的焦距 PAGEREF _Toc374486372 \h 6HYPERLINK \l "_Toc374486373" 2.测量L2凸透镜的焦距 PAGEREF _Toc374486373 \h 8HYPERLINK \l "_Toc374486374" 3.测量凹透镜的焦距 PAGEREF _Toc374486374 \h 9HYPERLINK \l "_Toc374486375" 六、【原始数据图片】 PAGEREF _Toc374486375 \h 11HYPERLINK \l "_Toc374486376" 七、【误差分析】 PAGEREF _Toc374486376 \h 11HYPERLINK \l "_Toc374486377" 八、【实验经验】 PAGEREF _Toc374486377 \h 12HYPERLINK \l "_Toc374486378" 1.调节等高共轴: PAGEREF_Toc374486378 \h 12HYPERLINK \l "_Toc374486379" 2.测量凸透镜焦距: PAGEREF_Toc374486379 \h 13HYPERLINK \l "_Toc374486380" 3.测量凹透镜焦距: PAGEREF_Toc374486380 \h 13HYPERLINK \l "_Toc374486381" 九、【实验仪器与方法的改进建议】 PAGEREF _Toc374486381 \h 13HYPERLINK \l "_Toc374486382" 1.实验仪器的改进建议 PAGEREF _Toc374486382 \h 13HYPERLINK \l "_Toc374486383" 2.实验方法的改进建议 PAGEREF _Toc374486383 \h 13HYPERLINK \l "_Toc374486384" 十、【感想与总结】 PAGEREF _Toc374486384 \h 15HYPERLINK \l "_Toc374486385" 【参考文献】 PAGEREF_Toc374486385 \h 16【摘要】透镜是光学仪器中最重要、最基本的元件,由玻璃材料(如玻璃、塑料、水晶等)制作而成,光线通过透镜反射后可以成像。

第二章自准直仪-文档资料

第二章自准直仪-文档资料
图2-13为测量两端面A与B平行度的示意图。 两端面平行度的测量还可按图2-14所示。
2、两内表面平行度的测量 图2-15为测量两内表面的平行度示意图。
31
图2-13 测量两端面平行度之一
1—平直度检查仪; 2—反射镜
两次读数之差,即为两端面的平行度误差。
32
图2-14 测量两端面平行度之二
1—平直度检查仪;2—反射镜
缺 点: 是结构比较复杂,亮度损失较大(介于前两者之 间)。
12
图2-5 双分划板型光学系统 1-物镜;2-指示分划板;3-立方直角棱镜;4-刻度分划板
若平面反射镜对光轴有偏转,将引起自准直像偏离十字 线,由测微机构测出其偏离量,即可得出反射镜对光轴的偏 转角。
13
第三节 HYQ—03型自准直仪
17
(二)测微原理
仪器的f物为400mm,测微螺杆12的螺距和固定分划 板9上刻线的分度间隔都是0.4mm,即测微螺杆每转一圈, 活动分划板10上的长刻线在固定分划板9的刻度上移动一 格,其对应的反射镜的倾角α为:
t

0.4

1
弧度
2f物 2400 2000
18
和测微螺杆12同轴相连的测微鼓轮13上有100格圆周 刻度,每格代表反射镜的倾角α为0.005/1000弧度。
图中1~4组成了测微目镜部件,测量前可松开定位螺钉 5,由于两锥孔在圆周上互成90o ,可使整个目镜头就可精 确地转过90o。
(三)体外反射镜结构 体外反射镜是仪器的重要组成部分。 如图2—10所示 调整三个调节螺钉6将反射镜调整到严格垂直于镜座面
的位置上。
21
图2-9 平直度检查仪结构
1-测微鼓轮;2-活动分划板;3-目镜;4-固定分划板;5-定位螺钉; 6-十字线分划板(带保护玻璃);7-滤光片;8-光源;9-立方直角棱镜;

实验三 自准直法测量透镜焦距实验 PPT

实验三 自准直法测量透镜焦距实验 PPT
(3) 被测量物的像与基准线重合,不能存在视差 (4) 虽然测微目镜测量范围为0~10mm,但一般测量应尽量控制
在1~9mm范围内进行,以保护测微装置的准确度,切忌读 出负值。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
实验原理
焦距测量原理图:
物镜
待测透镜
待测透镜焦距:
f1
h1 h
5W-F550型平行光管的结构图
测微目镜 分划板
实验仪器
(一) 平行光管主要是用来产生平行光束的光学仪器,若配用不同 的分划板,并选用读数显微镜或测微目镜 ,可以测定光学 系统的焦距、分辨率及其成像质量。光源发出的光经聚光镜
会聚与分光板反射后均匀照亮分划板。当分划板位于物镜的焦面 上时,分划板的像在物镜像空间的无穷远处 ,即由平行光管发出
轮上读取
竖线为基准线,测 量时,竖线对准读 数,数值均在鼓轮 上读取。注意:整
数位是反的。
10 5 0
4.059mm (a)
5 10
70 75 80
3.737mm (b)
实验仪器
(1) 测量时,鼓轮应沿同一方向旋转,不得中途反向,以避免空
(2) 被测量物的线度方向必须与基准线方向平行,否则会引入系
板线对像的线间距(测量值)。
4 B
3
2
1 A'
A f1'
'
B'
f'
1.玻罗板 2.平行光管物镜 3.被测凸透镜 4.测微目镜
思考
如果将测微目镜换成测量显微镜, 测量公式如何?
f1
h1
h
f
实验内容与步骤
(一)实验中平行光管已调整好,不再需要调节。--请验证。 (二)测量凸透镜的焦距

常用检测工具

常用检测工具

平行光管种类 (1)常用平行光管: 物镜(胶合、非胶合、球面反射镜) 焦距:500~2000mm 主要用于检定望远仪器的分辨率及视差的调整。 550型平行光管如图

2
4
5
6
7
1
8 3
1.物镜组 2.十字旋手 3.底座 4.镜管 5.分划板调节螺钉 6.照明灯座 7.变压器 8.插头
a
a
分划板 照明棱镜
(二)阿贝式自准直目镜(阿贝目镜)

阿贝目镜的分划板形式之一如图所示,分划板的中心 位于光轴上,透光十字线与十字刻线对称位于此中心 的两侧,如果平面镜垂直于光轴,从目镜将看到亮十 字线自准像中心与十字刻线中心重合,图中虚线表示 照明棱镜的位置。
a
a
分划板 照明棱镜


阿贝目镜的特点是射向平面镜的光线不能沿其法线入 射,否则看不到亮十字线像。阿贝目镜大大改善了像 的对比度,且目镜结构紧凑,焦距较短,容易做成高 倍率的自准直仪。 主要缺点是直接瞄准目标时的视轴(十字刻线中心与 物镜后节点连线)与自准直时平面镜的法线不重合, 且视场部分被遮挡。
一、平行光管(准直仪) 作用 提供无限远的目标或给出一束平行光。 组成 望远物镜(或照相物镜)和安置在物镜 焦面上的分划板。 物镜和分划板由镜筒连接在一起,焦距1000mm以上的 平行光管一般都带有伸缩筒,分划板装在伸缩筒一端, 另一端滑配合装入大镜筒内,伸缩筒的滑动量即分划 板离开焦面的距离,该距离可由伸缩筒上的刻度给出, 移动伸缩筒即能给出不同远近距离的分划像(目标)。
平面镜
物镜
分划板
分束镜
光源
目镜
(一)五棱镜法调校平如何,出射光线总是相对于它的入射光线折转 90°,即始终互相垂直,五棱镜法正是利用这个特 点来达到准确调校的目的。调校原理如图所示:

自准直仪

自准直仪
22
1--反射镜; 反射镜; 反射镜 2--可动板; 可动板; 可动板 3--压圈; 压圈; 压圈 4--反射镜座; 反 5--球头螺钉; 球头 6--调节螺钉 调节螺钉 共三个) (共三个)
图2-10 体外反射镜结构
23
三、仪器的操作与使用
(一)操作过程 1、将仪器主体放置在被测件的一端或被测件以外稳固 的基础上,反射镜座放在被测件上, 的基础上,反射镜座放在被测件上,并且要与仪器主体在同 一水平面内; 一水平面内 2、接通电源后,将反射镜座靠近自准直仪的主体, 接通电源后,将反射镜座靠近自准直仪的主体, 使反射镜正对物镜,使十字线像出现在目镜视场的正中或附 使反射镜正对物镜 使十字线像出现在目镜视场的正中或附 近; 3、仔细地沿测量方向移动反射镜座,在各预定测量 仔细地沿测量方向移动反射镜座, 位置上读数,并进行数据处理。 位置上读数,并进行数据处理。
S = 0.001mm = 1µm

0.005 B = 100mm, α = 1000
S = 0.0005mm = 0.5µm
25
2、关于仪器的分度值 、
在仪器说明书中有表示为( 在仪器说明书中有表示为(≈1秒)。仪器物镜的焦距 )。仪器物镜的焦距 f物为400mm,其分度值i应为 物为400mm,其分度值i 400mm
10
图2-4 阿贝型光学系统 1-物镜;2-分划板;3-棱镜;4-光源;5-反射镜 物镜; 分划板; 棱镜; 光源; 若平面反射镜对光轴产生微小转角α 若平面反射镜对光轴产生微小转角 ,则十字线像将 发生偏离,偏离量可从刻度尺上读出。 发生偏离,偏离量可从刻度尺上读出。
11
三、双分划板型自准直仪
应用自准直光管的工作原理, 应用自准直光管的工作原理,再加上测微机构而设计 制造的计量仪器,被称之为自准直仪。 制造的计量仪器,被称之为自准直仪。 自准直仪 只要用自准直仪的测微机构测出上式中距离t,就可得 只要用自准直仪的测微机构测出上式中距离t,就可得 t, 出反射镜的角度变化值。 出反射镜的角度变化值。这就是自准直仪测量微小角度的基 本原理。 本原理。

《自准直仪》PPT课件

《自准直仪》PPT课件

ppt课件
5
第二节 自准直仪的三种基本光学系统
自准直仪通常由三部分组成:
1.体外反射镜 2.物镜光管部件 3.测微目镜部件 由于分划板和各个光学元件的位置、结构不同,自 准直仪有以下三种基本光路。
ppt课件
6
一、高斯型自准直仪
(一)光路原理 如图2—3所示,
如果反射镜严格与光轴垂直,则十字线在分划板上所 成的像与原来的十字线完全重合。若反射镜有一微小转角 α ,则十字线 的像将偏离原来的十字线,其偏离量的大小 可 从测微目镜6中读出。
ppt课件
18
和测微螺杆12同轴相连的测微鼓轮13上有100格圆周 刻度,每格代表反射镜的倾角α为0.005/1000弧度。
当十字线像偏离刻度“10”时,如图2—7(b),可转 动测微鼓轮13,使长刻线再次夹在十字线象的正中如图 2—7(c)。长刻线移动的距离,即十字线象的偏离量。
ppt课件
19
二、仪器基本结构
第二章 自 准 直 仪
学习目标:
1.熟悉自准直测量原理; 2.了解自准直仪的三种基本光学系统; 3.熟悉平直度检查仪的光路原理与测微原理, 在此基础上,了解光电自准直仪和激光准直仪的 基本工作原理; 4.结合实训,掌握平直度检查仪的操作使用。
ppt课件
1
仪器用途:
自准直仪是一种光学测角仪器它是利用光学自准 直原理来观测目标位置的变化,广泛应用于直线度和 平面度的测量。
图2—2为自准直光管的工作原理:
ppt课件
3
图2-2 自准直光管的工作原理
十字线与其倒像之间将错开距离t为:
tf tan 2
t---称为偏离量 当α很小时,
t 2f
ppt课件
4

自准直仪ppt课件

自准直仪ppt课件
15
求偏离量t:
见图2—7 当反射镜8严格垂直于光轴时,十字线成像在固定分划 板9的正中央,对称于字标“10”,目镜视场如图2—7(a)所 示。若反射镜8对光轴有一微小倾角α ,则十字线像将偏离 字标“10”,如图2—7(b)所示,偏离量t由自准直原理 可得
t f物 tan 2 2 f物
16
高斯型主要应用于普通光学自准直仪的光学系统。
9
二、阿贝型自准直仪
(一)光路原理 见图2—4
(二)阿贝型系统特点
优 点:是光强度大,亮度损失只有10-15% 缺 点:是它的视场被胶合棱镜遮挡了一半,又因光管 出射光和反射光的方向不同,当反射镜和物镜间的距离超过 一定数值后,反射光线就不能进入物镜成像,所以仪器工作 距离较短。阿贝型应用于光学计的光学系统。
10、11-体内反射镜;12-物镜;13-体外反射镜
22
图2-10 体外反射镜结构
1--反射镜; 2--可动板; 3--压圈; 4--反射镜座; 5--球头螺钉; 6--调节螺钉
(共三个)
23
三、仪器的操作与使用
(一)操作过程ห้องสมุดไป่ตู้
1、将仪器主体放置在被测件的一端或被测件以外稳固 的基础上,反射镜座放在被测件上,并且要与仪器主体在同 一水平面内;
5
第二节 自准直仪的三种基本光学系统
自准直仪通常由三部分组成:
1.体外反射镜 2.物镜光管部件 3.测微目镜部件 由于分划板和各个光学元件的位置、结构不同,自 准直仪有以下三种基本光路。
6
一、高斯型自准直仪
(一)光路原理 如图2—3所示, 如果反射镜严格与光轴垂直,则十字线在分划板上所 成的像与原来的十字线完全重合。若反射镜有一微小转角 α ,则十字线 的像将偏离原来的十字线,其偏离量的大小 可 从测微目镜6中读出。

第1章第3节光学测量仪器的基本部件1

第1章第3节光学测量仪器的基本部件1

第三节光学测量仪器的基本部件平行光管、自准直目镜、目镜测微器、积分球一、自准直目镜1、 高斯目镜:平面镜垂直于视轴自准像与分划重合面镜光线不能延其法线入射。

3、 双分划板目镜:板之间无光学元件。

比较亮视场暗线 亮视场暗线暗视场亮线自准直仪、自准直显微镜、自准直望远镜自准直仪是一种光学测角仪器它是利用光学自准直原理来观测目标位置的变化,广泛应用于直线度和平面度的测量。

它和多面棱体配合可以检测分度机构的分度误差;此外,还可测量零部件的垂直度、平行度等。

二、平行光管调较作用:给出无限远目标或平行光物镜形式:角尺寸误差:β∆由βtg f y '=微分得 )(22sin f f d y dy d ''-±=ββ 误差合成 22)()(22sin f f y y ''∆+∆=∆ββ 讨论:f 长有利,1) ↓∆β2) 象质好3) 温度对校正状况影响小1、 远物法1) 清晰度法A 调焦误差2221)34()29.0(31D D SD λασ+Γ±=B 物体在有限距离引起的误差01l SD =总的误差10SD SD SD σ+=2) 消视差法A 调焦误差)2(58.0311d D SD Γ-Γ=δσB 物体在有限距离引起的误差01l SD =总的误差10SD SD SD σ+=2、 可调前置镜法1) 清晰度法T T Ca f f a 22''=A 调焦误差2221)34()29.0(31DD T SD λασ+Γ±= B 前置镜误差SD 0系统误差0SD σ偶然误差总的误差10SD SD SD σ+=10SD SD SD σσσ+±=2) 消视差法)2(58.0311d D T T SD Γ-Γ=δσ 3、 自准直法1) 调焦误差A 清晰度法2221)34()29.0(321DD SD λασ+Γ±=B 消视差法)2(58.03211d D SD Γ-Γ=δσ 2)平面镜误差 R SD 10= 2λN h = λN D h D R 4822== 204DN SD λ= 总的误差10SD SD SD σ+=4、 五棱镜法)(29.01000)(3438p Q p Q p D D D D D D SD -Γ±=-Γ±=-±=∆δδγ比较常用可调前置镜法、五棱镜法和自准直法精度高五棱镜法常用于大口径的调校例1调较平行光管mm mm D mm f 00056.0,51,1,55,550=''='==='λδα一、可调前置镜法mm f mm D mm f m25,160,1600='==' 解:⨯==Γ64251600Q mm D Q 5.264160==' mm D Q 86.06455==' 1、 清晰度法)1(1075.41009.61079.631)5534()5564129.0(31)34()29.0(314892222221mD D T SD ---⨯±=⨯+⨯±=⨯+⨯⨯±=+Γ±=λλασ 2、 消视差法186.06455<=='mm D Q 此方法不能用 二、自准直法25.0,800==N D1、 清晰度法⨯==Γ2225550 mm D 5.22255==' mm D 44222=⨯=实 )1(1041.1)44356.04()4422129.0(321)34()29.0(32142222221mD D SD -⨯=⨯⨯+⨯⨯±=+Γ±=λασ 2、 消视差法)1(1077.5)222255(2225.058.0321)2(58.032151m d D SD -⨯=⨯-⨯⨯=Γ-Γ=δσ 平面镜面形误差)(108.88025.056.04415220--⨯=⨯⨯==m D N SD λ三、五棱镜法⨯=Γ=22,30Q p mm D)(106.7)3055(2225.029.031)(29.03115--⨯±=-⨯⨯±=-Γ±=m D D p Q SD δσ 作业:1、调校平行光管,55,550mm D mm f =='现有目镜焦距分别为25mm 和12.5mm ,前置镜的视放大倍率⨯=Γ20q ,前置镜采用叉丝对准;一五棱镜口径为mm D c 28=,一平面镜口径100mm 在中心55mm 范围内光圈25.0=N 设人眼极限分辨较为2',分别用自准直法和五棱镜法调校求调校误差。

自准直仪

自准直仪

7
图2-3 高斯型光学系统
1-反射镜;2-物镜;3-分划板; 4-光源;5-分光镜;6-目镜
8
(二)高斯型系统特点
优 点:高斯型系统是目镜视场不受遮挡,且分划板上 的刻划位于视场正中,观察方便。 缺 点:是亮度损失大,因而自准直像较暗;另外,为安 臵分光镜,目镜焦距较长,因而无法获得较大的放大倍数。 高斯型主要应用于普通光学自准直仪的光学系统。
图2-10 体外反射镜结构
23
三、仪器的操作与使用
(一)操作过程
1、将仪器主体放臵在被测件的一端或被测件以外稳固
的基础上,反射镜座放在被测件上,并且要与仪器主体在同
一水平面内; 2、接通电源后,将反射镜座靠近自准直仪的主体,
使反射镜正对物镜,使十字线像出现在目镜视场的正中或附
近; 3、仔细地沿测量方向移动反射镜座,在各预定测量 位臵上读数,并进行数据处理。
28
四、仪器应用实例
平直度检查仪广泛用于精密测量与机床的调整等方面。 下面介绍几种平直度检查仪单独使用或与附件配合使用作 精密测量的实例(有关测量数据的处理参见本书下册)。
(一)测量直线度
图2-12是用平直度检查仪测量机床导轨直线度时的安 装示意图。 测量时,反射镜依次由近到远移动一个跨距L并首尾衔 接,逐点进行测量读数。然后将反射镜返回移动,重新在 各个位臵上读数,反射镜返回移动的位臵应与前者一致, 取两次读数的平均值作为该次测量结果。
图2—8为平直度检 查仪的外形图。
由图可知,从外形仪器分为两个部分。
20
(二)内部结构 图2—9为仪器的结构示意图。 图中1~4组成了测微目镜部件,测量前可松开定位螺钉5, 由于两锥孔在圆周上互成90o ,可使整个目镜头就可精确地

自准直仪 含平直度检查仪的操作使用[知识荟萃]

自准直仪 含平直度检查仪的操作使用[知识荟萃]

行业重点
18
和测微螺杆12同轴相连的测微鼓轮13上有100格圆周 刻度,每格代表反射镜的倾角α为0.005/1000弧度。
当十字线像偏离刻度“10”时,如图2—7(b),可转 动测微鼓轮13,使长刻线再次夹在十字线象的正中如图 2—7(c)。长刻线移动的距离,即十字线象的偏离量。
行业重点
19
二、仪器基本结构
高斯型主要应用于普通光学自准直仪的光学系统。
行业重点
9
二、阿贝型自准直仪
(一)光路原理 见图2—4
(二)阿贝型系统特点
优 点:是光强度大,亮度损失只有10-15%
缺 点:是它的视场被胶合棱镜遮挡了一半,又因光管 出射光和反射光的方向不同,当反射镜和物镜间的距离超过
一定数值后,反射光线就不能进入物镜成像,所以仪器工作 距离较短。阿贝型应用于光学计的光学系统。
(一)外形结构
图2—8为平直度检 查仪的外形图。
由图可知,从外形仪器分为两个部分。
行业重点
20
(图中1~4组成了测微目镜部件,测量前可松开定位螺钉 5,由于两锥孔在圆周上互成90o ,可使整个目镜头就可精 确地转过90o。
(三)体外反射镜结构
体外反射镜是仪器的重要组成部分。
行业重点
3
图2-2 自准直光管的工作原理
十字线与其倒像之间将错开距离t为:
t f tan 2
t---称为偏离量 当α很小时,
t 2 f
行业重点
4
三、自准仪的测微原理
应用自准直光管的工作原理,再加上测微机构而设计制 造的计量仪器,被称之为自准直仪。
只要用自准直仪的测微机构测出上式中距离t,就可得 出反射镜的角度变化值。这就是自准直仪测量微小角度的基 本原理。

机电设备修理精度的检验

机电设备修理精度的检验
图4-13 研磨平板 a)精研用平板 b)粗研
用平板
2.专用研具的结构与使用方法
(1)研磨环 工件的外圆柱表面是用研磨环进行研磨的。 图4-14所示的是更换式研磨环。
1)研磨环的结构 研磨环的开口调节圈1内径应比工件的外 径大0.025~0.05mm。外圆2上有调节螺钉3,如图4-14a所示。
当研磨一段时间后,若研磨环调节圈内孔磨大,则拧紧调 节螺钉3,使其调节圈1的孔径缩小来达到所需要的间隙。图414b所示的研磨环其调节圈也是开口的,但在它的内孔上开有两 条槽,使研磨环具有弹性,孔径由螺钉调节。研磨环的长度一 般为孔径的1~2倍。
图4-4 仪表座的种类 a)平面表座 b)v形表座 c)凸v形表座 d)v形不等边表座 e)直角表座 f)55º角表座
5、检验棒
检验棒是机械制造和维修工作中的必备工具,主要用来 检查主轴及套筒零件的径向跳动、轴向窜动、同轴度及其与 导轨的平行度等。
按结构形式及测量项目不同,可做成如图4-5所示的几种 常用检验棒。
②平均值读数法 从两长刻线为准,向同一方向分别读出气 泡停止的格数,再把两数相加除2,即为其读数值.如图4-10b所 示,气泡偏离右端“零线”3个格,偏离左端“零线”2个格,实 际读数为+2.5格,即右端比左端高2.5格.平均值读数法不受环 境温度影响,读数精度高。
图4-10 水平仪读数法 a)绝对读数法 b)平
桥形平尺只有一个工作面,用来刮研和测量机床导轨的直 线度。平行平尺的两个工作面都经过精刮且平行,常用来检验 狭长平面相对位置的准确性及测量平面度。角形平尺用来检验 工件的两个加工面的角度组合平面,如燕尾导轨的刮研或检验 其加工精度。
2、平板 平板用于涂色法研磨工件及检验导轨的直线度、平行度, 亦可作为测量基准,检查零件的尺寸精度、平行度或形位偏差 ,它的结构和形状如图4-2所示。

一平行光管调校自准直法

一平行光管调校自准直法

光学测量实验指导书牟达刘智颖编写目录实验一平行光管调校(自准直法) (1)实验二平行光管调校(五棱镜法) (3)实验三V棱镜折光仪测折射率和色散 (6)实验四简式偏光应力仪测量玻璃双折射 (10)实验五光学零件曲率半径测量 (12)实验六平面光学元件的光学不平行度测量 (15)实验七刀口阴影法检验面形偏差 (18)实验八光学系统分辨率检测 (21)实验九光学系统的星点检验 (25)实验十光学系统杂光系数测量 (27)实验一平行光管调校(自准直法)一、实验项目1.了解自准直法调校平行光管的原理,并掌握其调校方法。

2.分析调校误差,并总结其特点。

二、实验要求及所用器具1.把待校平行光管的分划面校到其物镜的焦面上,并给出调校精度。

2.所用器具:装有十字丝分划板的焦距为550mm的待校平行光管、高斯式自准目镜、可调的标准平面反射镜(其有效孔径要大于平行光管物镜通光孔径)。

三、实验原理及方法自准直法调校平行光管的原理图如图1.1所示。

若忽略平行光管物镜的像差和光的波动性影响,当分划面4位于物镜焦面处时,则由平面反射镜自准回来的分划像3与分划均重合于物镜焦面处。

若分划面离开物镜焦平面一小距离(离焦量)x,则由平面反射镜反射回来的自准分划像将位于焦面另一侧,并且分划像离焦面的距离d近似等于x,即分划像至分划间的距离是离焦量x 的两倍。

故利用自准直法可使调焦精度提高一倍。

图1.1 自准法调校平行光管的原理图1—平面反射镜;2—平行光管物镜;3—分划像;4—分划;5—自准目镜自准直法调校平行光管的步骤:(1)将装有十字分划板的待检平行光管、标准平面反射镜及高斯式自准目镜按图1.1自准光路摆好,并调出自准分划像。

(2)当用清晰度法调准时,应调到使自准分划像与分划同样清晰,则认为平行光管已调好。

(3)如以消视差法调焦,即通过眼瞳在出瞳面处横向摆动,由分划像相对分划是否存在横向错动(有无视差),来判定分划面是否位于物镜焦面处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自准直平行光管
为了满足各客户对光斑的特殊要求,我公司专门开发、设计此产品。

该产品具有发散度小、平行度高和光斑分布均匀的特点。

在使用的过程中,打出一个清晰、明亮的实心的点状光斑,起到了准确标请打零贰玖捌捌柒贰陆柒柒叁线定位的作用。

其主要应用于:精密仪器,超精密仪器的测量和检测。

例如小角度测量,平行平板平面度的测量,仪器的安装于校正有很大作用。

输出波长:635nm 650nm 660nm 808nm 980nm
输出功率:635nm 0.5~15mw
650nm 0.5~150mw
660nm 0.5~170mw
808nm 100~3000mw
980nm 50~1500mw
工作电压:2.7~6V DC
工作电流:≤5500mA
光速发散度:0.02mrad
出口光径:≤Φ20mm; Φ30mm; Φ35mm; Φ40mm;
光学透镜:光学镀膜玻璃或塑胶透镜
尺寸:Φ24×95mm; Φ35×150mm;
Φ45×158mm; Φ55×160mm;
工作温度:-10℃~75℃
储存温度:-40℃~85℃
激光等级:Ⅲb。

相关文档
最新文档