贝叶斯决策例题
贝叶斯决策例题
例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。
假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。
根据过去的经验,在计划实施工期天气好的可能性为30%。
为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。
从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。
问如何进行决策。
解:采用贝叶斯决策方法。
(1)先验分析根据已有资料做出决策损益表。
根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31预报天气坏的概率2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:111111()(/)(/)()P P x P x P x θθθ⋅==0.3×0.8/0.31=0.77预报天气好而天气坏的概率:212211()(/)(/)()P P x P x P x θθθ⋅==0.7×0.1/0.31=0.23预报天气坏而实际天气好的概率:121122()(/)(/)()P P x P x P x θθθ⋅==0.3×0.2/0.69=0.09预报天气坏且实际天气也坏的概率: 222222()(/)(/)()P P x P x P x θθθ⋅==0.7×0.9/0.69=0.91上述计算可以用表格表示:③ 后验决策:若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)=3.62若气象中心预报天气不好(x2),各方案的最大期望收益值 E(d1/x2)=0.09×5+0.91×(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2④ 计算补充信息的价值:得到天气预报的情况下,后验决策的最大期望收益值:1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)=0.9842则补充的信息价值为:EMV*(后)-EMV*(先)=0.9842-0.8=0.1842补充信息价值大于信息费(800元),即这种费用是合算的。
2024年高考数学贝叶斯统计与推理历年真题
2024年高考数学贝叶斯统计与推理历年真题2024年高考数学真题第一题:(3分)已知事件A与事件B独立,且P(A)=0.6,P(B)=0.4。
求P(A|B)。
解答:根据贝叶斯定理,有P(A|B) = (P(B|A) * P(A)) / P(B)。
由于事件A与事件B独立,所以P(B|A) = P(B)。
代入已知条件,P(A|B) = (P(B) * P(A)) / P(B) = P(A) = 0.6。
第二题:(4分)某医院进行乳腺癌筛查,根据历年数据统计,该筛查方法的阳性率为85%,同时,已知乳腺癌的发病率为1%。
对于新来的患者,她的筛查结果为阳性,请问她真的患有乳腺癌的概率是多少?解答:设事件A为患有乳腺癌,事件B为筛查结果为阳性。
根据贝叶斯定理,求解P(A|B)。
已知P(B|A) = 0.85,P(A) = 0.01,求P(A|B)。
根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.85*0.01) / (0.85*0.01 + 0.15*0.99) ≈ 0.053。
第三题:(5分)某机场对通过安检的旅客进行毒品筛查。
根据统计数据,已知在旅客中约0.5%携带毒品,而安检机器能够正确识别携带毒品的旅客的概率为90%,不携带毒品的旅客有10%的概率被识别为携带毒品。
现在,有一位旅客被安检机器识别为携带毒品,请问他实际携带毒品的概率是多少?解答:设事件A为旅客携带毒品,事件B为安检机器识别结果为携带毒品。
根据贝叶斯定理,求解P(A|B)。
已知P(B|A) = 0.90,P(A) = 0.005,求P(A|B)。
根据贝叶斯定理,有P(A|B) = (P(B|A)*P(A)) / P(B),代入已知条件进行计算,得到P(A|B) = (0.90*0.005) / (0.90*0.005 + 0.10*0.995) ≈0.043。
贝叶斯公式典型例题
贝叶斯公式典型例题
贝叶斯公式是一种计算条件概率的公式,常用于根据已知条件更新某个事件发生的概率。
下面是一个贝叶斯公式的典型例题:
例:假设有两种类型的围棋棋手,分别是专业棋手和业余棋手。
专业棋手在比赛中获胜的概率为0.9,而业余棋手获胜的概率为0.3。
已知在所有棋手中,专业棋手占70%,业余棋手占30%。
现在有一场比赛,我们只知道其中一位棋手获胜了,那么这位棋手是专业棋手的概率是多少?
解:首先,我们定义以下事件:
•A:棋手是专业的
•B:棋手获胜
根据题意,我们知道:
•P(A) = 0.7(专业棋手占比)
•P(¬A) = 0.3(业余棋手占比)
•P(B|A) = 0.9(专业棋手获胜的概率)
•P(B|¬A) = 0.3(业余棋手获胜的概率)
我们要找的是P(A|B),即在已知棋手获胜的条件下,棋手是专业的概率。
根据贝叶斯公式,我们有:
P(A|B) = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(¬A) \times P(B|¬A)}将已知的概率值代入公式中,我们得到:
P(A|B) = \frac{0.7 \times 0.9}{0.7 \times 0.9 + 0.3 \times 0.3} = \frac{0.63}{0.63
+ 0.09} = \frac{0.63}{0.72} = 0.875
所以,在已知棋手获胜的条件下,这位棋手是专业棋手的概率为0.875。
这个例题展示了贝叶斯公式在更新条件概率方面的应用。
通过已知的概率值和贝叶斯公式,我们可以计算出在给定条件下的未知概率。
贝叶斯博弈例子
贝叶斯博弈例子
以下是 8 条关于贝叶斯博弈例子:
1. 你想想在牌桌上呀,就像咱打牌的时候,你先根据对手前面出的牌来判断他手里大概有啥牌,这不就是贝叶斯博弈嘛!比如说你看到对手老是出小牌,那是不是大概率他手里大牌不多呀!
2. 去商场买东西砍价也有点这个感觉呢!你看商家报价,然后根据他的态度和表情猜测他的底线,这也是一种贝叶斯博弈嘞!要是他看起来很犹豫,那是不是代表咱还能往下砍砍价呀!
3. 在求职面试的时候呀,你得根据面试官的提问和反应来调整自己的回答策略,这难道不是贝叶斯博弈吗?好比面试官一直追问某个问题,那就得想着更深入地回答呀!
4. 学生时代考试猜答案也能算呢!当你不确定一个题目的答案时,根据以往对这类题目的了解去猜测,这不是贝叶斯博弈是啥呀!哎呀,要是以前做过类似的,那猜对的几率不就大多啦!
5. 谈恋爱的时候其实也有哦!你通过对方平时的言行举止来判断他的喜好和想法,这算不算是在进行贝叶斯博弈呢?比如说他总提到某个东西,那是不是表示他可能很喜欢呀!
6. 参加比赛的时候呀,观察对手的表现来调整自己的战术,这就是活生生的贝叶斯博弈呀!要是看到对手有个弱点,那不就得抓住机会嘛!
7. 玩游戏抢地盘的时候呢,根据其他玩家的行动来决定自己该怎么行动,不也是贝叶斯博弈嘛!他们都往左边去了,那右边是不是咱的机会就来了呀!
8. 去市场买菜的时候呀,看着菜的品质和价格,还有老板的态度,来决定要不要买,这就是一种贝叶斯博弈嘛!要是老板很热情,菜看着也不错,那咱肯定更愿意买啦!
我觉得贝叶斯博弈在我们生活中可太常见了,很多时候我们都在不知不觉中运用着它呢!。
贝叶斯博弈例题及答案
贝叶斯博弈例题及答案在游戏理论中,贝叶斯博弈是一个重要的概念,它是游戏理论在实际应用中使用博弈模型考虑比较复杂系统中的市场行为。
在贝叶斯博弈中,每位参与者都有一定的概率估计其未知变量的状态。
在这种情况下,每个参与者都将利用这些估计的概率,以某种程度上有利于其自身的方式玩游戏。
贝叶斯博弈也可以用于分析多个玩家或者博弈者之间的交互行为,并评估玩家的决策是否是最优的,以及如果有必要的话,改善玩家的行为。
下面我们将介绍一些典型例题,以便大家来学习和理解贝叶斯博弈。
例题一:假设Alice和Bob正在玩一个回合制的博弈游戏,其中Alice有攻击和防守两种行为,Bob有反击和缩减两种行为,他们同时选择行为时,Alice的最终的分数等于Alice的行为加上Bob的反击和Bob 的缩减。
答案:一般情况下,Alice和Bob之间的贝叶斯博弈是一个多阶段博弈模型,Alice首先选择行为,随后Bob选择反击和缩减,之后Alice计算最终得分(Alice的行为加上Bob的反击和缩减)。
Alice 在决定行动时,可以根据Bob的行为应用贝叶斯博弈模型来估计Bob 会怎么反应,从而决定自己使用什么样的行动。
同样,Bob也可以应用贝叶斯博弈模型,估计Alice的行为来决定自己的行动。
例题二:现在Alice和Bob正在玩一个抢夺食物的游戏,游戏中Alice和Bob可以选择攻击或逃跑,如果Alice攻击了Bob,而Bob却逃跑了,Alice将获得所有的食物;如果Alice逃跑了,而Bob攻击了Alice,那么Bob将获得所有的食物;如果两者都攻击,则每人都获得一半的食物。
答案:在这种情况下,Alice和Bob可以用贝叶斯博弈模型推断彼此的行为,来决定自己的行动。
Alice可以根据Bob的行动准确预测Bob会选择什么样的行动,来决定自己是攻击还是逃跑;Bob也可以根据Alice的行动准确预测Alice会选择什么样的行动,来决定自己是攻击还是逃跑。
贝叶斯决策例子
贝叶斯决策练习某石油公司拟在一片估计含油的荒地上钻井。
如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。
该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。
为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。
已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。
又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。
解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。
若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。
由题意可知:1211211222()0.55 ()0.45(|)0.8 (|)0.2(|)0.15 (|)0.85P A P A P B A P B A P B A P B A ======由贝叶斯公式计算得到:11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075P A P B A P A B P A P B A P A P B A ====++ 同理,有: 2112220.0675(|)0.1330.50750.11(|)0.2230.49250.3825(|)0.7770.4925P A B P A B P A B ======该问题对应的决策树图采用逆序的方法,先计算事件点②③④的期望值:事件点 期望值② 800×0.867+0×0.133=693.6(万元)③ 800×0.223+0×0.777=178.4(万元)④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。
贝叶斯决策例子
贝叶斯决策练习某石油公司拟在一片估计含油的荒地上钻井。
如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。
该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。
为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。
已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。
又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。
解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。
若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。
由题意可知:1211211222()0.55 ()0.45(|)0.8 (|)0.2(|)0.15 (|)0.85P A P A P B A P B A P B A P B A ======由贝叶斯公式计算得到:11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075P A P B A P A B P A P B A P A P B A ====++ 同理,有: 2112220.0675(|)0.1330.50750.11(|)0.2230.49250.3825(|)0.7770.4925P A B P A B P A B ======该问题对应的决策树图采用逆序的方法,先计算事件点②③④的期望值:事件点 期望值② 800×0.867+0×0.133=693.6(万元)③ 800×0.223+0×0.777=178.4(万元)④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。
贝叶斯判别习题[整理]
1.办公室新来了一个雇员小王,小王是好人还是坏人大家都在猜测。
按人们主观意识,一个人是好人或坏人的概率均为0.5。
坏人总是要做坏事,好人总是做好事,偶尔也会做一件坏事,一般好人做好事的概率为0.9,坏人做好事的概率为0.2,一天,小王做了一件好事,小王是好人的概率有多大,你现在把小王判为何种人。
解:A :小王是个好人 a :小王做好事B :小王是个坏人B :小王做坏事()(/)(/)()(/)()(/)P A P a A P A a P A P a A P B P a B =+0.5*0.90.820.5*0.90.5*0.2==+=0.18()(/)0.5*0.2(/)()(/)()(/)0.5*0.90.5*0.2P B P a B P B b P A P a A P B P a B ==++0.82>0.18 所以小王是个好人、2. 设 m = 1,k = 2 ,X 1 ~ N (0,1) ,X 2 ~ N (3,2 2 ) ,试就C(2 | 1) = 1,C(1 | 2) = 1,且不考虑先验概率的情况下判别样品2,1 属于哪个总体,并求出 R = (R1, R2 ) 。
解:2222121/821()()/}1,221(2)(20)}0.05421(2)(23)/4}0.1762i i i P x x i P P μσ--=--==--===--==由于<,所以2属于1(2)P 2(2)P 2π21/2121/221(1)(10)}0.24221(1)(13)/4}0.1202P P --=--===--==>,所以1属于1(1)P 2(1)P 1π由1()Px 22211}()(3)/4}22x P x x -==--即2=21exp{}2x -21exp{(69)}8x x --+2211ln 2(69)28x x x -=--+解得=1.42 =-3.14.所以R=([-3.41,1.42],(-,-3.41)1x 2x ∞U(1.42,+)).∞3.已知,的先验分布分别为=,=,C(2|1)=1,C(1|2)=1,1π2π1q 352q 25且11,01()2,120,x x f P x x x <≤⎧⎪==-<≤⎨⎪⎩他他22(1)/4,13()(5)/4,350,x x f P x x x -<≤⎧⎪==-<≤⎨⎪⎩他他使判别= ,=2所属总体。
纯策略贝叶斯纳什均衡例题
纯策略贝叶斯纳什均衡例题引言:纯策略贝叶斯纳什均衡是博弈论中常用的概念之一,它可以用于分析多方参与的决策问题。
本文将通过一个例题来解释纯策略贝叶斯纳什均衡的概念及应用。
例题背景:假设有两家咖啡店,分别是A店和B店。
每天早晨,两家咖啡店都需要决定自己的咖啡价格。
同时,消费者也需要决定去哪家咖啡店购买。
假设消费者根据市场情况作出购买决策。
A店和B店的利润与消费者选择有关。
情景一:A店设置较高的价格,B店设置较低的价格。
这种情况下,消费者更愿意选择购买B店的咖啡。
B店的利润将最大化,而A店的利润将最小化。
情景二:A店和B店都设置较低的价格。
这种情况下,消费者会更加倾向于选择购买A店的咖啡。
A店的利润将最大化,而B店的利润将最小化。
情景三:A店和B店都设置较高的价格。
这种情况下,消费者没有购买的动力,两家咖啡店的利润都会很低。
分析与求解:我们可以将上述情景转化为一个博弈论的模型,其中A店和B店是两个决策者,他们需要根据对方的策略来决定自己的策略。
消费者的选择将影响两家咖啡店的利润。
根据纯策略贝叶斯纳什均衡的概念,我们需要确定每个决策者的策略组合,以获得最优的结果。
在这个例题中,我们需要确定A店和B店的咖啡价格。
假设A店有80%的机会成为消费者的首选,B店有20%的机会。
根据这个信息,我们可以得到以下策略组合:情景一:A店设置高价格,B店设置低价格。
情景二:A店设置低价格,B店设置低价格。
情景三:A店设置高价格,B店设置高价格。
然后我们可以计算每种策略组合下两家咖啡店的利润,并找出使两家咖啡店利润最大化的策略组合。
结论:通过计算,我们可以得到以下结果:情景一:A店设置高价格,B店设置低价格。
这种情况下,A店的利润最大化,B店的利润最小化。
因此,纯策略贝叶斯纳什均衡的结果是,A店设置高价格,B店设置低价格时,两家咖啡店的利润最优化。
扩展思考:本例题中我们假设了A店有80%的机会成为消费者的首选,B店有20%的机会。
贝叶斯决策的例题练习
贝叶斯决策的例题练习公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]一、贝叶斯决策(Bayes decision theory)【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。
这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:,和。
方案在各种情况下的利润及期望利润如下表。
企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。
若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为、和。
问:企业是否委托专业市场调查机构进行调查解:1.验前分析:记方案d1为批量生产,方案d2为出售专利E(d1)=*80+*20+*(-5)=(万元)E(d2)=40*+7*+1*=(万元)记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=(万元)因此验前分析后的决策为:批量生产E1不作市场调查的期望收益2.预验分析:(1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示由全概率公式P(H1)=*+*+*=P(H2)=*+*+*=P(H3)=*+*+*=(2)由贝叶斯公式有P(?1|H1)=*=P(?2|H1)=*=P(?3|H1)=*=P(?1|H2)=*=P(?2|H2)=*=P(?3|H2)=*=P(?1|H3)=*=P(?2|H3)=*=P(?3|H3)=*=(3)用后验分布代替先验分布,计算各方案的期望收益值a)当市场调查结果为畅销时E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1)=80*+20*+(-5)*=(万元)E(d2|H1)=40* P(?1|H1)+7* P(?2|H1)+1* P(?3|H1)=40*+7*+1*=(万元)因此,当市场调查畅销时,最优方案是d1,即批量生产b)当市场调查结果为中等时E(d1|H2)=80* P(?1|H2)+20* P(?2|H2)+(-5)* P(?3|H2)=(万元)E(d2|H2)=40* P(?1|H2)+7* P(?2|H2)+1* P(?3|H2)=40*+7*+1*=(万元)所以市场调查为中等时,最优方案是:d1,即批量生产c)当市场调查结果为滞销时E(d1|H3)=80* P(?1|H3)+20* P(?2|H3)+(-5)* P(?3|H3)=80*+20*+(-5)*=(万元)E(d2|H3)=40* P(?1|H3)+7* P(?2|H3)+1* P(?3|H3)=40*+7*+1*=(万元)因此市场调查为滞销时,最优方案是:d2,即出售专利(4)通过调查,该企业可获得的收益期望值为E2= E(d1|H1)* P(H1)+ E(d1|H2)* P(H2)+ E(d2|H3)* P(H3)=*+*+*=(万元)通过调查,该企业收益期望值能增加E2-E1=(万元)因此,在调查费用不超过万元的情况下,应进行市场调查3.验后分析(1)本题中调查费用1000<9600,所以应该进行市场调查(2)当市场调查结果为畅销时,选择方案1,即批量生产(3)当市场调查结果为中等时时,选择方案1,即批量生产(4)当市场调查结果为滞销时,选择方案2,即出售专利。
贝叶斯准则例题
贝叶斯准则例题⼀、贝叶斯准则:例题1:设⼆元假设检验的观测信号模型为:H 0: x = -1+n H 1: x = 1+n其中n 是均值为0,⽅差为212nσ=的⾼斯观测噪声。
若两种假设是等先验概率的,⽽代价因⼦为000110111,8,4,2,c c c c ==== 试求贝叶斯(最佳)表达式和平均代价C:解:因为两种假设是等先验概率的所以 011()()2P H P H ==,这样,贝叶斯准备的似然⽐函数()x λ为:① 122110221(1)exp 1122(|)22()exp(4)(|)(1)1exp 112222x p x H x x p x H x πλπ--?==?=+ ?-??⽽似然⽐检测门限η为:010********(41)()()21()()(82)2P H c c P H c c η--=?=-- =1/2于是贝叶斯判决表达式为11exp(4)2H x H ><,两边取⾃然对数,并整理的最简判决表达式为10.1733H x H >-<②现在计算判决概率01(|)P H H 和00(|)P H H ,由于本例中检验统计量()l x x =,所以在两个假设下检验统计量的概率密度函数分别为:122012211(1)(|)exp 1122221(1)(|)exp 112222l p l H l p l H ππ+=-???-=-???这样,0.17330111220.1733(|)(|)1(1)exp 0.0486112222P H H p l H dll dl π--∞--∞=-=-=0.17330001220.1733(|)(|)1(1)exp 0.8790112222P H H p l H dll dl π--∞--∞=+=-=最后,利⽤贝叶斯平均代价表达式,01011110111010100000()()()()(|)()()(|)C P H c P H c P H c c P H H P H c c P H H =++---代⼊0000110(),(|),(|),P H P H H P H H c 等各数据,计算得: 1.8269C=总结:如果我们把判决表达式中的检测门限-0.1733稍作调整,例如调整为-0.1700极品-0.1800,则计算出的平均代价均⼤于检测门限为-0.1733的平均代价,这⼀结果从侧⾯验证了贝叶斯准则的确能使平均代价最⼩。
贝叶斯纳什均衡例题假设有两家企业
贝叶斯纳什均衡例题假设有两家企业摘要:1.贝叶斯纳什均衡的概述2.贝叶斯纳什均衡的例题:两家企业的博弈3.贝叶斯纳什均衡的应用范围正文:一、贝叶斯纳什均衡的概述贝叶斯纳什均衡(Bayesian Nash Equilibrium)是一种博弈论中的概念,指的是在给定自己的特征和其他局中人特征的概率分布的情况下,每个局中人选择策略使自己的期望支付达到最大化,也就是说,没有人有积极性选择其他策略。
在这种均衡状态下,每个参与者都认为自己的选择是最佳的,因为其他参与者也作出了相同的选择。
二、贝叶斯纳什均衡的例题:两家企业的博弈假设有两家企业A 和B,它们分别面临市场进入与否的决策。
企业A 可以选择进入或不进入市场,企业B 也可以选择进入或不进入市场。
两个企业的收益取决于它们各自的决策以及对方企业的决策。
如果企业A 进入市场,企业B 选择阻挠的概率为x,此时企业A 的收益为-10;如果企业A 进入市场,企业B 不阻挠的概率为1-x,此时企业A 的收益为40。
同样,如果企业B 进入市场,企业A 选择阻挠的收益为-10,企业B 不阻挠的收益为40。
在这个博弈过程中,企业A 和企业B 都希望最大化自己的收益。
因此,它们需要根据对方的决策来选择自己的最优策略。
在贝叶斯纳什均衡状态下,企业A 和企业B 都选择了能使自己收益最大化的策略,此时没有人有积极性选择其他策略。
三、贝叶斯纳什均衡的应用范围贝叶斯纳什均衡是一种理论分析工具,它可以帮助我们在不确定性条件下,预测和分析各个参与者的决策行为。
在实际应用中,贝叶斯纳什均衡可以用于解决许多经济、社会和政治领域的问题,例如价格博弈、专利竞争、国际贸易等。
贝叶斯决策例题
解:采用贝叶斯决策方法。
根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率:天气好且预报天气也好的概率 P (x 1/θ1)=0.8天气好而预报天气不好的概率 P (x 2/θ1)=0.2天气坏而预报天气好的概率 P (x 1/θ2)=0.1天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+ =0.31预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+ =0.69预报天气好且天气实际也好的概率:111111()(/)(/)()P P x P x P x θθθ⋅==0.3×0.8/0.31=0.77 预报天气好而天气坏的概率:212211()(/)(/)()P P x P x P x θθθ⋅==0.7×0.1/0.31=0.23 预报天气坏而实际天气好的概率:121122()(/)(/)()P P x P x P x θθθ⋅==0.3×0.2/0.69=0.09 预报天气坏且实际天气也坏的概率:222222()(/)(/)()P P x P x P x θθθ⋅==0.7×0.9/0.69=0.91。
模式识别 第二章 贝叶斯决策论习题答案
2
= min p (ω1 x ) , p (ω2 x ) max p (ω1 x ) , p (ω2 x )
= p ω1 x p ω2 x
(
) (
)
所以, p ω1 x p ω2 x 能过给出误差率的下界。 d) 因为:
(
) (
)
pβ ( error ) = ∫ β p (ω1 x ) p ( ω2 x ) p ( x ) dx
α 4
∫
Hale Waihona Puke +∞p ( x ) dx <
显而易见: pα ( error ) < p ( error ) ,因此当 α < 2 时,无法得到误差率的上界。 c) 因为:
p ( error x ) ≥ p ( error x ) − p ( error x ) = p ( error x ) 1 − p ( error x )
i =1 ωi ≠ωmax
∑ P (ω x ) p ( x ) d x
i
c
= ∫ 1 − P (ωmax x ) p ( x ) dx = 1 − ∫ P (ωmax x ) p ( x ) dx
d) 续上式:
(
)
P ( error ) = 1 − ∫ P (ωmax x ) p ( x ) dx ≤ 1− ∫ 1 1 c −1 p ( x ) dx = 1 − = c c c
n t
′ ′ ′ Σ′ = ∑ ( x′ k − μ )( x k − μ )
k =1 n
= ∑ Tt ( x 0 k − μ )( x 0 k − μ ) T
t k =1
n t = Tt ∑ ( x 0 k − μ )( x 0 k − μ ) T k =1 = T t ΣT
(贝叶斯决策例题)
Equation Chapter 1 Section 1例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。
假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。
根据过去的经验,在计划实施工期天气好的可能性为30%。
为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。
从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。
问如何进行决策。
解:采用贝叶斯决策方法。
先验分析根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析①补充信息:气象中心将提供预报此时期内两种天气状态x1(好天气)、x2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x1/θ1)=0.8 天气好而预报天气不好的概率 P (x2/θ1)=0.2 天气坏而预报天气好的概率 P (x1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x2/θ2)=0.9②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31预报天气坏的概率2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:111111()(/)(/)()P P x P x P x θθθ⋅==0.3×0.8/0.31=0.77预报天气好而天气坏的概率:212211()(/)(/)()P P x P x P x θθθ⋅==0.7×0.1/0.31=0.23预报天气坏而实际天气好的概率:121122()(/)(/)()P P x P x P x θθθ⋅==0.3×0.2/0.69=0.09预报天气坏且实际天气也坏的概率: 222222()(/)(/)()P P x P x P x θθθ⋅==0.7×0.9/0.69=0.91上述计算可以用表格表示:③ 后验决策:若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2选择d1即施工的方案,相应在预报x1若气象中心预报天气不好(x2) E(d1/x2)=0.09×5+0.91×(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2④ 计算补充信息的价值:得到天气预报的情况下,后验决策的最大期望收益值:1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)=0.9842则补充的信息价值为:EMV*(后)- EMV*(先)=0.9842-0.8=0.1842补充信息价值大于信息费(800元),即这种费用是合算的。
Bayes补充例题及解答
关于Bayes 决策分析的补充例题:1、某公司经营某种商品,可以采取的经营方案有三种:1a (大批量),2a (中批量),3a (小批量)。
市场销售状态有三种:1θ(畅销),2θ(一般),3θ(滞已知市场销售状态概率2.0)(1=θP ,5.0)(2=θP ,3.0)(3=θP 。
该公司市场调研人员拟进行市场预测,其以往市场预测准确概率分布矩阵为:()()()321|||θθθj j j H P H P H P321H H H ⎪⎪⎪⎭⎫⎝⎛90.010.005.008.070.015.002.020.080.0 其中,1H ,2H ,3H 分别表示预测值畅销、一般、滞销。
市场预测费用为5万元。
通过决策分析回答以下问题:(1)如果不进行市场预测,应如何决策?如果有完全信息,计算EVPI ;(一)不进行市场预测时:⎪⎪⎪⎭⎫ ⎝⎛--==⨯69102040506030100)(33ij v V ,2.0)(1=θP ,5.0)(2=θP ,3.0)(3=θP ()173.0)60(5.0302.0100)(3111=⨯-+⨯+⨯==∑=i i i P v a E θ()243.0)20(5.0402.050)(3122=⨯-+⨯+⨯==∑=i i i P v a E θ()3.83.065.092.010)(3133=⨯+⨯+⨯==∑=i i i P v a E θ因此:312a a a ,先验最优方案2a a opt =,即经营中等批量的商品,且期望收益值为:()2421==a E E8.17248.4124)3.065.0402.0100()()()(max )(),(max ),(),(max 31=-=-⨯+⨯+⨯=-=-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=∑=opt i ij i j opt j j opt a E P v a E a V E a V a V E EVPI θθθθ(2)如果进行市场预测,应如何根据预测结果进行决策;计算EVAI ,并判断是否进行市场预测;(二)如果进行市场预测,并用它修正原先掌握的情况。
最小风险贝叶斯例题
最小风险贝叶斯例题假设有两个袋子,袋子A中有3个红球和7个蓝球,袋子B中有6个红球和4个蓝球。
从这两个袋子中随机选择一个袋子,然后从该袋子中随机抽出一个球。
如果抽出的球是红色的,你需要根据最小风险贝叶斯准则来判断该球来自哪个袋子。
先定义一些符号:- 假设袋子A被选择的概率为P(A),袋子B被选择的概率为P(B)。
由于只有2个袋子可供选择,因此P(A)+P(B)=1。
- 假设从袋子A中抽出红球的概率为P(红|A),从袋子B中抽出红球的概率为P(红|B)。
根据上述数据,P(红|A)=3/10,P(红|B)=6/10。
- 我们需要计算的是P(A|红),即在抽出红球的情况下,袋子A被选择的概率。
根据贝叶斯定理,我们有:P(A|红) = P(红|A) * P(A) / P(红)其中,P(红)表示从两个袋子中抽出红球的概率,可以用全概率公式计算:P(红) = P(红|A) * P(A) + P(红|B) * P(B)将上述数据代入公式,可得:P(红) = 3/10 * P(A) + 6/10 * P(B)因为P(A)+P(B)=1,所以可以将P(B)表示为1-P(A),代入公式,得到:P(红) = 3/10 * P(A) + 6/10 * (1 - P(A)) = 6/10 - 3/10 * P(A)将P(红)代入P(A|红)的公式,得到:P(A|红) = P(红|A) * P(A) / (3/10 * P(A) + 6/10 - 3/10 * P(A)) 化简上式,得到:P(A|红) = 3/7因此,根据最小风险贝叶斯准则,我们应该选择袋子A,因为袋子A被选择的概率为3/7,大于袋子B的被选择概率2/7。
贝叶斯公式例子
贝叶斯公式例子
1. 你知道怎么用贝叶斯公式来猜骰子点数吗?比如我掷了一个骰子,我猜是 3,然后又掷了一次还是 3,那我是不是就可以更肯定下一次还是 3 呀,这就有点像贝叶斯公式在不断更新我的猜测概率呢!
2. 嘿,想想看,天气预报是不是也能用贝叶斯公式呢?今天预报说有 80%
的概率下雨,结果没下,那明天再预报有雨的时候,我们对这个概率的看法是不是就不一样啦,这和贝叶斯公式多契合呀!
3. 哇塞,选彩票号码能不能用贝叶斯公式呢?每次选了一些号码没中,下次是不是就可以根据之前的情况调整选择呀,这就像贝叶斯在帮我们做决定呢!
4. 你有没有想过,医生诊断病情也像贝叶斯公式在起作用呀!根据各种症状先有个初步判断,然后随着检查结果的出来不断调整诊断的概率,多神奇呀!
5. 哎呀呀,考试猜答案的时候呢,第一遍猜了个 C,检查的时候又觉得可能不对,这时候不就是贝叶斯公式在帮我们重新计算猜对的可能性嘛!
6. 来来来,找工作面试的时候,一开始觉得自己有 50%的把握能通过,后
面表现不错,那通过的概率不就提高了嘛,这可不就是贝叶斯公式在起作用嘛!
7. 哈哈,猜一个人喜不喜欢自己的时候,每一个举动都好像在给贝叶斯公式提供信息呢,然后可以不断更新自己觉得对方喜欢自己的概率哟!
8. 看电视猜节目的结局不也是嘛,开始有个想法,随着剧情发展不断调整对结局的猜测,这像极了贝叶斯公式呀!
9. 贝叶斯公式真的好有趣呀,它在我们生活中无处不在呢,能帮我们做出更准确的判断和推测呀!。
最小风险贝叶斯例题
最小风险贝叶斯例题
在贝叶斯理论中,我们可以通过考虑不同决策的风险来选择最优决策。
举个例子,假设我们要预测某天的天气,可能有晴天、阴天、雨天三种可能性。
我们可以通过历史数据得到每种天气出现的概率,即先验概率。
但是在实际预测中,不同的预测结果会产生不同的风险。
例如,如果我们将雨天预测为晴天,那么人们可能会忘记带伞而淋雨,这就是预测错误所带来的风险。
因此,我们需要考虑每种预测结果所带来的风险,并选择最小风险的决策。
这就是最小风险贝叶斯决策的思想。
具体来说,在上面的例子中,我们可以定义不同预测结果的风险,例如:
- 将晴天预测为雨天的风险为10元
- 将雨天预测为晴天的风险为20元
- 将阴天预测为雨天的风险为5元
那么,对于某一天的预测结果,我们可以根据先验概率和风险计算出每种决策的期望风险,选择最小期望风险对应的决策。
例如,如果先验概率为P(晴天)=0.6、P(阴天)=0.3、P(雨天)=0.1,我们对某一天的预测结果为晴天,那么三种决策的期望风险分别为: - 预测晴天,期望风险为0.6*0+0.3*20+0.1*5=6元
- 预测阴天,期望风险为0.6*10+0.3*0+0.1*5=7元
- 预测雨天,期望风险为0.6*20+0.3*5+0.1*0=15元
因此,我们应该选择预测晴天的决策,这样就可以最小化风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。
假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。
根据过去的经验,在计划实施工期天气好的可能性为30%。
为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。
从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。
问如何进行决策。
解:采用贝叶斯决策方法。
(1)先验分析
根据已有资料做出决策损益表。
根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8
(2)预验分析
完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)
=1.36(万元)
完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)
即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析
①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9
②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率
1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31
预报天气坏的概率
2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:
111111()(/)
(/)()
P P x P x P x θθθ⋅=
=0.3×0.8/0.31=0.77
预报天气好而天气坏的概率:
212211()(/)
(/)()
P P x P x P x θθθ⋅=
=0.7×0.1/0.31=0.23
预报天气坏而实际天气好的概率:
121122()(/)
(/)()
P P x P x P x θθθ⋅=
=0.3×0.2/0.69=0.09
预报天气坏且实际天气也坏的概率: 222222()(/)
(/)()
P P x P x P x θθθ⋅=
=0.7×0.9/0.69=0.91
上述计算可以用表格表示:
③ 后验决策:
若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2
选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)
=3.62
若气象中心预报天气不好(x2),各方案的最大期望收益值 E(d1/x2)=0.09×5+0.91×
(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2
选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2
④ 计算补充信息的价值:
得到天气预报的情况下,后验决策的最大期望收益值:
1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)
=0.9842
则
补
充的信
息
价值为
:
EMV*(
后
)-
EMV*(先)=0.9842-0.8=0.1842
补充信息价值大于信息费(800元),即这种费用是合算的。
⑤ 画出决策树(略)。