电子束焊

合集下载

电子束焊接

电子束焊接
一般电子束焊接不用填充金属;只在焊接异种金属 或合金时,可根据需要使用填充金属。
1.3.1 焊前准备
焊前清理:真空电子束焊前必须对焊件表面
进行严格清理,否则将导致焊缝产生缺陷, 接头的力学性能降低,不清洁的表面还会延 长抽真空时间,影响电子枪工作的稳定性, 降低真空泵的使用寿命。
1.3.1 焊前准备
观察窗口通常由三重玻璃组成,里层为普通玻璃;中层 的铅玻璃是防护X射线的作用;外层的钢化玻璃是承受 真空室内外压力差的。
采用工业电视可以使操作者能连续观察焊接过程,防止 肉眼受强烈光线刺激的危害。
1.2.2 电子束焊机的选用
选用电子束焊机通常考虑以下几个方面: 焊接化学性能活泼的金属(如W、Ta、Mo等)及其合金应
零件装配: 对于无锁底的对接接头,板厚δ<1.5mm时,局部最
大间隙不应超过0.07 mm;随板厚增加,间隙略增。 板厚超过3.8mm时,局部最大间隙可到0.25 mm。
焊薄工件时,一般装配间隙不应大于0.13mm。
1.3.1 焊前准备
非真空电子束焊时,装配间隙可以放宽到0.75mm。 深熔焊时,装配不良或间隙过大,会导致过量收缩、 咬边、漏焊等缺陷。
1.1.2 电子束焊的特点及分类
2.电子束焊的缺点 设备比较复杂,投资大,费用较昂贵; 电子束焊要求接头位置准确,间隙小而且均匀,
焊前对接头加工、装配要求严格; 真空电子束焊接时,被焊工件尺寸和形状常常受到
工作室的限制; 电子束易受杂散电磁场的干扰,影响焊接质量; 电子束焊接时产生X射线,需要操作人员严加防护。
由电子枪、工作室(也 称真空室)、电源及电 气控制系统、真空系统、 工作台以及辅助装置等 几大部分组成。
1.2.1 电子束焊机的组成

电子束焊接

电子束焊接

电子束焊接电子束焊接是一种利用电子束作为热源的焊接工艺。

电子束发生器中的阴极加热到一定的温度时逸出电子,电子在高压电场中被加速,通过电磁透镜聚焦后,形成能量密集度极高的电子束,当电子束轰击焊接表面时,电子的动能大部分转变为热能,使焊接件的结合处的金属熔融,当焊件移动时,在焊件结合处形成一条连续的焊缝。

对于真空电子束焊机,要焊接的工件置于真空室中,一般装夹在可直线移动或旋转的工作台上。

焊接过程可通过观察系统观察。

电子束焊接技术因其高能量密度和优良的焊缝质量,率先在国内航空工业得到应用。

先进发动机和飞机工业中已广泛应用了电子束焊接技术,取得了很大的经济效益和社会效益,该项技术从上世纪八十年代开始逐步在向民用工业转化。

汽车工业、机械工业等已广泛应用该技术。

我国自行研制电子束焊机始于60 年代,至今已研制生产出不同类型和功能的电子束焊机上百台,并形成了一支研制生产的技术队伍,能为国内市场提供小功率的电子束焊机。

近年来,出现了关键部件 (电子枪,高压电源等) 引进、其它部件国内配套的引进方式,这种方式的优点是:设备既保持了较高的技术水平,又能大大降低成本,同时还能对用户提供较完善的售后服务。

北京航空工艺研究所以此方式为某航空厂实施设备的总体设计和总成,实现了某重要构件的真空电子束焊接;桂林电器科学研究所也通过这种方式开发了HDG(Z)-6 型双金属带材高压电子束连续自动焊接生产线,该机加速电压120kV、束流0〜50mA、电子束功率6kW,带材运行速度0〜15m/min ,从而使我国挤身于世界上能生产这种生产线的几个国家之一。

北京中科电气高技术公司近期为上海通用汽车公司研制成功自动变速车液力扭变器涡轮组件电子束焊机,70 s 内可完成两条端面圆焊缝的焊接,并已投入商业化生产。

目前,以科学院电工所的EBW 系列为代表的汽车齿轮专用电子束焊机占据了国内汽车齿轮电子束焊接的主要市场份额;我国的中小功率电子束焊机已接近或赶上国外同类产品的先进水平,而价格仅为国外同类产品的1/4 左右,有明显的性能价格比优势。

电子束焊

电子束焊

电子束焊利用高速、聚焦的电子流轰击金属工件表面,使其在瞬间熔化并形成焊缝的方法,称作电子束焊,焊接原理如动画所示。

通常在真空中从炽热阴极发射的电子,被高压静电场加速和聚焦后,又进一步由电磁场会聚成高能密度的电子束(束径0.25~100mm,能量密度5×106W/cm2)。

当电子束轰击工件表面时,由于受到金属原子的阻挡,电子的动能在瞬间变成热能,使金属加热、熔化、蒸发,并在工件表面下部产生一深熔空腔,电子束和工件相对移动时,使熔化金属向前转移,形成窄而深的大深宽比焊缝。

电子束焊特点:(1)热源能量密度高,焊接速度快,焊缝线能量小。

焊缝深宽比大,最大可达20:1~50:1。

焊接热影响区小,工件变形小。

(2)电子束可控性好,焊接规范调节范围宽且稳定。

(3)真空保护好,无金属电极污染,保证了焊缝金属的高纯度。

(4)节能、节材,在大批量或厚板产品生产中,焊接成本是电弧焊的50%左右。

(5)焊接设备复杂,造价高,焊接尺寸受真空室限制,使用维护技术要求高,需注意防护X射线。

利用电子束作为热源的焊接方法。

如图电子束焊原理图所示﹐热阴极(或灯丝)发射的电子﹐在真空中被高压静电场加速﹐经磁透镜產生的电磁场聚集成功率密度高达1.5×105瓦/厘米2的电子束(束径为0.25~1毫米)﹐轰击到工件表面上﹐释放的动能转变为热能﹐熔化金属﹐焊出既深又窄的焊缝(深/宽比可达10﹕1~30﹕1)﹐焊接速度可达125~200米/时﹐工件的热影响区和变形量都很小。

电子束的焊接工作室一般处於高真空状态﹐压力为10-1~100帕﹐称为高真空电子束焊。

处於低真空状态时压力为100~10000帕﹐称为低真空电子束焊。

在大气中焊接的称为非真空电子束焊。

真空工作室为焊接创造高纯洁的环境﹐因而不需要保护气体就能获得无氧化﹑无气孔和无夹渣的优质焊接接头。

随著工作室气压的增加﹐电子束散焦程度增大﹐焊缝的深/宽比减小。

电子束焊机有两类﹕低压电子束焊机的加速电压为30~60千伏﹔高压电子束焊机的加速电压可达175千伏。

第九章-电子束焊

第九章-电子束焊

第二节 电子束焊的焊接设备一、电来自枪图9-1 三极电子枪
(1)直接加热式阴极 加热电流的类型和大小是影响阴
第二节 电子束焊的焊接设备
极寿命、电子束稳定的主要因素。 (2)间接加热式阴极 在加热灯丝和阴极之间应加几千伏的电压,使 阴极受到热电子的撞击而升温,这种电极的热惯性大、寿命长、形状 稳定。
2.按被焊材料所处环境的真空度分类
(1)高真空电子束焊 焊接是在10-4~10-1Pa的压强下进行的,良好的 真空条件,可以很好地保护焊缝熔池,防止金属元素的氧化和烧损。
第一节 电子束焊概述
(2)低真空电子束焊 焊接是在10-1~10Pa的压强下进行的,虽然真空 度不高,但是,在10-1~10Pa的压强下,束流密度及其相应的功率密 度的最大值,与高真空的最大值相差很小。 (3)非真空电子束焊 成本低、效率高,在汽车生产线上可连续进行 焊接。
第二节 电子束焊的焊接设备
二、供电电源
(1)高压电源 直流高压电源是用来建立阴极-阳级之间的高压电场, 对于保证电子束斑点的质量、参数的稳定、聚焦和偏转等起到很重要 的作用。 (2)阴极加热电源 直热式阴极加热电源应采用具有良好滤波的直流 电源,要求不高的专用电子束焊机也可以采用交流电供电。 (3)偏压电源 为了使电子束流在允许的范围内稳定,偏压电源及其 控制系统应具有良好的调节特性(一般能在100~2000V之间调节)。
焊工(技师、 高级技师)
第九章 电子束焊
了解电子束焊的特点,能够针对特殊 材料和结构选择电子束焊焊接方法。
第一节 电子束焊概述
一、电子束焊的原理 二、电子束焊的特点
1.电子束焊的优点
(1)功率密度高 电子束焊常用的加速电压为30~150kV,电子束电流 为20~1000mA,聚焦后的电子束焦点直径约为0.1~1mm,所以,电子束 的功率密度可达104~109W/cm2。 (2)快速、精确地控制 通过电场、磁场可对电子束作快速、精确的 控制,而激光只能通过透镜和反射镜控制,速度较电子束慢。 (3)穿透能力强 电子束斑点尺寸极小,功率密度大,穿透能力强, 焊缝深宽比(深度与宽度比)达50∶1,可一次焊透的不锈钢。

电子束焊

电子束焊

压的系统,都必须采取有效的安全防护措施。
(2) X射线辐射 焊接时大量的X射线是由高速运动的电子束与焊 件撞击所产生的,在枪体和工作室内电子束与气体分 子或金属蒸气相撞时,也会产生相当数量的X射线。
24
(3) 烟雾与气体 电子束焊接时会产生有害的金属蒸气、烟雾、臭 氧及氧化氮等。因此,要有通风或排气措施,以确保 真空室内和工作场所的有害气体含量降低到安全水准
焊缝

1
2、电子束焊的分类
1)按照真空度不同
高真空、低真空、非真空
2)按照工件所处环境
全真空、局部真空
3)按照电子束功率
大、中、小功率
4)按照深穿特点
普通、脉冲
2
3、电子束焊的特点
(1)穿透能力强,焊缝深宽比大,可达50:1;
(2) 焊接速度快,热影响区小,焊接变形小;
(3) 真空环境利于提高焊缝质量; (4) 焊接可达性好; (5) 电子束易于控制 ; (6) 设备复杂,费用比较昂贵 (7) 接头装配要求严格,接头间隙小而且均匀 ; 不足 (8) 被焊工件尺寸和形状常常受到真空室的限制 ; (9) 电子束易受电磁场的干扰,影响焊接质量 ; (10)产生X射线需要严格防护以保证操作人员的安全
19
9、电子束焊接缺陷
(1) 焊偏: a) 引起焊偏的原因: 一是设备不良,使对中不准确可靠; 二是焊件发生变形; 三是静电力和磁力干扰使电子束发生偏转。 b) 防止措施: 从设备方面应提高传动系统精度;提高对焊件夹持 的刚性。 从工艺方面,焊前将所有铁磁焊件退磁和采用非磁 性材料夹具。
20
(2)塌陷
22
(5)冷隔
是焊缝金属本身的不完善熔合,出现在根部焊缝
金属的层状线上,由于熔融金属的受热波动所造成。 防止产生冷隔的工艺措施是减小电子束功率密度 和迚行电子束的横向摆动,以减小深宽比值和增大根 部缝宽。

电子束焊是什么焊接方法

电子束焊是什么焊接方法

电子束焊是什么焊接方法
电子束焊是一种高能量密度的焊接方法,它利用电子束在工件上产生热量,从而实现焊接的目的。

电子束焊具有焊缝深度大、热影响区小、焊接速度快等优点,因此在航空航天、核工业、汽车制造等领域得到了广泛的应用。

首先,让我们来了解一下电子束焊的原理。

电子束焊是利用电子枪发射出的高速电子束对工件表面进行加热,使工件材料局部熔化,然后通过焊接材料的熔化填充焊缝,最终形成坚固的焊接接头。

电子束焊的高能量密度使得焊接过程中热量集中,能够快速加热工件表面并实现高效的焊接。

其次,电子束焊的特点和优势是什么呢?首先,电子束焊焊缝深度大,能够实现较深的焊接,使得焊接接头更加牢固。

其次,电子束焊热影响区小,减少了对工件周围材料的热影响,有利于减少变形和残余应力。

此外,电子束焊焊接速度快,能够提高生产效率,降低生产成本。

因此,电子束焊在一些对焊接质量和效率要求较高的领域得到了广泛的应用。

除此之外,电子束焊还存在一些局限性。

首先,电子束焊设备成本较高,需要专门的设备和技术人员进行操作和维护。

其次,电子束焊对工件的表面质量要求较高,对杂质和气体的敏感度较大,需要在真空或惰性气体环境下进行焊接。

因此,在一些对焊接成本要求较低的领域,电子束焊可能并不适用。

总的来说,电子束焊是一种高能量密度的焊接方法,具有焊缝深度大、热影响区小、焊接速度快等优点,适用于一些对焊接质量和效率要求较高的领域。

然而,电子束焊设备成本较高,对工件表面质量要求较高,因此在实际应用中需要综合考虑其优势和局限性,并选择合适的焊接方法来满足实际生产的需求。

电子束焊是什么焊接方法

电子束焊是什么焊接方法

电子束焊是什么焊接方法
电子束焊是一种高能焊接方法,利用电子束作为热源进行焊接。

电子束焊具有
焊接速度快、热输入集中、热影响区小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。

本文将介绍电子束焊的原理、特点以及应用领域。

电子束焊的原理是利用电子枪产生高速电子流,通过电子束聚焦器将电子束聚
焦成细束,然后照射到焊接部位,电子束在焊接部位产生高能量的热量,使焊接材料瞬间熔化,完成焊接过程。

电子束焊具有以下特点,首先,焊接速度快。

由于电子束的高能量和热输入集中,焊接速度可以达到每分钟数米,远远快于传统焊接方法。

其次,热影响区小。

电子束焊的热输入非常集中,热影响区小,可以减少焊接变形和残余应力。

最后,焊接质量高。

电子束焊的焊缝形貌好,焊接质量高,适用于对焊接质量要求较高的领域。

电子束焊被广泛应用于航空航天、汽车制造、电子设备等领域。

在航空航天领域,电子束焊被用于焊接航空发动机、航天器结构件等高强度、高温材料。

在汽车制造领域,电子束焊被用于焊接汽车发动机、变速箱、底盘等部件。

在电子设备领域,电子束焊被用于焊接电子元器件、电子线路板等精密零部件。

总之,电子束焊是一种高能焊接方法,具有焊接速度快、热输入集中、热影响
区小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。

随着科技的不断进步,电子束焊技术将会得到更广泛的应用和发展。

电子束焊接

电子束焊接

电子束焊接原理电子束焊接(EBW)是利用电子枪所产生的电子在阴阳极间的高电场作用下被拉出,并加速到很高速度,经一级或二级磁透镜聚焦后,形成密集的高速电子流,当其撞击在工件接缝处,其动能转化为热能,使材料迅速熔化而达到焊接的目的。

高速电子在金属中的穿透能力非常弱,如在100kV加速电压下仅能穿透1/40mm,但电子束焊接所以能一次焊透甚至达数百毫米,这是因焊接过程中一部分材料迅速蒸发,其气流强大的反作用力迫使底面液体向四周排开,让出新的底面,电子束继续作用,过程连续不断进行,最后形成一又深又窄的焊缝。

电子束焊接特点电子束焊接是一种先进的焊接方法,其特点和要求主要表现在如下几方面:(1)由于电子束的能量密度很高,焊接速度快,焊件的热影响区和焊接变形极小,可作为零件的终加工工序。

(2)电子束焊缝的深宽比大,可达10∶1~40∶1,而一般电弧焊的深宽比约为1∶1. 5,因此,可以实现大厚度、不开坡口的焊接场合。

(3)可控性好。

电子束焊接参数(电压、电流、焊接速度等)能够被精确控制,焊接时参数的重复性及稳定性好,能确保焊件的焊接质量。

(4)可将难于整体加工的零件分解为容易加工的几部分,再用电子束焊的方法将其焊成整体,使复杂工序变得简单。

(5)可用于不加填充焊丝的对接、角接、T形接等多种焊接场合。

(6)因电子束焊焦点小而能量集中,对组焊件配合处的机械加工精度及装配质量有严格要求,对接焊缝的两边缘要求平整、贴紧,一般不留间隙。

(7)为防止出现焊接裂纹等缺陷,对采用电子束焊接的零件材料,一般要求其碳当量小于0. 4%, 当材料的碳当量大于0. 6%时,裂纹就很难避免,且对焊接工艺的要求也特别高。

电子束焊接的应用日本电子束焊接在压力容器中的实际应用电子束焊接具有焊接热输入量小,焊缝非常窄,几乎没有热影响区,因此焊接接头的性能很好,在焊接过程中工件几乎没有收缩与变形;在真空中焊接,避免了氮、氢、氧的有害作用,可防止低合金高强度钢产生延迟裂纹,同时,由于在真空中避免了氮与氧的有害作用,使较活泼的金属也易于焊接等优点。

焊接新技术电子束焊

焊接新技术电子束焊

焊接新技术电子束焊焊接新技术——电子束焊随着科技的不断进步,焊接技术也在不断革新。

电子束焊作为一种新兴的焊接技术,具有许多优势,被广泛应用于各个领域。

本文将介绍电子束焊技术的原理、应用以及其对焊接领域的影响。

一、电子束焊技术简介电子束焊是利用电子束在高真空环境中对焊缝进行加热与熔化的焊接方法。

通过电子束的高能量和高密度,焊缝能够迅速达到熔化温度,完成焊接过程。

电子束焊具有无需填充材料、焊接速度快、热影响区小等优势。

二、电子束焊技术的原理电子束焊利用高能电子束对焊接材料进行加热,使其瞬间达到熔点并形成焊缝。

电子束产生的源头为电子枪,通过极高的电压加速电子束,并通过聚焦装置使其形成高密度的电子束。

高能电子束打击到焊接材料上时,将能量转化为热量,使焊接材料瞬间熔化并形成焊接。

电子束的能量和速度可调节,可以实现对焊接过程的精确控制。

三、电子束焊技术的应用1. 航空航天领域:电子束焊技术在飞机、火箭等航空航天器件的制造中得到广泛应用。

由于电子束焊的焊缝形成快、热影响区小,可以确保焊接零件的高强度和耐疲劳性能,提高了飞行器的安全性。

2. 汽车制造:电子束焊技术在汽车制造业中有着重要的地位。

它能够快速、高效地焊接汽车零部件,提高了汽车的整体质量和制造效率。

3. 能源行业:电子束焊技术在核电站、石油化工等能源行业中得到广泛应用。

它可以实现对焊接工艺的精确控制,确保焊缝的质量,提高了设备的运行安全性。

4. 其他领域:电子束焊技术还应用于电子器件、医疗器械、精密仪器等领域,其高能量和高精度的优势使其成为这些领域中必不可少的焊接工艺。

四、电子束焊技术的发展趋势随着科技的不断进步,电子束焊技术也在不断演进和创新。

未来,电子束焊技术有望实现以下发展:1. 自动化:电子束焊技术将更加智能化,实现焊接过程的自动化控制,提高生产效率。

2. 材料扩展:电子束焊技术将适用于更多种类的焊接材料,满足不同行业的需求。

3. 环保节能:电子束焊技术将更加注重能源利用效率,减少焊接过程中的能源消耗和环境污染。

电子束焊是什么焊接方法

电子束焊是什么焊接方法

电子束焊是什么焊接方法电子束焊是一种高能量密度焊接方法,它利用电子束的高速运动和高能量来实现材料的熔化和连接。

电子束焊接是一种非常精密的焊接工艺,通常用于对焊接质量要求非常高的工件,如航空航天领域的零部件、精密仪器仪表等。

电子束焊接的原理是利用电子枪产生的高速电子束,通过对工件表面进行扫描,将电子束的能量转化为热能,使工件表面迅速升温并熔化,然后通过控制电子束的位置和功率来实现对工件的精确焊接。

电子束焊接的特点是焊接速度快、热影响区小、焊接变形小、焊缝质量高等优点,因此在一些对焊接质量要求极高的领域得到广泛应用。

电子束焊接的工艺过程中,首先需要将工件的表面清洁干净,以保证焊接质量。

然后通过控制电子束的聚焦和偏转,使其精确地照射到焊接位置,产生高温熔化工件表面,形成熔池。

在熔池形成的同时,还需要通过控制电子束的功率和速度,使熔池得到合适的温度和流动性,以保证焊接质量。

最后,通过控制电子束的扫描路径,完成整个焊接过程,形成均匀、牢固的焊缝。

电子束焊接的优点之一是焊接速度快,这使得它在大批量生产中具有明显的优势。

另外,由于电子束焊接过程中几乎没有热输入到工件周围,因此可以减少或避免焊接变形和残余应力,从而提高了焊接质量。

此外,电子束焊接还可以实现对材料的深度焊接,适用于对焊接深度要求较高的工件。

然而,电子束焊接也存在一些局限性,首先是设备成本较高,需要专门的电子束焊接设备和配套的真空系统,这增加了焊接成本。

另外,电子束焊接对工件的形状和尺寸有一定的限制,不适用于过大或过厚的工件。

此外,电子束焊接需要在真空环境下进行,这增加了工艺复杂性和操作难度。

总的来说,电子束焊接作为一种高能量密度焊接方法,具有焊接速度快、热影响区小、焊接变形小、焊缝质量高等优点,适用于对焊接质量要求非常高的工件。

然而,由于设备成本较高、对工件形状和尺寸有限制、需要在真空环境下进行等局限性,因此在实际应用中需要根据具体情况进行选择。

电子束焊接技术

电子束焊接技术

电子束焊接技术电子束焊接技术(Electron Beam Welding,EBW)是一种高能束焊接技术,采用电子束作为能量源进行焊接。

它具有高能量密度、深焊能力和小热影响区等优势,广泛应用于航空航天、汽车制造和核工程等领域。

本文将介绍电子束焊接技术的原理、应用及未来发展趋势。

一、电子束焊接技术的原理电子束焊接技术利用带电粒子束(即电子束)的动能进行焊接。

它通过加速器将电子加速到非常高的速度,然后通过电场或磁场控制电子束的方向进行聚焦。

当电子束聚焦到极小的直径时,电子与被焊接材料碰撞并转化为热能。

这种高能量密度的热能可瞬间将工件局部区域加热至熔化状态,形成焊缝。

二、电子束焊接技术的应用1. 航空航天领域:电子束焊接技术在航空航天领域具有广泛的应用。

它能够焊接高强度、高温合金材料,满足飞机发动机、燃气轮机和航天器的要求。

电子束焊接技术还能实现长轴件的自动化焊接,提高生产效率。

2. 汽车制造:汽车制造行业对焊接质量和效率有着严格的要求。

电子束焊接技术能够焊接汽车车身、发动机和底盘等关键部件,确保焊缝的强度和密封性。

此外,电子束焊接技术还可以减少零件的变形,提高整体车身结构的稳定性。

3. 核工程:核工程领域要求焊接材料具有高强度和较低的辐射损伤。

电子束焊接技术能够实现高纯度材料的焊接,避免杂质引入。

电子束焊接技术还可以焊接厚度较大的核材料,保证核反应堆等设备的可靠性和安全性。

三、电子束焊接技术的未来发展趋势随着科学技术的不断进步,电子束焊接技术也将迎来更广阔的应用前景。

以下是未来电子束焊接技术的发展趋势:1. 自动化与智能化:随着自动化技术的不断发展,电子束焊接技术将越来越多地应用于自动化生产线。

通过与机器人和控制系统的集成,实现焊接过程的自动控制和监测。

2. 优化设计与模拟:利用计算机辅助设计和数值模拟软件,对电子束焊接过程进行优化设计和模拟预测。

通过模拟分析,优化焊接参数和工艺,提高焊接质量和效率。

电子束焊接解析

电子束焊接解析
1000mA,焦点直径约为0.1 ~ 1mm,功率密度可达106 W/cm2
以上,比普通电弧功率密度高
100 ~ 1000倍,属于高能束流。
1.1.1 电子束焊的基本原理
电子束撞击到焊件表面,电子的动能就转变为热能, 使金属迅速熔化和蒸发。在高压金属蒸气的作用下 熔化的金属被排开,电子束就能继续撞击深处的固
态金属,同时很快在被焊焊件上“钻”出一个匙孔
(见图),小孔的周围被液态金属包围。 随着子束与焊件的相对移动,液态金属沿小孔周围 流向熔池后部,逐渐冷却、凝固形成了焊缝。
1.1.1 电子束焊的基本原理
在电子束焊接过程中,焊
接熔池始终存在一个匙孔。 匙孔的存在,从根本上改 变了焊接熔池的传质、传 热规律,由一般熔焊方法 的“热导焊”转变为“穿
高真空电子束焊接是在真空度为10-4~10-1Pa的环
境下进行,具有良好的真空条件,电子束很少发生 散射,可以保证对熔池的“保护”,防止金属元素 的氧化和烧损。 适用于活性金属、难熔金属和质量要求高的工件焊 接,也适用于各种形状复杂零件的精密焊接。
1.1.2 电子束焊的特点及分类
低真空电子束焊:在真空度为10-1~10Pa
1.1.3 电子束焊的适用范围
可焊接的材料:除含有大量高蒸气压元素的材料外,
一般熔焊能焊的金属,都可以采用电子束焊,如铁、 铜、镍、铝、钛及其合金等。此外,还能焊接稀有 金属、活性金属、难熔金属和非金属陶瓷等;焊接 熔点、热导率、溶解度相差很大的异种金属。焊接 热处理强化或冷作硬化的材料,而接头的力学性能 不发生变化。
孔焊”。
1.1.2 电子束焊的特点及分类
1.电子束焊的优点
电子束穿透能力强,焊缝深宽比大。 焊接速度快,热影响区小,焊接变形小。 焊缝纯度高,接头质量好。

电子束焊技术

电子束焊技术

电子束焊技术电子束焊技术是一种高能电子束加热和熔化材料的焊接方法。

它采用电子枪产生的高速电子流,通过准直和聚焦系统,将电子束准确地聚焦在焊接接头上,通过电子流的高速碰撞传递能量,使焊接接头达到熔化状态并完成焊接。

一、电子束焊的原理和特点电子束焊技术的原理基于电子在物质中的作用。

高能电子束具有精确的能量和焦点控制能力,能够实现焊接区域的局部加热和熔化,其主要特点包括:1. 高能量浓度:电子束焊枪通过电子枪管中产生的电子束将能量集中在一个相对较小的焦点上,焊接接头处获得高能量密度,有利于快速熔化和熔合。

这种高能量浓度有助于焊接材料在短时间内达到熔点,减少热影响区域。

2. 焊接速度快:由于电子束焊聚焦后的高能量密度和能量传递速度,使得焊接速度相比传统焊接方法有很大提高。

这不仅可以提高生产效率,还有助于减少热输入和热影响区域,减轻焊缝变形。

3. 高选择性:电子束焊技术可以控制焊接能量和焊接区域,对于焊接材料的选择性更强。

因为电子束可以通过调整能量和焦点位置,实现不同材料的熔化和焊接,适用于多种金属和合金的焊接。

4. 温度控制精确:由于电子束对焊接区域的能量输入非常精确,可实现焊接过程中的精确温度控制。

这种精确控制有利于避免焊接过程中的过热和过冷,提高焊接质量和可重复性。

二、电子束焊的应用电子束焊技术广泛应用于航空航天、船舶、汽车、化工、核工程等领域。

其主要应用包括:1. 航空航天领域:电子束焊技术在航空发动机、航天器、导弹等高要求的结构件焊接中应用广泛。

由于电子束焊的高能量浓度和焊接速度快的特点,能够满足航空航天领域对材料焊接的高质量和高效率要求。

2. 汽车制造:在汽车制造中,电子束焊被用于焊接发动机缸套、传动轴、驱动轴等关键部件。

由于电子束焊的高焊接速度和精确控制能力,能够提高汽车零部件的质量和可靠性。

3. 核工程:电子束焊技术在核工程中被广泛应用于焊接核反应堆等关键部件。

由于电子束焊具有高选择性和温度控制精确等特点,能够满足核工程对焊接质量和安全性的要求。

电子束焊接

电子束焊接


§1.3电子束焊接概念及其能量转换特点 1.3.1 何谓电子束焊接
焊接过程演示 焊缝形状
1.3.2 电子束焊接能量转换特点
与通常熔化焊接相比,特点体现有三方面不同: 能量传递方式 热量析出部位 能量转换机理

§1.4 电子束焊接分类、特点及应用 1.4.1 电子束焊接分类
(1) 按照电子束加速电压不同 – 低压电子束焊接(U=15-30Kv) – 中压电子束焊接(U=40-60Kv) – 高压电子束焊接(U=100-150Kv) – 超高压电子束焊接(U300Kv)
航空发动机 部件的电子 束焊接
某型号发动机功率轴的焊接
某型号发动机压气机机匣结构
航天产品的 电子束焊接
推力室身部与头部的铌钛 异种金属电子束焊接
推力室身部铜钢 异种金属电子束焊接
电子束焊接新技术
电子束焊接输入能量控制 技术——多焦点、多束

§1.4 电子束焊接分类、特点及应用
(2) 按照真10-6 torr) – 低真空电子束焊接(10-2-0.5 torr) – 非真空电子束焊接(大气中)
(3) 按照焊件在真空室中位置 – 全真空电子束焊接 – 局部真空电子束焊接

§1.4 电子束焊接分类、特点及应用
电子束焊接(EBW)
(第一章 电子束焊接技术概述)
张秉刚 哈尔滨工业大学现代焊接生产技术国家重点实验室

§1.1 焊接技术回顾 • 1.1.1 焊接简史
1882年碳弧焊
上世纪30年代气 焊和手工电弧焊、 钎焊发展
上世纪40年代埋 弧焊和电阻焊 上世纪50年代电渣 焊和气体保护焊
近年来双面电弧焊、 上世纪60年代后摩 搅拌摩擦焊及离子束、 擦焊、扩散焊及电 太阳能焊接 子束等高能焊接

电子行业电子束焊

电子行业电子束焊

电子行业电子束焊1. 引言电子束焊(Electron Beam Welding)作为高能电子束照射和加热材料表面来实现焊接目的的一种焊接技术,广泛应用于电子行业。

电子束焊具有高能量、高聚焦度、高功率密度等优点,能够实现高质量的焊接效果。

本文将介绍电子束焊在电子行业中的应用以及其工艺特点和优点。

2. 电子束焊在电子行业中的应用电子束焊作为一种高精度、高效率的焊接方法,被广泛应用于电子行业。

其主要应用包括以下几个方面:2.1 集成电路的封装在集成电路封装过程中,需要将封装芯片与引线焊接在一起。

电子束焊因其高能量的特点可以快速将引线和芯片焊接到一起,而不会造成局部过热的问题。

这对于保证芯片的性能和稳定性非常重要。

2.2 电子器件的组装电子器件的组装过程中,通常需要将不同的零件焊接在一起。

电子束焊因其高能量的特点可以快速将不同材料的零件焊接在一起,而不会对零件产生过多的热影响。

这种焊接方法可以确保焊点的质量和稳定性。

2.3 超导材料的制备在电子行业中,超导材料的制备是一项非常重要的工作。

电子束焊因其高能量的特点可以在材料表面形成高密度的热源,以实现超导材料的制备和改性。

2.4 电子元器件的修复在电子行业中,电子元器件的修复是一项常见的任务。

电子束焊因其高能量的特点可以将受损的电子元器件与其他部件焊接在一起,以实现修复的目的。

3. 电子束焊的工艺特点电子束焊作为一种特殊的焊接方法,具有以下工艺特点:3.1 高能量密度电子束焊使用高能电子束进行焊接,电子束能量密度非常高,可以使焊接过程中的热输入量和焊接速度得到很好的控制,从而实现高质量的焊接效果。

3.2 高聚焦度电子束焊使用电磁透镜系统聚集电子束,使其能量集中在很小的焦点上。

这种高聚焦度使得焊接过程中的热影响区域非常小,对焊接材料的热影响较小,可以减少变形和应力的产生。

由于电子束焊的高能量密度和高聚焦度特点,可以在很短的时间内完成焊接过程。

这种高速度的焊接可以提高生产效率,减少生产成本。

电子束焊的原理及应用范围

电子束焊的原理及应用范围

电子束焊的原理及应用范围1. 电子束焊的原理电子束焊(Electron Beam Welding)是一种高能电子束加热下的焊接技术,采用电子束直接加热工件,并通过热传导进行焊接。

其原理主要涉及以下几个方面:•电子束的生成与加速:电子束由电子枪产生,其中包括热阴极、孔型、阳极和聚束器等。

热阴极在高温下,通过热发射发射出电子,电子经过孔型形成束流,然后通过阳极和聚束器聚焦形成直径较小的电子束。

•电子束的聚焦:聚束器由磁场或电场组成,可将电子束聚焦成较小的束斑,从而提高焊接质量。

聚束过程中,还需要考虑电子束的碰撞损耗、散射等参数,以确保焊接质量。

•电子束的控制与定位:通过调整电子枪和聚束器的参数,可以控制电子束的能量、速度和聚焦程度,实现焊接位置的精确定位。

•电子束的加热与焊接:电子束高速击中工件表面,将能量转化为热能,工件表面瞬时升温,进而引起工件的熔化和焊接。

由于电子束的高能量密度和焦点小,焊接的热影响区域非常小,从而减少了热变形和应力的产生。

2. 电子束焊的应用范围电子束焊具有以下几个特点,使其在各个领域都有广泛的应用:•高能量密度:电子束焊的电子束速度非常高,能量密度大,因此能够在短时间内将焊接区域加热至高温,从而实现快速焊接。

这种高能量密度的特点使得电子束焊特别适用于对焊接速度有要求的应用场景,如汽车、航空航天、电子器件等领域。

•小热影响区域:电子束焊的焦点非常小,热影响区域非常小,因此可以在不破坏工件的情况下进行焊接。

这使得电子束焊适用于对工件材料有特殊要求的场合,如钛合金、高温合金等难焊材料的焊接。

•高度自动化:电子束焊可以与计算机控制系统相结合,实现高度自动化的焊接过程。

通过预先编程,可以精确控制焊接参数,实现复杂焊接任务的精确执行。

•良好的焊接质量:电子束焊可以实现高质量的焊接,焊接接头强度高,焊缝外观美观,无气孔、夹渣等缺陷。

这种高质量的焊接特性使得电子束焊在航空、航天等关键领域得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子束焊焊接方法基本概念
电子束焊是利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。

基本原理和分类
电子束焊接因具有不用焊条、不易氧化、工艺重复性好及热变形量小的优点而广泛应用于航空航天、原子能、国防及军工、汽车和电气电工仪表等众多行业。

电子束焊接的基本原理是电子枪中的阴极由于直接或间接加热而发射电子,该电子在高压静电场的加速下再通过电磁场的聚焦就可以形成能量密度极高的电子束,用此电子束去轰击工件,巨大的动能转化为热能,使焊接处工件熔化,形成熔池,从而实现对工件的焊接。

电子束焊的分类方法很多。

按被焊工件所
处的环境的真空度可分为三种:高真空电
子束焊,低真空电子束焊和非真空电子束
焊。

1.高真空电子束焊是在10-4~10-1Pa
的压强下进行的。

良好的真空条件,可以
保证对熔池的“保护”防止金属元素的氧化
和烧损,适用于活性金属、难熔金属和质
量要求高的工件的焊接。

2.低真空电子束焊是在10-1~10Pa
的压强下进行的。

压强为4Pa时束流密度
及其相应的功率密度的最大值与高真空的
最大值相差很小。

因此,低真空电子束焊
也具有束流密度和功率密度高的特点。


于只需抽到低真空,明显地缩短了抽真空
时间,提高了生产率,适用于批量大的零
件的焊接和在生产线上使用。

3.在非真空电子束焊机中,电子束仍
是在高真空条件下产生的,然后穿过一组光阑、气阻和若干级预真空小室,射到处于大气压力下的工件上。

在压强增加到7~15Pa 时,由于散射,电子束功率密度明显下降。

在大气压下,电子束散射更加强烈。

即使将电子枪的工作距离限制在20~50mm,焊缝深宽比最大也只能达到5:1。

目前,非真空电子束焊接能够达到的最大熔深为30mm。

这种方法的优点是不需真空室,因而可以焊接尺寸大的
工件,生产率较高。

工艺特点和应用范围
1.工艺特点
①电子束穿透能力强(功率密度可达106W/cm2),焊缝深宽比大(可达50:1),易于实现厚度差极大的焊件之间的接。

②焊接速度特快(大于1m/min ),热影响区小,焊接变小。

③真空环境中焊接,有利于提高焊缝质耸。

④可达性好。

在真空环境下,电子束可发射到较远位置,且束流直径远细于任何电极或焊枪。

⑤可控性好。

通过控制电子束聚焦,可实现穿透数层非焊接件后再聚焦于焊接位置进行焊接;通过控制电子束偏移,可实现复杂接缝的自动焊接;还可通过电子束扫描熔池以消除焊接缺陷。

应用范围
1.航空航天工业:加工一些技术要求高并有特殊用途的部件,如直升飞机的零部件或卫星燃料箱。

2.能源和电子工业:大批量加工铜制品和其它一些接触材料的产品如断路器
3.铁路,造船和医药工业:安全可靠的连接,如德国高速火车的扣环和适用人体的植入物。

4.机器设备制造和食品工业:小批量和大批量加工不锈钢制品以及其它不同的钢的结合物的产品。

可通过电子束焊接重达50吨的工件
影响焊接质量的工艺参数
影响电子束焊接质量的一些工艺因素,如焊缝结构设计、工装模具、焊接参数、电子束斑点位置、预热和退火、填充材料以及电子束跟踪焊接等。

1.焊缝结构及配合间隙
在焊接实践中,会碰到形形色色的工件,焊缝结构也各不相同,但总体上可分为:对焊缝、端焊缝、角焊缝(包括穿透焊缝),或区分为直线焊缝、环线焊缝、曲线焊缝、点焊缝,还
有等截面焊缝和变截面焊缝等。

为了达到最佳焊接效果,焊缝结构和配合间隙的设计至关重要,既要考虑工件(部件)在整机中的作用,又必须满足被焊材料可焊性和具体焊接工艺的要求。

所以在实施焊接之前,应该与工程设计人员共同讨论焊接件的焊缝结构,或通过工艺试验确定合理的结构与间隙尺寸。

2.工装模具
为了将被焊接的工件置于焊机之中,工装模具(夹具)直接影响焊接的实施效果,从一定意义上讲,模具的正确设计是焊接工作成功的一半。

3.焊接参数
根据被焊工件的材料、尺寸及结构选取相应的工艺参数是焊接工作的主要内容。

1)焊接功率的影响。

电子束的焊接功率指:
P=U·I
式中P—功率(w),U—电压(kV),I—束流(mA)它直接影响焊接的熔深,随着焊接功率的增大,焊接熔深呈线性增大。

从加速电压的高低区分,高压焊机(如150kV)的电子束穿透能力更强,与低中压焊机相比,同等功率时焊接熔深会大一些;但亦有一种观点认为焊接熔深取决于电子枪的性能。

2)焊接线能量的影响。

焊接线能量指
E=P/S
式中E—线能量(J/mm),P—功率(w),S—焊速(mm/s)
焊接线能量的输入大小对焊缝的成型起很大作用,如可以获得焊缝的最佳深宽比。

另外,快速焊接时工件变形较小;慢速焊接可防止高强钢等工件产生裂纹。

3)临界焊接参数的作用。

我们在进行薄件和高精度工件的焊接工艺试验时,发现它的焊接参数非常严格,偏大或偏小均会导致失败,将此参数称之谓临界焊接参数。

电子束焊接主要焊接焊接参数有电子束电流(束流)、加速电压、焊接速度、聚焦电流、焦点工作距离等。

(1)对熔深的影响熔深与加速电压、束流成止比,与束斑直径(受聚焦电流影响)、焦点工作距离及焊接速度成反比。

(2)对焊缝横断面深宽比的影响在其他参数不变情况下,焊缝横断面深宽比与加速电压成正比。

增加束流,熔深和熔宽也都会增加。

增加焊接速度会使焊缝变窄,熔深减小。

电子束聚焦状态对熔深及焊缝形状有很大影响。

焦点(束斑)变小可使焊缝变窄,熔深增加。

必须指出,以上趋势只是一般规律。

对不同设备,由于电子枪结构、加速电压和真空度的差异,其束流品质并不完全一致,因而在不同设备上焊接同一接头时,上述诸工艺参数也并不完全相同。

焊接方法(系统)设备与装置组成和性能指标
电子束焊焊接装置按加速电压高低分,可分为高压电子束焊(>120kV)中压电子
束(60-100 kV)和低压电子束焊(<40kV)三类;按焊件所处环境分可分为高真空电
子束焊( 10-4~10-1 Pa)、低真空电子束焊(10-1~10Pa)和非真空电子束焊三类。

其装置主要由电子枪、电源、工作室(真空室)、运动系统、真空系统及电气控制
系统等组成。

(1)电子枪电子枪为电子束焊焊接装置的关键部件。

(2)电源由高压电源、阴极加热电源和偏压电源组成,密封于以纯净变压器油
作为介质的油箱中。

(3)真空系统用于电子枪和工作室的抽真空,分别以机械泵、油扩散泵和
涡轮分子泵对应于抽低、中、高真空。

(4)工作室用以提供真空环境及使操作者与电子束隔离,以免受X射线幅射。

其尺寸及形状取决于焊机用途和焊件形状及尺寸,一般采用矩形或圆柱形,容
积由数升到数千立方米。

(5)运动系统由工作台、转台及夹具组成,目的是使电子束与焊件循焊接路线
实行相对(焊件不动,电子枪动,或反之)运动。

(6)电气控制系统目前已大都采用程控技术,焊接过程已可实现全自动化。

(7)辅助系统含电子束束斑品质测量和对焊缝的观察及跟踪两部分。

前者直接影响焊接质量,故检测束流焦点位置和束斑品质极为重要;
后者有利于操作者对焊接过程的监控,可以工业电视、二次电子成像系统或直接设置观察窗日来实现。

连续真空
局部真空
典型零件的应用实例
电子束焊接技术在航天卫星领域有较广泛的使用,如有的星际飞行器,其推进器用的是电火箭,其发射体使水银或铯汽化并游离,其离子在加速极电势作用下,从其表面拉出并加速到一定速度,形成所需推力,发射体的表面积越大,其游离量越大,效率越高,多孔钨是最佳选择。

多孔钨还需与支撑件钨块用电子束焊牢成一体,而该钨支撑件又必须与钽盒焊牢,但钽与钨直接熔焊,其合金变脆,而以钛为中间介质用电子束钎焊,而获得无裂纹焊接。

钛合金有高的强质比,是宇航用重要结构材料。

用氩弧焊,延性差,很脆,而用电子束焊,共焊接质量好得多,用电子束焊这些钛合金焊缝强度能达到基材的等强度,其冲击强度甚至比基材还高。

铍合金具有更高的强质比,阿波罗飞船门的框架构件就用铍合金,采用电子束焊接而成。

图所示导弹壳体采用非真空电子束焊示意图:
而且在火箭,导弹,飞船,空间站,星球车,太阳能电站,造船业,发动机制造业,航空业等,大到航母,小到一个小零件都需要使用电子束焊接。

参考文献
【1】任家烈,吴爱萍.先进材料的连接[M].机械工业出版社,2000.
【2】森永卓一.铜及铜合金[M].国防工业出版社,1963.
【3】王之康,高永华等.真空电子束焊接设备及工艺[M].原子能出版社出版,1990.
【4】R.R.college. Electron beam welding[J]. Tooling &amp; production, june 1974:66-67. 【5】[苏]B.B.巴申柯等.电子束焊接[M].国防工业出版社,1975.
【6】《特种焊接技术及应用》李亚江王娟等编著
【7】《焊接结构制造技术与装备》沈阳大学宗培言主编
【8】《电子束技术在工业领域的应用》宋宜梅李少林编著。

相关文档
最新文档