定积分典型例题精讲

合集下载

考研定积分经典例题(完美讲析)

考研定积分经典例题(完美讲析)

定积分常见问题一、关于含“变上限积分”的问题321(1)()x x F x =⎰例、求下列导数32(2)()x x F x =⎰220(3)()()xF x tf x t dt =-⎰2例、求下列极限2221(1)lim(1)x t xx t e dt x -→∞+⎰求 2204()(2)lim,()(0)0,(0)2xx tf x t dtf x f f x→-'==⎰求连续,3例1(1)()()()sin f x f tx dt f x x x =+⎰求连续函数,使之满足1ln 1(2)()0()()1xt f x dt x f x f t x =>++⎰、设,其中,求 ()()3213()0(),1()8,()3f x f x xg x g t dt x f x >=-⎰()设在可微。

其反函数为且求二、定积分计算的有关问题411(1)例、(常见形式积分)4(2)1cos 2xdx x π+⎰(3).2(4)(0)aa >⎰0(5)⎰0(6)a例2、(分段函数,绝对值函数)[(1)()b a xdx a b <⎰0,02(2)(),()(),2x l kx x f x x f t dt l c x l ⎧≤≤⎪⎪=Φ=⎨⎪≤≤⎪⎩⎰、设求10(3)t t x dt -⎰sin ,02(4).()(),(0)0(),()0,2xx x f t g x t dt x x f x x g x x ππ⎧≤<⎪⎪-≥≥==⎨⎪≥⎪⎩⎰其中当时,而例3(对称区间上积分)11(1)(1sin )()x x x e e dx --++⎰(1212(2)sin ln x x x dx -⎡⎢⎣⎰244sin (3)1x x dx e ππ--+⎰()4[]()()baf x dx f xg x +⎰例、形如的积分42(1)dx sin 2sin cos 0(2)xx x e dxe e π+⎰2(3),1()dxtgx πλ+⎰例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)22022001.(sin )(cos ))2.(sin )(sin )21331,24223.sin cos ,1342,1253n n f x dx f x dx xf x dx f x dxn n n n n xdx xdx n n n n n ππππππππ==--⎧⋅⋅⋅⎪⎪-==⎨--⎪⋅⋅⎪-⎩⎰⎰⎰⎰⎰⎰ 常用结论,为正偶自然数为大于的正奇数,2(sin )(1)(sin )(cos )f x dxf x f x π+⎰2π⎰101020sin cos (2)4sin cos x x dx x x π---⎰、2(3)ln sin xdx π⎰ 320sin (4)1cos x xdx x π+⎰2220sin (5),sin cos n n n n x x I dx n N x x π+=∈+⎰计算 640(6)sin cos x x xdxπ⎰[]2(7)(),,()()sin ,()1cos xf x f x f x xdx f x x ππππ--=++⎰设在上连续且满足求1210011(8)(1)x dx--⎰求0(9)n π⎰2sin (10)()sin ,().x t xF x e tdt F x A B C D π+=⎰则是()正常数负常数恒为零不是常数例6 利用适当变量代换计算积分4(1)ln(1)tgx dx π+⎰120ln(1)(2)1x dx x ++⎰ 200(3)sin n x xdx π⎰20(4)(1)(1)dxx x α+∞++⎰求例7(其它)22(1)()[0,]()cos ()()2f x f x x x f t dt f x ππ=+⎰、设在上连续,且,求212(2)()()2()()f x x x f x dx f x dx f x =-+⎰⎰设,求120(3)()()arcsin(1),(01),()y y x y x x x y x dx '==-≤≤⎰设满足求22011(4)()(2)arctan ,(1)1,()2x f x tf x t dt x f f x dx -==⎰⎰、设连续,且满足求的值2200cos sin cos (5),,(2)1x x xdx A dx x x ππ=++⎰⎰已知:求220(6)()ln(12cos )(),()F a a x a dx F a F a π=-+-⎰设,求(2)(),()a xay a y f x edy f x dx --=⎰⎰(7)、设求1(8)(1)m n x x dx -⎰例8、计算下列广义积分(基本题)2(1),1dxx +∞-∞+⎰1(2),e 2ln (3),1xdx x+∞+⎰51(4)1(5)cos(ln ),x dx ⎰例9(1)0)pt te dt p p +∞->⎰(是常数,且2(2).(1)xx xe dx e +∞--+⎰例10、计算下列广义积分(广义积分变量代换例)3(1)23202ln(1)(2)(1)x x dx x +∞++⎰22200200.cos sin (1)(1)1sin sin (2),()2x x xdx A A dx x x x x dx dxx x π+∞+∞+∞+∞++=⎰⎰⎰⎰例11已知广义积分收敛于,试用表示广义积分的值已知求 经典例题例1求21limn n→∞ . 解将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即21limn n →∞+ =1lim n n →∞+ =34=⎰.例20⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.解法1在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.解设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而21224022xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n =,故lim (ban g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1ln n pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰. 例7求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理 ()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101nx dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+.于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9(1)若22()x t x f x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x'=,令()0F x '<3>,解之得109x <<,即1(0,)9为所求. 例12求0()(1)arctan xf x t tdt =-⎰的极值点.解()f x '(1)arctan x x -()f x '0得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中 2arcsin 0()x t g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.解由已知条件得20(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n →∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;解22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立.解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-, 由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求. 例16设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小. 解法1由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x →→⋅=+2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B . 解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+⎰ , 则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x →→→-+-+===++. 例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxa a a x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰≥1()()22x a x a f x f x dt --⎰=()()22x a x a f x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba a ab xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18计算21||x dx -⎰.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解21||x dx -⎰=021()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 解 因()f x 连续,()f x 必可积,从而1()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x = , 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]xt t t +-=235x x -+-, 故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.例22 计算21-⎰.由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解21-⎰=211--+⎰⎰.由于2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx-⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dxππ-=-⋅=-⎰⎰.例23计算3412ee⎰.解3412ee⎰=34e3412ee⎰=⎰=3412ee=6π.例24计算4sin1sinxdxxπ+⎰.解4sin1sinxdxxπ+⎰=42sin(1sin)1sinx xdxxπ--⎰=244200sintancosxdx xdxxππ-⎰⎰=244200cos(sec1)cosd xx dxxππ---⎰⎰=44001[][tan]cosx xxππ--=24π-注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算2a⎰,其中0a>.解2a⎰=20a⎰,令sinx a a t-=,则2a⎰=3222(1sin)cosa t tdtππ-+⎰=3222cos0a tdtπ+⎰=32aπ.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰ []201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos u du u u π+⎰.所以,a⎰22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 0⎰.解设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 222001284du du u =-=+⎰⎰4π-.例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续.分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于220()xtf x t dt -⎰=2221()2x f x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()xtf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x ⋅=2()xf x . 错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-.例30 计算120ln(1)(3)x dx x +-⎰. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x -++-⎰11ln 2ln324=-. 例31计算20sin x e xdx π⎰.解由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1) 而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2) 将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.解10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰ 21142π=-⎰. (1) 令sin x t =,则21⎰220sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研)设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x =,则()()xf u du x xϕ=⎰,从而02()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x xx ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于22000()()()()lim ()limlim limxxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=. 从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误: (1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研)设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=. 于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f xd x π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得 12()()0.f f ξξ==例36计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰ 例38计算42⎰分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32)⎰43⎰解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰34lim bb -→⎰34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111())d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =时,t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=+-⎰⎰⎰022dt t +∞-∞=++⎰⎰1arctan )2π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积. 分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量. 解选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为211(2)3A y y dy =-⎰=52. 例42抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =222)2y dy -⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可. 解求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-o11-1cos θ+例44求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --,令0dA dc =,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dAdc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为: 11ln 44y x =-+. 例45求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =下半圆周的方程为1y b =图5-5则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=.例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问: (1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=.假设n x ,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +.于是1lim n n n x +→∞=.()m .例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。

有关定积分问题的常见题型解析(全题型)培训讲学

有关定积分问题的常见题型解析(全题型)培训讲学

有关定积分问题的常见题型解析(全题型)有关定积分问题的常见题型解析题型一 利用微积分基本定理求积分例1、求下列定积分:(1)()13031x x dx -+⎰ (2)41dx +⎰ (3)⎰--2224x分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。

解:(1)因为3221312x x x x x '⎛⎫-+=-+ ⎪⎝⎭, 所以()13031x x dx -+⎰=321102x x x ⎛⎫-+ ⎪⎝⎭=32。

(2121x x =+,312222132x x x x '⎛⎫+=+ ⎪⎝⎭,所以 41dx +⎰=3229211454326x x ⎛⎫+= ⎪⎝⎭。

练习:(1)⎰--a a x a 22 (2)⎰--2124x评注:利用微积分基本定理求定积分dx x f ab )(⎰的关键是找出)()(/x f x F =的函数)(x F 。

如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求其面积。

题型二 利用定积分求平面图形的面积例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。

分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。

为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。

解:由方程组⎩⎨⎧=+=232xy x y ,可得3,121=-=x x 。

故所求图形面积为: S =()dx x ⎰-+3132-dx x ⎰-312=(x 2+3x )3323113313=---x 。

评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。

关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。

定积分典型例的题目精讲

定积分典型例的题目精讲

定积分典型例题例1 求21limn n→∞+L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即21limn n →∞L =1lim n n →∞+L =34=⎰.例2⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1 在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而2122422xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n ==,故lim (b an g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1lnn pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰. 例7 求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101n x dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+. 于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8 设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.分析 由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f ξ=即可. 证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9 (1)若22()x t x f x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例12 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表故1x =为()f x 的极大值点,0x =为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x→-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-211cosxxb x→==-,由此可知必有lim(1cos)0xb x→-=,得1b=.又由211cosxxx→==-,得4a=.即4a=,1b=为所求.例16设sin2()sinxf x t dt=⎰,34()g x x x=+,则当0x→时,()f x是()g x的().A.等价无穷小.B.同阶但非等价的无穷小.C.高阶无穷小.D.低阶无穷小.解法1由于22300()sin(sin)coslim lim()34x xf x x xg x x x→→⋅=+2200cos sin(sin)lim lim34x xx xx x→→=⋅+2211lim33xxx→==.故()f x是()g x同阶但非等价的无穷小.选B.解法2 将2sin t展成t的幂级数,再逐项积分,得到sin22337111()[()]sin sin3!342xf x t t dt x x=-+=-+⎰L L,则344340001111sin(sin)sin()1342342lim lim lim()13x x xx x xf xg x x x x→→→-+-+===++L L.例17 证明:若函数()f x在区间[,]a b上连续且单调增加,则有()baxf x dx⎰()2baa bf x dx+≥⎰.证法1 令()F x=()()2x xa aa xtf t dt f t dt+-⎰⎰,当[,]t a x∈时,()()f t f x≤,则()F x'=1()()()22xaa xxf x f t dt f x+--⎰=1()()22xax af x f t dt--⎰≥1()()22xax af x f x dt--⎰=()()22x a x af x f x---0=.故()F x单调增加.即()()F x F a≥,又()0F a=,所以()0F x≥,其中[,]x a b∈.从而()F b=()()2b ba aa bxf x dx f x dx+-⎰⎰0≥.证毕.证法2 由于()f x单调增加,有()[()()]22a b a bx f x f++--0≥,从而()[()()]22baa b a bx f x f dx++--⎰0≥.即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解21||x dx -⎰=021()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩.解23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =U , 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.错误解答 (1)求()F x 的表达式, 当[0,1)x ∈时,23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当[1,2]x ∈时,有()()xF x f t dt ==⎰0(52)xt dt -⎰=25x x -.故由上可知32, 01()5,12x x F x x x x ⎧≤<⎪=⎨-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(5)4x x F x x x ++→→=-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处不连续, 从而()F x 在[0,2]上不连续.错解分析 上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因 为当[1,2]x ∈时,0()()xF x f t dt =⎰中的积分变量t 的取值范围是[0,2],()f t 是分段函数,101()()()()x xF x f t dt f t dt f t dt ==+⎰⎰⎰才正确.例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解3412e e ⎰=34e =3412e e⎰=⎰=3412e e =6π. 例24 计算4sin 1sin xdx xπ+⎰.解40sin 1sin x dx xπ+⎰=420sin (1sin )1sin x x dx x π--⎰=244200sin tan cos x dx xdx x ππ-⎰⎰ =244200cos (sec 1)cos d x x dx x ππ---⎰⎰ =44001[][tan ]cos x x x ππ--=24π-. 注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25 计算20a⎰,其中0a >.解20a⎰=20a⎰,令sin x a a t -=,则2a⎰=3222(1sin )cosat tdt ππ-+⎰=32202cos 0atdt π+⎰=32a π.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰[]201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t tπ+⎰=20sin sin cos udu u u π+⎰.所以,a⎰22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π.注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰.分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 22201284du du u =-=+⎰⎰4π-. 例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=22201()2xf x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()xtf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x . 错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰ 中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-.例30 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于20sin xe xdx π⎰20sin xxde π=⎰2200[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而2cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰20sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研) 设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则()()xf u du x xϕ=⎰,从而2()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x x x ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以()x ϕ'=02()(),0,02x xf x f u dux x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于22000()()()()lim ()limlim limxxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=. 从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f x dx π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得12()()0.f f ξξ==例36 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰=011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰. 例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰=32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰=34lim bb -→⎰=34lim bb -→⎰=34lim[arcsin(3)]bb x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t =,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =32cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=++-⎰⎰⎰022dtt +∞-∞=++⎰⎰1arctan )2π+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-. 例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为图5-33πθ=3cos ρθ=3211-xoy121-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-2x y =1y =3y x =o 1-3-321211-2-xy2y =图5-1342-1cos ρθ=+(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π.例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --,令0dA dc =,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dAdc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为图5-5(0,)b o222()(0)x y b a b a +-=>>xy1xoy23121-45673ln y x=2x =6x =(,ln )c c2y b =+下半圆周的方程为1y b =则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为 V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e=与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=例48(03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,L ).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以 12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=假设n x =,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++. 由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +=.于是1lim n n n x +→∞==.()m .例49 有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =1012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。

定积分典型例题及习题答案

定积分典型例题及习题答案

04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。

定积分应用方法总结(经典题型归纳)

定积分应用方法总结(经典题型归纳)

定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。

3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。

(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。

定积分:定积分ppt全

定积分:定积分ppt全

(梯形公式)
为了提高精度, 还可建立更好的求积公式, 例如辛普森
公式, 复化求积公式等,
并有现成的数学软件可供调用.
三、定积分的性质
(设所列定积分都存在)
( k 为常数)
证:
= 右端
证: 当
时,


上可积 ,
所以在分割区间时, 可以永远取 c 为分点 ,
于是
当 a , b , c 的相对位置任意时, 例如
用直线
将曲边梯形分成 n 个小曲边梯形;
2) 常代变.
在第i 个窄曲边梯形上任取
作以
为底 ,
为高的小矩形,
并以此小
梯形面积近似代替相应
窄曲边梯形面积

3) 近似和.
4) 取极限.

则曲边梯形面积
2. 变速直线运动的路程
设某物体作直线运动,

求在运动时间内物体所经过的路程 s.
解决步骤:
1) 大化小.
第五章
积分学
不定积分
定积分
定积分
第一节
一、定积分问题举例
二、 定积分的定义
三、 定积分的性质
定积分的概念及性质
第五章
一、定积分问题举例
1. 曲边梯形的面积
设曲边梯形是由连续曲线
以及两直线
所围成 ,
求其面积 A .
矩形面积
梯形面积
解决步骤 :
1) 大化小.
在区间 [a , b] 中任意插入 n –1 个分点
积分中值定理对

例4.
计算从 0 秒到 T 秒这段时间内自由落体的平均
速度.
解: 已知自由落体速度为
故所求平均速度

定积分的重要公式及性质(例题 解析)

定积分的重要公式及性质(例题 解析)
区间[a,b]上积分和的极限;这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
定积分的定义:
设函数f(x)在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式 。该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x)在区间[a,b]的定积分,记为 ,并称函数f(x)在区间[a,b]上可积。[1]其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式,∫叫做积分号。
重要公式及性质:
牛顿——莱布尼兹公式
(a为下限,b为下限)
例:
特殊公式:
(n为奇数)
(n为偶数)
例:
上下限为相反数
f(x)为偶函数
f(x)为奇函数
奇函数:y=x , x3, sinx , tanx
偶函数:y= x2, cosx , lxl
例:

定积分习题及讲解

定积分习题及讲解

定积分习题及讲解第四部分 定积分[选择题]容易题1—36,中等题37—86,难题87—117。

1.积分中值定理⎰-=ba ab f dx x f ))(()(ξ,其中( )。

(A ) ξ是],[b a 内任一点;(B )。

ξ是],[b a 内必定存在的某一点; (C ). ξ是],[b a 内唯一的某一点;(D )。

ξ是],[b a 的中点.答B2.⎪⎪⎩⎪⎪⎨⎧=≠⎰=0,0,)()(2x cx x dt t tf x F x,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( )。

(A).0=c ; (B)。

1=c ; (C ).c 不存在; (D)。

1-=c . 答A3.a dx x x I an nn (,1sin lim ⎰=+∞→为常数)由积分中值定理得⎰=+a n n a dx xx ξξ1sin 1sin ,则=I ( )。

(A )aa a a an 1sin1sinlim 1sinlim 2==→∞→ξξξξξ;定积分习题及讲解(B )。

01sinlim 0=→ξξa ;(C)。

a a =∞→ξξξ1sinlim ;(D ).∞=∞→ξξξ1sinlim a .答C4.设)(x f 在],[b a 连续,⎰=x a dt t f x )()(ϕ,则( )。

(A).)(x ϕ是)(x f 在],[b a 上的一个原函数; (B)。

)(x f 是)(x ϕ的一个原函数; (C). )(x ϕ是)(x f 在],[b a 上唯一的原函数; (D)。

)(x f 是)(x ϕ在],[b a 上唯一的原函数.答A5.设0)(=⎰b a dx x f 且)(x f 在],[b a 连续,则( ).(A).0)(≡x f ;(B )。

必存在x 使0)(=x f ;(C).存在唯一的一点x 使0)(=x f ; (D )。

不一定存在点x 使 0)(=x f 。

高考数学新课标定积分应用例题、习题及详解

高考数学新课标定积分应用例题、习题及详解

图3定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为: dx x f x f S ba ⎰-=)]()([下上.③连续曲线()(()0),x y y c y d φφ=≥==及y 及y轴所围成的平面图形面积为()d cA y dy φ=⎰④由方程1()x y φ=与2()x y φ=以及,y c y d==所围成的平面图形面积为12[()()]dcA y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =与2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为31)3132()(103102=-=-=⎰x x x dx x x S .一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限. (2) 写出积分公式. (3) 计算定积分.例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,与x = 2所围成平面区域(如图2)的面积 。

定积分典型例题精讲

定积分典型例题精讲

定积分典型例题例1 求33322321lim(2)n n n n n®¥+++ . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n D =,然后把2111n n n =×的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n ®¥+++ =333112lim ()n n n n n n ®¥+++ =13034xdx =ò. 例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³)与x 轴所围成的图形的面积.故2202x x dx -ò=2p .解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp--ò=2221sin cos t tdt p-ò=222cos tdt pò=2p例3 比较12x e dx ò,212x e dx ò,12(1)x dx +ò.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1 在[1,2]上,有2x x e e £.而令()(1)x f x e x =-+,则()1x f x e ¢=-.当0x >时,()0f x ¢>,()f x 在(0,)+¥上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又.又1221()()f x dx f x dx =-òò,从而有2111222(1)x x x dx e dx e dx +>>òòò.解法2 在[1,2]上,有2x x e e £.由泰勒中值定理212!x e e x x x =++得1x e x >+.注意到1221()()f x dx f x dx =-òò.因此.因此2111222(1)x x x dx e dx e dx +>>òòò.例4 估计定积分22xxe dx -ò的值.的值.分析 要估计定积分的值要估计定积分的值要估计定积分的值, , , 关键在于确定被积函数在积分区间上的最大值与最小值.关键在于确定被积函数在积分区间上的最大值与最小值.关键在于确定被积函数在积分区间上的最大值与最小值.解 设 2()xxf x e -=, , 因为因为因为 2()(21)xxf x ex -¢=-, , 令令()0f x ¢=,求得驻点12x =, , 而而0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -££Î,从而从而2122422xxee dx e --££ò,所以所以21024222x xe edx e ---££-ò.例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ³,()0f x >.求lim ()()bn a n n g x f x dx ®¥ò.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ³,则,则()bnamg x dx ò()()b n a g x f x dx £ò()bn aM g x dx £ò.由于lim lim 1n nn nm M ®¥®¥==,故,故 lim ()()bn an g x f x dx ®¥ò=()bag x dx ò.例6求sin lim n pnn x dx x+®¥ò, ,p n 为自然数.为自然数. 分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.用积分中值定理与夹逼准则.解法1 利用积分中值定理利用积分中值定理设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得由积分中值定理得sin sin n p n x dx p x xx +=×ò, [,]n n p x Î+, 当n ®¥时, x ®¥, 而sin 1x £, 故sin sin lim lim 0n pnn x dx p xx xx +®¥®¥=×=ò.解法2 利用积分不等式利用积分不等式 因为因为sin sin 1ln n pn p n p nn n xx n p dx dx dx x x x n++++££=òòò, 而limln0n n pn®¥+=,所以所以dxxxò34ò34(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例10 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11 函数11()(3)(0)x F x dt x t=->ò的单调递减开区间为_________.解 1()3F x x¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求.例12 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点.解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下:故1x =为()f x 的极大值点,0x =为极小值点.为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0t f g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而x(,0)-¥ 0 (0,1)1(1,)+¥()f x ¢- 0+-3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例14 求 220sin lim(sin )x x xtdtt t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )xx x tdtt t t dt®-òò=2202(sin )lim (1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)limsin x x x®-×=0. 注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b,使等式2201lim1sin xx t dt x b x a t ®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+ 201lim 11cos x x b xa ®==-, 由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由2012lim 11cos x x x a a®==-, 得4a =.即4a =,1b =为所求.为所求.例16 设sin 20()sin x f x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的( ). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小. D .低阶无穷小.解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x ®®×=+ 22cos sin(sin )lim lim 34xxxx xx®®=×+22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x ®®®-+-+===++. 例17 证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有上连续且单调增加,则有()b a xf x dx ò()2b aa b f x dx +³ò. 证法1 令()F x =()()2x xaaa x tf t dt f t dt +-òò,当[,]t a x Î时,()()f t f x £,则,则()F x ¢=1()()()22x a a x xf x f t dt f x +--ò=1()()22x a x af x f t dt --ò³1()()22xa x a f x f x dt --ò=()()22x a x a f x f x ---0=. 故()F x 单调增加.即单调增加.即 ()()F x F a ³,又()0F a =,所以()0F x ³,其中[,]x a b Î. 从而从而()F b =()()2bbaa ab xf x dx f x dx +-òò0³.证毕..证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0³,从而,从而 ()[()()]22b a a b a bx f x f dx ++--ò0³. 即()()2b a a b x f x dx +-ò()()22b a a b a b x f dx ++³-ò=()()22b a a b a b f x dx ++-ò=0.故()baxf x dx ò()2baa b f x dx +³ò.例18 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例19 计算220max{,}x x dx ò.分析 被积函数在积分区间上实际是分段函数被积函数在积分区间上实际是分段函数被积函数在积分区间上实际是分段函数212()01x x f x x x ì<£=í££î.解 232122212010011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=òòò 例20 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()ba f x d x ò是常数(,ab 为常数). 解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ì£<=í-££î,0()()xF x f t dt =ò,02x ££,求()F x , 并讨论()F x 的连续性.的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论.也要分段讨论. 解 (1)求()F x 的表达式.的表达式.()F x 的定义域为[0,2].当[0,1]x Î时,[0,][0,1]x Ì, 因此因此23300()()3[]xxxF x f t dt t dt t x ====òò.当(1,2]x Î时,[0,][0,1][1,]x x = , 因此, 则1201()3(52)xF x t dt t dt =+-òò=31201[][5]xt t t +-=235x x -+-,故32, 01()35,12x x F x x x x ì£<ï=í-+-££ïî. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于处,由于211lim ()lim(35)1x x F x x x ++®®=-+-=, 311lim ()lim 1x x F x x --®®==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.上连续.错误解答 (1)求()F x 的表达式, 当[0,1)x Î时,时,23300()()3[]xxxF x f t dt t dt t x ====òò. 当[1,2]x Î时,有时,有()()x F x f t dt ==ò(52)x t dt -ò=25x x -.故由上可知故由上可知32, 01()5,12x x F x x x x ì£<ï=í-££ïî. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于处,由于211lim ()lim(5)4x x F x x x ++®®=-=, 311lim ()lim 1x x F x x --®®==, (1)1F =. 因此, ()F x 在1x =处不连续, 从而()F x 在[0,2]上不连续.上不连续.错解分析 上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因)中的解法是错误的,因为当[1,2]x Î时,0()()xF x f t dt =ò中的积分变量t 的取值范围是[0,2],()f t 是分段函数,11()()()()xxF x f t dt f t dt f t dt ==+òòò才正确.才正确.例22 计算2112211x xdx x -++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解 2112211x x dx x -++-ò=211112221111x x dx dx x x --++-+-òò.由于22211x x +-是偶函数,而211x x+-是奇函数,有112011x dx x-=+-ò, 于是于是2112211x x dx x -++-ò=2102411x dx x+-ò=22120(11)4x x dx x --ò=11200441dx x dx --òò 由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例23 计算3412ln (1ln )e edx x x x -ò.分析 被积函数中含有1x及ln x ,考虑凑微分.,考虑凑微分. 解 3412ln (1ln )e edx x x x -ò=34(ln )ln (1ln )e ed x x x -ò=34122(ln )ln 1(ln )e e d x x x -ò=341222(ln )1(ln )e e d x x -ò=3412[2arcsin(ln )]e e x =6p.例24 计算400sin 1sin xdx x p+ò.解 40s i n 1s i n x dx xp +ò=420sin (1sin )1sin x x dx x p --ò=244200sin tan cos x dx xdx x p p-òò=24420cos (sec 1)cos d x x dx xpp---òò =44001[][tan ]cos x x x p p--=224p -+. 注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试. 例25 计算2202ax ax x dx -ò,其中0a >.解 2202a x ax x dx -ò=2220()ax a x a dx --ò,令sin x a a t -=,则,则2202ax ax x dx -ò=3222(1sin )cosat tdt pp -+ò=3222cos 0atdt p+ò=32a p.注 若定积分中的被积函数含有22a x -,一般令sin x a t =或cos x a t =. 例26 计算022adx x a x+-ò,其中0a >. 解法1 令sin x a t =,则,则22adx x a x +-ò20cos sin cos tdt t tp=+ò201(sin cos )(cos sin )2sin cos t t t t dt t t p++-=+ò201(sin cos )[1]2sin cos t t dt t tp ¢+=++ò []201ln |sin cos |2t t t p =++=4p . 解法2 令sin x a t =,则,则22adxx a x +-ò=2cos sin cos tdt t t p+ò.又令2t u p=-,则有,则有2cos sin cos t dt t t p+ò=20sin sin cos udu u up+ò.所以,所以,22adx x a x +-ò=22001sin cos []2sin cos sin cos t t dt dt t t t t p p +++òò=2012dt pò=4p . 注 如果先计算不定积分22dxx a x+-ò,再利用牛顿-莱布尼兹公式求解莱布尼兹公式求解,,则比较复杂,由此可看出定积分与不定积分的差别之一.杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 513x x xe e dx e -+ò. 分析分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设1xu e =-,2ln(1)x u =+,221u dx du u =+,则,则 ln 513x x x e e dx e -+ò=22220(1)241u u u du u u +×=++ò22222200442244u u du du u u +-=++òò 222001284du du u =-=+òò4p -.例28 计算220()xd tf x t dt dx-ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以220()xtf x t dt -ò=201()()2x f u du -ò=201()2x f u du ò, 故22()xd tf x t dt dx -ò=21[()]2x d f u du dx ò=21()22f x x ×=2()xf x .错误解答220()xd tf x t dt dx -ò22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元.例29 计算30sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解3sin x xdx pò30(cos )xd x p=-ò33[(cos )](cos )x x x dx p p=×---ò30cos 6xdx pp=-+ò326p=-. 例30 计算120ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò11ln 2ln324=-. 例31 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin x e xdx pò20sin x xde p =ò2200[sin ]cos x x e x e xdx p p=-ò220cos xe e xdx p p=-ò, ((1) 而2cos xe xdx pò20cos x xde p=ò220[cos ](sin )xx e x e x dx p p=-×-ò20sin 1xe xdx p=-ò, ((2) 将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]x e e xdx pp=--ò,故2sin xe xdx pò21(1)2e p=+.例32 计算1arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1)令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t t p=-ò220sin cos cos ttdt t p=×ò220sin tdt p=ò201cos 22tdt p-==ò20sin 2[]24tt p-4p=. (2)将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例33 设()f x 在[0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解 由于[()()]cos f x f x xdx p¢¢+ò00()sin cos ()f x d x xdf x pp¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp ¢¢¢=-++òò ()(0)2f f p ¢¢=--=.故 (0)f ¢=2()235f p ¢--=--=-. 例3434((97研) 设函数()f x 连续,连续,10()()x f xt dt j =ò,且0()limxf x A x®=(A 为常数), 求()x j ¢并讨论()x j ¢在0x =处的连续性.处的连续性.分析 求()x j ¢不能直接求,因为10()f xt dt ò中含有()x j 的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x j ¢,最后用函数连续的定义来判定()x j ¢在0x =处的连续性.处的连续性.解 由0()lim x f x A x®=知0lim ()0x f x ®=,而()f x 连续,所以(0)0f =,(0)0j =. 当0x ¹时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则,则()()xf u du x xj =ò,从而从而2()()()(0)xxf x f u dux x xj -¢=¹ò.又因为02()()(0)()limlimlim 022xx x xf u du x f x A x x x j j ®®®-===-ò,即(0)j ¢=2A.所以.所以()x j ¢=02()(),0,02xxf x f u du x x Ax ì-ï¹ïíï=ïîò. 由于由于022000()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x j ®®®®-¢==-òò=(0)2A j ¢=. 从而知()x j ¢在0x =处连续.处连续.注 这是一道综合考查定积分换元法、这是一道综合考查定积分换元法、对积分上限函数求导、对积分上限函数求导、对积分上限函数求导、按定义求导数、按定义求导数、按定义求导数、讨论函数讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出)直接求出02()()()xxf x f u du x xj -¢=ò, 而没有利用定义去求(0)j ¢,就得到结论(0)j ¢不存在或(0)j ¢无定义,从而得出()x j ¢在0x =处不连续的结论.处不连续的结论.(2)在求0lim ()x x j ®¢时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致00()()()1lim ()lim ().22x x xf x f x f x x f x x j ®®¢+-¢¢== 又由0()limx f x A x®=用洛必达法则得到0lim ()x f x ®¢=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.的邻域内可导.但题设中仅有但题设中仅有()f x 连续的条件,连续的条件,因此上面出现因此上面出现的0lim ()x f x ®¢是否存在是不能确定的.是否存在是不能确定的.例3535((00研) 设函数()f x 在[0,]p 上连续,且上连续,且()0f x dx p=ò,()cos 0f x xdx p=ò.试证在(0,)p 内至少存在两个不同的点12,x x 使得12()()0f f x x ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =ò,找出()F x的三个零点,由已知条件易知(0)()0F F p ==,0x =,x p =为()F x 的两个零点,第三个零点的存在性是本题的难点.零点的存在性是本题的难点.另一种方法是利用函数的单调性,另一种方法是利用函数的单调性,另一种方法是利用函数的单调性,用反证法证明用反证法证明()f x 在(0,)p 之间存在两个零点.之间存在两个零点.证法1 令0()(),0xF x f t dt x p =££ò,则有(0)0,()0F F p ==.又.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx pppp ==+òòò 0()sin 0F x xdx p==ò,由积分中值定理知,必有(0,)x p Î,使得,使得()sin F x xdx pò=()sin (0)F x x p ×-.故()sin 0F x x =.又当(0,),sin 0x p x ι,故必有()0F x =.于是在区间[0,],[,]x x p 上对()F x 分别应用罗尔定理,知至少存在分别应用罗尔定理,知至少存在1(0,)x x Î,2(,)x x p Î, 使得使得12()()0F F x x ¢¢==,即12()()0f f x x ==.证法2 由已知条件0()0f x dx p=ò及积分中值定理知必有及积分中值定理知必有10()()(0)0f x dx f px p =-=ò,1(0,)x p Î,则有1()0f x =.若在(0,)p 内,()0f x =仅有一个根1x x =,由0()0f x dx p=ò知()f x 在1(0,)x 与1(,)x p 内异号,不妨设在1(0,)x 内()0f x >,在1(,)x p 内()0f x <,由,由()cos 0f x xdx p=ò,()0f x dx p=ò,以及cos x 在[0,]p 内单调减,可知:内单调减,可知: 100()(cos cos )f x x dx px =-ò=11110()(cos cos )()(cos cos )f x x dx f x x dx xpx x x -+-òò0>.由此得出矛盾.故()0f x =至少还有另一个实根2x ,12x x ¹且2(0,)x p Î使得使得12()()0.f f x x ==例36 计算2043dxx x +¥++ò.分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+=ln 32. 例37 计算322(1)2dx x x x+¥--ò.解322(1)2dx x x x+¥--ò223223sec tan 1sec sec tan (1)(1)1dxx d x x p pq qqq q q+¥=-=---òò233cos 12d pp q q ==-ò. 例38 计算42(2)(4)dx x x --ò.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32(2)(4)dxx x --ò和43(2)(4)dx x x --ò均收敛时,原反常积分才是收敛的.均收敛时,原反常积分才是收敛的.解 由于由于32(2)(4)dx x x --ò=32lim (2)(4)aa dx x x +®--ò=322(3)lim 1(3)aa d x x +®---ò=32lim[arcsin(3)]a a x +®-=2p.43(2)(4)dx x x --ò=34lim (2)(4)bb dx x x -®--ò=324(3)lim 1(3)bb d x x -®---ò=34lim[arcsin(3)]b b x -®-=2p .所以所以 42(2)(4)dx x x --ò22ppp =+=.例39 计算05(1)dx x x +¥+ò.分析 此题为混合型反常积分,积分上限为+¥,下限0为被积函数的瑕点.解 令x t =,则有,则有5(1)dx x x +¥+ò=5222(1)tdt t t +¥+ò=50222(1)dt t +¥+òò,再令tan t q =,于是可得,于是可得 522(1)dtt +¥+ò=25022tan (tan 1)d pq q +ò=2250sec sec d p q q qò=230sec d pq q ò =320cos d p q q ò=220(1sin )cos d pq q q -ò=220(1sin )sin d pq q -ò=3/201[sin sin ]3p q q -=23.例40 计算214211x dx x-++ò. 解 由于由于221114222222111()11112()d x xx x dx dx xx x x x ---+-+==+++-òòò,可令1t x x=-,则当2x =-时,22t =-;当0x -®时,t ®+¥;当0x +®时,t ®-¥;当1x =时,0t =;故有;故有2114222211()()11112()2()d x d x x x x dx xx x xx----+=+++-+-òòò02222()22d t dtt t +¥--¥=+++òò 21(arctan )22p =+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.此做法留给读者去完成.下面选取以下面选取以y 为积分变量.变量.解 选取y 为积分变量,其变化范围为[1,2]y Î,则面积元素为素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为于是所求面积为211(2)3A y y dy =-ò=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有,则有图5-21S =2222(8)2y y dy ---ò=24488cos 3d pp q q --ò=423p +,218S A p =-=463p -,于是,于是12S S =423463p p +-=3292p p +-. 2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-2x y =1y =3y x =o 1-3-321211-2-xy2y =图5-1342-例43 求心形线1cos r q =+与圆3cos r q =所围公共部分的面积.部分的面积.分析 心形线1cos r q =+与圆3cos r q =的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.可.解 求得心形线1cos r q =+与圆3cos r q =的交点为(,)r q =3(,)23p±,由图形的对称性得心形线1cos r q =+与圆3cos r q =所围公共部分的面积为所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d ppp q q q q ++òò=54p .例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).所示).分析 要求平面图形的面积的最小值,要求平面图形的面积的最小值,必须先求出面积的表必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-ò=44(1)4ln 46ln 62ln 2c c-++-+. 由于由于dA dc =2164c c -+=24(4)c c--, 令0dA dc =,解得驻点4c =.当4c <时0dA dc <,而当4c >时0dAdc>.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:取得最小值.此时切线方程为:11ln 44y x =-+.例45 求圆域222()x y b a +-£(其中b a >)绕x 轴旋转而成的立体的体积.成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b a x =+-,下半圆周的方程为下半圆周的方程为221y b a x =--.图5-5则体积元素为则体积元素为(0,)b o()(0)x y b a b a +-=>>xy1xo y23121-45673ln y x=2x =6x =(,ln )c c 3p q =3cos r q=3211-xoy121-1cos r q=+dV =2221()y y dx p p -=224b a x dx p -.于是所求旋转体的体积为.于是所求旋转体的体积为V =224aa ba x dx p --ò=2208ab a x dx p -ò=284a b p p ×=222a b p .注 可考虑选取y 为积分变量,请读者自行完成.为积分变量,请读者自行完成. 例4646((03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是处的切线方程是0001ln ()y x x x x =+-.由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积的面积1()12y e A e ey dy =-=-ò.(2)切线1y x e=与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为旋转所得的旋转体积为2113V e p =,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为旋转所得的旋转体积为1222011()(2)22y V e e dy e e p p =-=-+-ò.因此,所求体积为因此,所求体积为212(5123)6V V V e e p =-=-+. 例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.其体积.解 选x 为积分变量且[0,2]x Î.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为22x ,得等边三角形的面积为得等边三角形的面积为图5-7()A x =23(22)4x =23x . 于是所求体积为于是所求体积为 V =2()A x dx ò=223xdx ò=43.xyzo22y x=2x =ln y x=ln y x=yxo12311y xe=例4848((03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问:.问:(1)汽锤打桩3次后,可将桩打进地下多深?次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米)表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2, ).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以,所以 12211022x k k W kxdx x a ===ò,2122222211()()22x x k kW kxdx x x x a ==-=-ò.由21W rW =得22221x x ra -=,即,即 222(1)x r a =+, 3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+ò.由2321W rW r W == 得22223(1)x r a r a -+=,即,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下231x a r r =++(m ).(2)问题是要求lim n n x ®¥,为此先用归纳法证明:11n n x a r r +=+++ .假设11n n x r r a -=+++ ,则,则12211()2n nx n n nx k Wkxdx x x +++==-ò2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而从而11n n x r r a +=+++ . 于是111lim lim 11n n n n r a x a r r++®¥®¥-==--.1r -1 5x-=5003roxyx dx+x(0,3)A(10,1)B。

有关定积分问题的常见题型解析(全题型)Word版

有关定积分问题的常见题型解析(全题型)Word版

有关定积分问题的常见题型解析题型一 利用微积分基本定理求积分例1、求下列定积分:(1)()13031x x dx -+⎰ (2)()941x x dx +⎰ (3)⎰--2224x分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。

解:(1)因为3221312x x x x x '⎛⎫-+=-+ ⎪⎝⎭, 所以()13031x x dx -+⎰=321102x x x ⎛⎫-+ ⎪⎝⎭=32。

(2)因为()121x x x x +=+,312222132x x x x '⎛⎫+=+ ⎪⎝⎭, 所以()941x x dx +⎰=3229211454326x x ⎛⎫+= ⎪⎝⎭。

练习:(1)⎰--a a x a 22 (2)⎰--2124x评注:利用微积分基本定理求定积分dx x f a b )(⎰的关键是找出)()(/x f x F =的函数)(x F 。

如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求其面积。

题型二 利用定积分求平面图形的面积例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。

分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。

为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。

解:由方程组⎩⎨⎧=+=232x y x y ,可得3,121=-=x x 。

故所求图形面积为:S =()dx x ⎰-+3132-dx x ⎰-312=(x 2+3x)3323113313=---x 。

评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。

关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。

高等数学习题详解-第6章定积分

高等数学习题详解-第6章定积分

习题6-11. 利用定积分的几何意义求定积分:利用定积分的几何意义求定积分:(1) 12xdx ò; (2) 220aa x dx -ò(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ò表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以1021xdx =ò.(2) 根据定积分的几何意义知,22aa x dx -ò表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014aa x dx a -=òπ. 2. 根据定积分的性质,比较积分值的大小:根据定积分的性质,比较积分值的大小:(1) 12x dx ò与13x dx ò; (2) 10xe dx ò与1(1)x dx +ò.解 (1) ∵当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³, 又2x3x ,所以11230x dx x dx >òò.(2) 令()1,()1x xf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>, 从而()(0)0f x f ³=,说明1xe x ³+,所以11(1)xe dx x dx >+òò.3. 估计下列各积分值的范围:估计下列各积分值的范围:(1) 421(1)x dx +ò; (2) 313arctan x xdx ò;(3) 2axae dx --ò(0a >); (4) 22xxedx -ò.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -£+£-ò, 即 4216(1)51x dx £+£ò.(2) 令()arctan f x x x =,则2()arctan 1x f x x x ¢=++,当1[,3]3x Î时,()0f x ¢>,从而()f x 在1[,3]3上是增函数,从而f (x )在1[,3]3上的最大值(3)3πM f ==,最小值1()363πm f ==,所以所以 313112(3)arctan (3)9363333x xdx =-££-=òππππ即3132arctan 93x xdx ££òππ. (3) 令2()x f x e-=,则2()2xf x xe -¢=-,令()0f x ¢=得驻点0x =,又(0)1f =, 2()()a f a f a e-=-=,a >0时, 21ae -<,故()f x 在[],a a -上的最大值1M =,最小值,最小值2ea m -=,所以所以2222aa x aa dx a---££òee . (4) 令2()x x f x e -=,则2()(21)x xf x x e -¢=-,令()0f x ¢=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以所以 2122402x xeedx e --££ò.习题6-21. 求下列导数:求下列导数:(1) 201x d t dt dx +ò; (2) 5ln 2x td te dt dx -ò; (3) cos 20cos()xd t dt dx p ò; (4) sin x d t dt dx tp ò (0x >). 解 (1) 22011xd t dt x dx +=+ò. (2)55ln 2x tx d t e dt x e dx --=ò. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxp p p ¢=×=-ò(4)sin sin sin x xdt d t x dt dt dx t dx t xp p =-=-òò. 2. 求下列极限:求下列极限:(1) 02arctan limxx tdt x ®ò; (2) ()2220020e lime x t xx t dt t dt®òò.解 (1) ()0022000021arctan arctan arctan 11(1)lim lim lim lim 222x x x x x x tdt tdt x x x x x ®®®®¢éù--ëû+====-¢òò.(2) ()()22222222222000020000220022lim lim lim lim x x x x t t t x t x x x x x x x t x t e dt e dt e dt e dt xe xe te dt te dt ®®®®¢éù×êúëû===¢éùëûòòòòòòe []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe xxe ®®®¢éùëû====+¢+×ò. 3. 求由方程e cos 0yx tdt tdt +=òò所确定的隐函数()y y x =的导数.的导数.解 方程两边对x 求导数得: cos 0e yy x ¢×+=, cosey x y ¢\=-,又由已知方程有000sin e yxtt +=,即1sin sin 00e yx -+-=, 即1sin e yx =-,于是有cos cos sin 1eyxx y x ¢=-=-.4. 计算下列定积分:计算下列定积分: (1) 41xdx ò; (2) 221d x x x --ò;(3) 设,0,2()sin ,2x x f x x x p p p 죣ïï=í;ïî,求0()f x dx p ò (4)320(2)x dx -ò.解 (1)44321121433xdx x ==ò.(2)2122222111()()()dx x x dx x x dx x x dx x x --=-+-+--òòòò012322332101111111116322332x x x x x x -æöæöæö=++=---ç÷ç÷ç÷èøèøèø.(3) ()22220022()sin 1cos 82x f x dx xdx xdxx p pp pp ppp =+=+=+-òòò(4) 33232002(2)2(2)(2)x dx xdx x dx x dx -=-=-+-òòòò232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续上连续,,在(),a b 内可导内可导,,()0f x ¢£,1()()xaF x f t dt x a =-ò;证明:在(),a b 内有()0F x ¢£.证明证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a éù¢=-+=--êúëû---òò[][][]21()()()(),(,,)()x a f x x a f a x a b x a x x =---ÎÎ-(),((,)(,))x f x a b x ax h h x -¢=ÎÎ-. 由已知条件可知结论成立.由已知条件可知结论成立.习题习题 6-3 6-31. 计算下列积分:计算下列积分: (1) 3sin()x dx pp p +3ò; (2) 32(115)dx x 1-+ò; (3) 11154dx x--ò; (4) 320sin cos d j j j pò;(5) 22cos udu p p 6ò; (6) 2e 11ln dx x x+ò;(7) 32211dx xx +ò; (8) 2202x dx -ò; (9) ln 3ln 2e e x x dx--ò; (10)3222dxx x +-ò.解 (1) 333sin()sin()()[cos()]x dx x d x x pp p pp p p p p p +=++=-+3333òò42cos cos 033p p =-+=.(2) 123322211(511)151(511)(115)5(511)10512dxd x x x x 11---+==-=+++òò(3)1111111111(54)154425454dx d x x x x---=--=-=---òò.(4)233422011sin cos cos cos cos 44d d p ppj j j j j j=-==-òò.(5)222221cos 211cos cos 2(2)224u udu du du ud u pp p p ppp p 6666+==+òòòò26131sin 2268264up p p p p æö=+=--ç÷èø. (6) 222111(ln 1)22(31)1ln 1ln 1ln e e e dx d x x x x x+===-+++òò. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t p =;当3x =时,3t p =;于是于是 333222144cos 2123sin 3sin 1dx t dt t t x x p p p p==-=-+òò. (8) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p=;于是2222220122cos (1cos 2)(sin 2)22x dx tdt t dt tt pppp-==+==+òòò.(9) 令xe t =,则1ln ,d x t x dt t ==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是于是3ln3332ln 22221113111(ln ln)12222111x xdxdt t dt e e t t t t --æö====-ç÷---++èøòòò.(10)333222211111()ln 231232dx x dx x x x x x -=-=+--++òò 1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分:计算下列定积分: (1) 10e x x dx -ò; (2)e1ln x xdx ò;(3) 41ln x dx x ò; (4) 324sin xdx xpp ò; (5) 220e cos x xdx p ò; (6) 221log x xdx ò;(7)π20(sin )x x dx ò; (8) e1sin(ln )x dx ò.解 (1) (1)111100xxxxxedx xdexee dx ----=-=-+òòò1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e ee x xdx xdx x x xdx e x e ==-=-=+òòò. (3) 4444411111ln 12ln 2ln 28ln 24x dx xd x x x x dx x x x ==-×=-òòò 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x p p p pp p p p =-=-+òòò34π131ln ln sin 492249x ppp p 3æö3=-+=+-ç÷èø. (5) 222222220cos sin sin 2sin xx x x exdx e d x e x e xdx p p p p ==-òòò222222002cos 2cos 4cos xxxe e d x e e xe xdx pp ppp=+=+-òò220e 24cos x e xdx pp =--ò于是于是221cos (2)5x e xdx e pp =-ò. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-æö=-ç÷ç÷èøòòò 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x pp p p =-=-òòò 33200011(sin 22sin2)cos26464x x x xdx xd x p p p p p =--=-òò 3001(cos 2cos2)64x x xdx p p p =--ò 3301sin 264864x p p p p p=-+=-.(8)111sin(ln )sin(ln )cos(ln )eee x dx x x x dx =-òò11sin1cos(ln )sin(ln )ee e x x x dx =--ò1sin1cos11sin(ln )e e e x dx =-+-ò所以所以11sin(ln )(sin1cos11)2ex dx e e =-+ò.3. 利用被积函数的奇偶性计算下列积分:利用被积函数的奇偶性计算下列积分:(1) 121ln(1)x x dx -++ò ; (2)1212sin 1xdx x -++ò (3) 2222(4)x x dx -+-ò; (4) 4224cos d q q pp -ò.解 (1) 2ln(1)x x ++ 是奇函数,是奇函数, 121ln(1)0x x dx -\++=ò.(2) 2sin 1x x+ 是奇函数,121sin 01x dx x -\=+ò, 因此因此 111221112sin 22arctan 11x dx dx x x x p ---+===++òò. (3) 222222222(4)(424)416x x dx x x dx dx ---+-=+-==òòò. (4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d q q q q q qq q qp p pp p p -p+æö==ç÷èø=++=×××=òòòò.4. 证明下列等式:证明下列等式:(1) 证明:1100(1)(1)mnn m x x dx x x dx -=-òò;(2) 证明:1122111xx dx dx x x=++òò (0x >); (3) 设()f x 是定义在区间(,)-¥+¥上的周期为T 的连续函数,则对任意(,)a Î-¥+¥,有()()a TTaf x dx f x dx +=òò.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是于是1111(1)(1)()(1)(1)m n m n n m n mx x dx t t dt t t dt x x dx -=--=-=-òòòò,即11(1)(1)m n n m x x dx x x dx -=-òò.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t x x t tdx dt t dt dx x t t x t tæö=×=-×==-ç÷++++èø+òòòòòd ,即1122111xxdxdxx x =++òò.(3) 因为因为()()()a TT a Taa f x dx f x dx f x dx ++=+òòò,而,而()()()a Taaaf x dx x t Tf t T dt f t dt +=++=òòò令 0()()()aTTaf x dx f x dx f x dx ==-òòò故()()a TTaf x dx f x dx +=òò.4. 若()f t 是连续函数且为奇函数,是连续函数且为奇函数,证明证明0()xf t dt ò是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ò是奇函数.是奇函数.证 令0()()xF x f t dt =ò.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--==òòò, 所以0()()xF x f t dt =ò是偶函数.是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--=-=-òòò, 所以0()()xF x f t dt =ò是奇函数.是奇函数.5. 利用分部积分公式证明:利用分部积分公式证明:()()()()d xxu f u x u du f x x du -=òòò.证 令0()()uF u f x dx =ò则()()F u f u ¢=, 则(())()()()xu xxxf x dx du F u du uF u uF u du ¢==-òòòò()()()()xxxxF x uf u du xf x dx uf u du =-=-òòò()()()()xxxxx f u du uf u du xf u du uf u du =-=-òòòò()()xx u f u du =-ò. 习题6-41. 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-; (7) ,xx y e y e -==与1x =;(8) sin (0)2y x x p =££与0,1x y ==.解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x Î-,面积元素22(2)dA x x dx =--,于是所求的面积为,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=ò.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e Î,面积元素ln dA ydy =;于是所求面积为;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=òò. (3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x Î-,面积元素2(4)dA x dx =-,于是所求的面积为,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=ò. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:它们所围图形面积为:1212220101(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-òòòò2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x=与2x =的交点为1(2,)2;取x 积分变量,[]1,2x Î,面积元素1()dA x dx x =-,于是所求的面积为,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-ò.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y Î-,面积元素2(2)dA y y dy =+-,于是所求的面积为,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=ò.(7) 曲线x y e =与xy e -=的交点(0,1),取x 作积分变量,[]0,1x Î,面积元素()xxdA e e dx -=-,于是所求图形的面积为,于是所求图形的面积为10)()2xxxxA e e dx e e e e--=-=+=+-ò11(.(8)取x 作积分变量,0,2x p éùÎêúëû,面积元素(1sin )dA x dx =-,于是所求的面积为,于是所求的面积为220(1sin )(cos )12A x dx x x ppp =-=+=-ò.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) ,1,4,0y x x x y ====,绕x 轴;轴; (2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴;(3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴. 解 (1)取x 作积分变量,[]1,4x Î,体积元素2()dV x dx xdx p p ==,于是所求旋转体的体积为的体积为442111522V xdx x p p p ===ò.(2)绕x 轴旋转时,取x 作积分变量,[]0,2x Î,体积元素32()x dV x dx p =,于是,于是22267012877x V x dx xp p p ===ò; 同理可求平面图形绕y 旋转所成的旋转体的体积旋转所成的旋转体的体积8582233003642()(4)55yV y dy y y pp péù=-=-=ëûò. (3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y Î,体积元素222()()dV y y dyp éù=-ëû,于是所求的旋转体的体积为,于是所求的旋转体的体积为114250113()()2510V y y dx y y p p p =-=-=ò. (4) 取y 作积分变量[]1,1y Î-,体积元素22222(51)(51)201dV y y dy y dy p p éù=+----=-ëû,于是所求的旋转体的体积为于是所求的旋转体的体积为 122120120102V y dy ppp p -=-=×=ò.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e ¢=(万元/单位),其固定成本为090C =(万元),求总成本函数.,求总成本函数. 解 总成本函数为总成本函数为0.200()()290QQQ C Q C Q dQ C e dQ ¢=+=+òò0.20.2010901080Q QQ e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q ¢=-(元/单位),试求总收益函数与需求函数.益函数与需求函数. 解 总收益函数为总收益函数为20()(152)15QR Q Q dQ Q Q =-=-ò需求函数为需求函数为()15R Q P Q Q==-.5.已知某产品产量的变化率是时间t (单位:单位:月月)的函数()25,0f t t t =+³,问:问:第一个第一个5月和第二个5月的总产量各是多少? 解 设产品总产量为()Q t ,则()()Q t f t ¢=,第一个5月的总产量月的总产量5525100()(25)(5)50Q f t dt t dt t t ==+=+=òò. 第二个5月的总产量为月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=òò.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q ¢=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q ¢=-.问:.问: (1) 生产量为多少时,总利润最大?最大利润为多少? (2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q ¢=即()()0R Q C Q ¢¢-=即7220Q --=, 2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为总利润最大,此时的总成本和总收益分别为2.52.52.5()225C C Q dQ dQ Q¢====òò2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q ¢==-=-=òò总利润11.255 6.25L R C =-=-=(万元). 即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台, 总成本3300()26C C Q dQ dQ ¢===òò,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q ¢==-=-=òò, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.万元.习题习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值:判断下列反常积分的敛散性,若收敛,则求其值:(1) 41dxx+¥ò; (2)1dx x+¥ò;(3) 0xe dx +¥-ò (a >0); (4) 0sin xdx +¥ò; (5)1211dxx--ò; (6) 222dxx x +¥-¥++ò; (7) 211xdx x -ò; (8)10ln x xdx ò; (9) e211ln dxx x-ò; (10)23(1)dxx -ò.解 (1) 14311133dx x x +¥+¥=-=ò.此反常积分收敛..此反常积分收敛. (2) 112dx x x+¥+¥==+¥ò.此反常积分发散..此反常积分发散.(3) 101x xe dx e +¥--+¥=-=ò.此反常积分收敛..此反常积分收敛.(4) 00sin cos lim cos 1x xdx x x +¥+¥®+¥=-=-+ò不存在,此反常积分发散.不存在,此反常积分发散.(5) 11121arcsin 1dx x x p --==-ò.此反常积分收敛..此反常积分收敛.(6)22(1)arctan(1)22(1)1dx d x x x x x p +¥+¥+¥-¥-¥-¥+==+=++++òò.此反常积分收敛..此反常积分收敛.(7)2322211001112lim lim (1)21113xdx x dx x x x x e e e e +++®®+-+éù==-+-êú--ëûòò320222lim 222333e e e +®æö==--ç÷èø.此反常积分收敛..此反常积分收敛. (8)1112222100111111ln limln limln limln 222424x xdxxdxx xxdx eee e e e ee e ®®®æöæö==-=--ç÷ç÷èøèøòòò, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx e e e e e e ++®®==--=-òò.此反常积分收敛..此反常积分收敛. (9) 12211ln πarcsin(ln )21(ln )1(ln )e e e dx d x x x x x ===--òò.此反常积分收敛..此反常积分收敛. (10) 212333001(1)(1)(1)dx dx dxx x x =+---òòò,因为反常积分1132001(1)(1)dx x x ==¥--ò发散,所以反常积分230(1)dxx -ò发散.发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ¥ò收敛?当k 为何值时,这反常积分发散? 解 当1k =时,时,++222ln ln(ln )ln ln dxd x x x x x¥¥+¥===+¥òò,发散发散.. 当1k ¹时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk k k k dx x k x d xx x kk -¥¥--+¥ì>ï-===í-ï+¥<îòò所以,当1k >时,此广义积分收敛;当1k £时,此广义积分发散.时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n xn I x dx ¥-=ò. 解 ++1100n x n xn xn n I x de x e n x e dx nI ¥¥----+¥-=-=-+=òò, 因为因为 +101xx xI xde xe e ¥---+¥+¥=-=--=ò,所以所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:求下列积分:(1)121tan sin 1xdx x -+ò; (2)1202x x dx -ò;(3)22204x x dx -ò; (4)ln 21x e dx -ò;(5)21220(1)x dx x +ò; (6)2211x dx x -ò;(7)120xx e dx -ò; (8) 21(ln )ex dx ò;(9) 401cos 2x dx xp+ò; (10) 20cos xe xdx p -ò; (11) 20sin 1cos x x dx x p++ò; (12) 40ln(1tan )x dx p+ò.解 (1) 因为被积函数2tan sin 1x x +是奇函数是奇函数,,所以121tan 0sin 1xdx x -=+ò. (2) 1122021(1)x x dx x dx -=--òò,令1sin x t -=,则cos dx tdt =;当0x =时,2t p=-;当1x =时,0t =;所以;所以010*******1cos 2sin 22cos 2244t t t x x dx tdt dt p p p p ---+éù-===+=êúëûòòò. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p =;所以222222222044sin 4cos 4sin 22(1cos 4)xx dx t tdt tdt t dt p pp-=×==-òòòò2012(sin 4)4t t pp =-=.(4) 令1x e t -=,则221t dx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 2112000212(arctan )2(1)14x t e dx dt t t t p -==-=-+òò. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t p=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t pp pp -===-=-+òòò.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t p=;所以22233301001tan sec tan tan (tan )3sec 3x t dx t tdt tdt t t x t p p pp -===-=-òòò. (7) 111112221000022xxxxx x e dx x dex exe dx e xde ------=-=-+=--òòòò111111000223225xxxe xee dx e e e ------=--+=--=-ò. (8) 22111111(ln )ln 2ln 2ln 22e e e e e x dx x x x x dx e x x dx e x=-×=-+=-òòò.(9) 444400tan tan tan 1cos 2x dx xd x x x xdx xpppp==-+òòò401ln cos ln 2442x pp p =+=-.(10) 2222000cos cos cos sin xxxxe xdx xdee x e xdx pppp----=-=--òòò22201sin 1sin cos xxxxdee x e xdx ppp ---=+=+-òò2201cos x ee xdx pp--=+-ò, 所以所以 2201cos (1)2x e xdx e p p--=+ò.(11) 22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x p p p p p +=+=-+++òòòòò2222200tantan ln(1cos )222ln cos ln(1cos )22x x x dx x x x p pp ppp=--+=--+ò20ln 22ln cos 222xp pp=++=. (12) 44440cos sin ln(1tan )lnln(cos sin )ln cos cos x x x dx dx x x dx xdx xpppp++==+-òòòò令4x u p-=,可得044041ln(cos sin )ln 2cos()(ln 2ln cos )42x x dx x dx u du p p p p éù+=-=-+êúëûòòò40ln 2ln cos 8xdx p p =+ò所以所以4ln 2ln(1tan )8x dx pp +=ò.2、设()f x 在[],a b 上连续,且()1b af x dx =ò,求()b af a b x dx +-ò.解令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以;所以 ()()()1b ababaf a b x dx f t dt f t dt +-=-==òòò.3、设()f x 为连续函数,试证明:()()(())xxtf t x t dt f u du dt -=òòò.证 用分部积分法,000(())()(())xx t tx tf u du dt tf u du td f u du =-òòòòò()()()()x x x x x f u du tf t dt xf t dt tf t dt =-=-òòòò()()xf t x t dx =-ò.4、设()u j 为连续函数,试证明:22()2()aaa x dx x dx j j -=òò.证2220()()()aa aaa x dx x dx x dx j j j --=+òòò,令x t =-,则00222200()(())()()aaa a x dx t dt t dt x dx j j j j -=--==òòòò 所以22220()()()2()aa aaaaa x dxx dx x dx x dx j j j j --=+=òòòò. 5、计算下列反常积分:、计算下列反常积分:(1)2048dx x x +¥++ò; (2)21arctan x dx x+¥ò; (3)101(1)dx x x -ò; (4)1ln e dx x x ò. 解 (1) 222000(2)12arctan 48(2)2228dx d x x x x x p +¥+¥+¥++===++++òò. (2) 221111arctan 1arctan 1arctan (1)x x dx xddx x xxx x +¥+¥+¥+¥=-=-++òòò22111ln ln 242142xx p p +¥=+=++. (3) 1110001122arcsin (1)1dx d x x x x x p éù===ëû--òò.(4) 111ln 2ln 2ln ln e eedxd xx x x x ===òò.6、求抛物线22y px =及其在点(,)2p p 处的法线所围成的平面图形的面积.处的法线所围成的平面图形的面积.解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22p p p p -;取y 作积分变量3p y p -££,所求的平面图形面积为,所求的平面图形面积为 2232333131116()()222263p pp pA p y y dy py y y p p p --=--=--=ò. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ££,体积元素2232434()(16)dy y dy y dy p p éù=-=-ëû于是,所求的旋转体的体积为于是,所求的旋转体的体积为88437303512(16)(16)77V y dy y y p p p =-=-=ò. 8、设某产品的边际成本为()2C Q Q ¢=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q ¢=-(万元/台).试求:.试求: (1) 总成本函数和总收益函数;总成本函数和总收益函数; (2) 获得最大利润时的产量;获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.台,总利润的变化. 解 (1)总成本函数201()(2)2222QC Q Q dQ C Q Q =-+=-+ò,总收益函数20()(204)202QR Q Q dQ Q Q =-=-ò. (2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q ¢=,得6Q =(台),而(6)30L ¢¢=-<,所以当产量6Q =(台)时,利润最大.时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B)1、填空题:填空题:(1) 22cos xd x t dt dx =ò . (2) (2) 设设()f x 连续,220()()x F x xf t dt =ò,则()F x ¢= .(3)2sin()xd x t dt dx-=ò.(4) (4) 设设()f x 连续,则220()xd tf x t dt dx -=ò . (5) (5) 设设20cos ()1sin x t f x dt t =+ò,则220()1()f x dx f x p¢=+ò . (6) (6) 设设()f x 连续,且10()2()f x x f x dx =+ò,,则()f x = .(7) (7) 设设()f x 连续,且()1cos xtf x t dtx -=-ò,则20()f x dx p=ò .(8)2ln e dxx x +¥=ò .解 (1) 2220002224cos (cos )cos (cos )2x xx d dx t dt x t dt t dt x x x dx dx ==+-×òòò2224cos 2cos x t dt x x =-ò.(2) 2222200()(())()()2xx d F x xf t dt f t dt x f x x dx ¢==+××òò 22220()2()x f t dt x f x =+ò.(3) (3) 令令x t u -=,则22200sin()sin ()sin xxx x t dt u du u du -=-=òòò 所以所以22200sin()sin sin xxddx t dt u du x dx dx -==òò.(4) (4)令令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---òò220011()()22x x f u du f u du =-=òò.所以.所以 2222001()()()2xx d d tf x t dt f u du xf x dx dx -=×=òò.(5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x ppp ¢==-+ò, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t pp p p =====++òò,所以220()arctan 1()4f x dx f x pp ¢=+ò (6) (6) 等式等式1()2()f x x f x dx =+ò两边在区间[]0,1积分得积分得111101()2()2()2f x dx xdx f x dx f x dx =+=+òòòò11()2f x dx =-ò, 所以所以()1f x x =-.(7) (7)令令x t u -=,则du dt =-,于是,于是00()()()xxtf x t dt x u f u du -=-òò原等式化为原等式化为()()1cos xxxf u du uf u du x -=-òò两边对x 求导求导()sin xf u du x =ò在上式中,令2x p=,得,得()1xf x dx =ò.。

定积分简单计算例题及解析

定积分简单计算例题及解析

定积分简单计算例题及解析
一、积分简介
积分是给出一种对函数进行求解的数学运算解法,它可以用来求解微分方程。

积分可分为定积分和不定积分,在定积分的过程中,我们利用某种数学运算方法,在一定的范围内把一个函数的定义域划分为多个小范围,并将该函数进行分段积分,最终得出的结果就是定积分的值。

二、积分计算例题及解析
例1:求解∫2 sinx dx
解:定积分,先使用积分公式将函数分段,
∫2sin x dx=∫0^2 sin x dx+∫2^2-2sin x dx
将分段积分求和,
∫2sin x dx= [-cosx]^2_0 + [-cosx]^2_2 - 2∫2^2-2sin x dx
消去 -2,得
∫2sin x dx= - cos2 + cos0 + 2∫2^2-2sin x dx
再次积分,
∫2^2-2sin x dx = x - 2∫ sin x dx
将它带入上面得,
∫2sin x dx= - cos2 + cos0 + 2(-2sin2 + 2sin20)
化简,
∫2sin x dx=-cos2 + 2sin20
最终结果得:
∫2sin x dx=-cos2 + 2sin20
三、总结
定积分是积分中一种重要的求解方法,它可以用来求解微分方程。

定积分的求解过程需要将函数分段,最后求得定积分的最终结果。

以上我们通过定积分的例题,总结出定积分的求解步骤,这也让我们对定积分的概念有了进一步的理解。

有关定积分问题的常见题型解析(全题型)培训讲学

有关定积分问题的常见题型解析(全题型)培训讲学

有关定积分问题的常见题型解析(全题型)有关定积分问题的常见题型解析题型一利用微积分基本定理求积分 例1、求下列定积分:192 --------------(1) 3x 3 x 1 dx ( 2),.x 1 . x dx(3) .4 x 2\,4〒审2分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用 微积分基本公式代入求值。

解:(1)因为x 31 2—x x 23x 2 x 1,1 3所以0 3x x 1 dx =x 3 1 2 -x x13 。

020 = 21C 31 (2)因为依1丘x^x , 2 2 -x 2 1 2 -x2x 2 x ,32练习:(1) a.,a 2 x 2(2) 7 4 x 2a1数 F (x )。

如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求其面积。

题型二利用定积分求平面图形的面积例2如图,求直线y=2x+3与抛物线y=x 2所围成的图形面积。

7 x 1 仮 dx =1 2 -x 9 145- 432 46所以评注:利用微积分基本定理求定积分bf (x )dx 的关键是找出F ,(x ) f (x )的函 a分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形 面积的差,进而可以用定积分求出面积。

为了确定出被积函数和积分和上、下 限,我们需要求出两条曲线的交点的横坐标32x 3dx — 'x 2dx =(x 2+ 3x ) 1 1评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯 形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被 积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。

关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。

知识小结:几种典型的曲边梯形面积的计算方法:成的曲边梯形的面积:bS = f x dx ,如图 1 oa(2)由三条直线x=a 、x=b (a v b )、x 轴,一条曲线y= f x ( f x < 0)围 成的曲边梯形的面积:b(f x g x )围成的平面图形的面积:S = [ f x g x ]dx ,如图3 a解:由方程组y 2X 23,可得X iy x1,X 2 3。

定积分例题

定积分例题

定积分例题“定积分”是数学中非常重要的概念,它有着极强的实用价值。

定积分关于求解复杂函数的积分问题具有重要的意义,因此研究它所背后的科学原理是十分有必要的。

此外,理解定积分的知识点也是有可能出现在考试中的数学科目重要的一部分。

本章将以几道定积分的例题来讲解它的性质和原理。

(一)例题1:计算下列定积分:∫0πsin xdx解:该定积分是典型的定积分,由于函数可以写成原函数的积分,积分区间为[0,π],因此可以根据定积分的定义来求解,即∫0πsin xdx =cosπ+cos0=cosπ(二)例题2:计算下列定积分:∫2π^2cos^4x dx解:该定积分是一类特殊的定积分,具体来说,它是多项式函数的积分,由于函数可以写成原函数的积分,积分区间为[2,π^2],因此可以用定积分的定义来求解,即∫2π^2cos^4x dx = 1/5 [cos^5(2π^2)cos^5(2)](三)例题3:计算下列定积分:∫lnxsinx dx解:该定积分是单变量函数的积分,由于函数可以写成原函数的积分,积分区间为[0,+∞],结合高斯积分公式,可以求解,即∫lnxsinx dx =[ln(tanx)+lnx+x]/2(四)例题4:计算下列定积分:∫atanxdx解:该定积分是多项式函数的积分,由于函数可以写成原函数的积分,积分区间为[0,+∞],因此可以根据定积分的定义来求解,即∫atanxdx = xatanx1/2 ln(x^2+1)第二章积分的性质和原理(一)定积分的性质1.定积分的性质:在某一区间上连续可导的函数的积分,称为定积分2.定积分的计算公式:定积分的一般计算公式如下:∫f(x)dx=F(b)F(a),其中F(x)表示原函数f(x)的积分,a, b为积分区间。

3.定积分的应用:定积分可以用来求解复杂函数的积分问题,例如求解积分在一定区间的定积分,求解不可导的函数的积分等。

此外,定积分也可以用来解决一些几何上的问题,例如求得曲线的面积,求得曲线两端点之间的距离等。

医用高等数学定积分习题精讲

医用高等数学定积分习题精讲

医用高等数学定积分习题精讲习题五习题五1. 由定积分的几何意义计算下列定积分(1)2π 0 0sinxdx;(2)R πx;(3)3xdx;1(4)cosxdx.π 02π1. 解:由定积分的几何意义(1)(2)2π 0 R R 0sinxdxsinxdxsinxdx A ( A) 0R Rx122 R(3)3xdx1 π(4)cosxdxπ2cosxdxπ2cosxdx A ( A) 02. 用定积分的定义,计算由曲线y x2 1与直线x 1,x 4及x轴所围成的曲边梯形的面积.解:因为被积函数f(x) x2 1在[1,4]上是连续的,故可积,从而积分值与区间[1,4]的分割及点i的取法无关. 为了便于计算,把区间[1,4]分成n等份,每个小区间的长度都等于3n,分点仍记为1 x0 x1 x2 xn 1 xn 4并取i xi(i 1,2,,n),得积分和nni 1f( i) xii 1( i 1) xi27n3n2i 12(xi 1) xi 18n 2n2((i 13in+1) 1)23ni 1i 6i 119n32n(n 1)(2n 1)181n22n(n 1) 692(11n)(21n) 9(11n) 6令n (此时各小区间的长度都趋于零,故0),对上式取极限,由定积分的定义,得n(x+1)dx lim2(i 12i1) xi lim[n92(11n)(21n) 9(11n) 6] 243. 判断下列式子是否一定正确(1)f(x)dx≥0(其中f(x)≥0);a b(2)b af(x)dx≥b af(x)dx(a b).3. 解:(1)不一定正确,这是因为题中未指明a与b的大小关系. 当a b 时,有f(x)dx≥0;当a b时,有f(x)dx 0.aabb(2)一定正确.由定积分的性质,已知a b,f(x) f(x),则4. 试比较下列各组积分值的大小,并说明理由(1)xdx,x2dx,x3dx;111b af(x)dx≥b af(x)dx.334 4 4 31lnxdx;(3)xdx,ln(1 x)dx,exdx.1 1 14. 解:(1)当x [0,1]时,有x x2 x3,因此xdx0 11 0xdx21 0xdx.3(2)当x [3,4]时,有lnx 1,(lnx)2 lnx 因此(lnx)2dx 3 41lnx,34 31lnxdx5. 计算(1)limx 0x 0(1 cost)dtx sinx;(2)limx 0x 0(1 cost)dttanx x3.解:(1)根据洛必达法则和积分上限函数导数的性质limx 0x 0(1 cost)dtx sinx31 cosx1 cosx3x 02lim(1 cosx cosx) 3 x 0(2)同理limx 0(1 cost)dttanx x 3x 0lim1 cosxsecx 1223x 0lim3cosxsinx2tanx4lim3cosxsinx2secxtanxsecx 1xx 0x 0326.求ytdt(x 0)的导函数y (x). 221x2解:y (x) [1costdtx2tdt] [costdt2tdt]2cos21x(1x)21x2cos21xx7. 计算下列定积分(1)(x2 1 31x2)dx;解:(1)(x21 3***** (x ) )dx92x33x1(2)(3 )441dx9 4 x)dx ( 233x212x)29445164 1t 24 22t,x ,dx t231118x1tt 2)dt [ 2t83 (4)x2t,x t 1,dx 2tdt 5x1 1π1220t2t 10 12[t-arctant]202 [121t 12]dx 4 2arctan2(5)xxdx x2dx (6)2π 2e1 0xdx=02sinxdx10 π2πsinxdx 2sinxdx=2(7)1lnxdx 1lnxdx 1lnxdx [xlnx ee1dx] xlnx e1e1e1dx 2-1e(8)x3xx 2433xxxx2cosx 43cos2x2(9)ln2 0e(1 e)dx xx2ln2 0(e 2ex2x+e)dx (e e 2x+13e)3x613(10)1 x1 1x0 110x212(1 x)12(1 x)2133(1 x)2|e 120 1133(1 x)2|0 212312lnx2(11)2 lnxxdxe 12 lnxdlnx 2lnx e52(12)令ln 0ln 0x2t,x ln(t 1),dx l 022tt 12dtat2t 1dt 2(t arctant) 2π2(13)xx令x asint,dx acostdt x 0ax2222= 2asint acostdt 0 =a28a220[1 cos4t]dt sin2tdt=4a220=8[tsin4t2 ]2 =0 a162 (14 )210xt22t2101t 1 1t 1 t11 t]dt2ln2-12 [t 12[t22t ln(1 t)] 4(15)令t,dx 2tdt e 34 02 0tdt1 t2 22 0(t 1 1)1 tt 2 (1211 t)dt=2(t ln(1 t)) 20=4 2ln3(16)1e 1332(17)1xxcostsint 224t21 sintsint 224t2[1sint21]dt4[ cott t] π5214(18)2cosxsin2xdx20cosx2sinxdx 2 2cosxdcosx 66272(19)π 0excosxdx1π 0xdsinx xsinx21π 0sinxdx cosxe0 e 1(20)xlnxdx 121 0e 1lnxdxx12xlnxx12e12e1xdx12e212exdx14(e 1) 2e2(21)xe xdx 1xd( e) xe1 0xdx e11 0xdx 1(22)2xcosxde2x2x020e2xsinxdx edcosx e 22xcosx220e2xcosx2 2 2e cosxdxe2x22x2x2x2x0cosx2 2 edsinx e cosx2 2esinx2 4 2e sinxdx20e2xsinxdx15[ e2x2xcosx2 2esinx2]25e15(23)arctanxdx 1xarctanx0010x1 x2x2(x 1)xarctanx1211 x122xarctanx3ln(x 1)2412ln2(24)令x2t,x t 1,dx 2tdt 30x22lnttx 022tdt 4 lntdt 4[tlnt12221dt] 4[tlnt2 t2] 8ln2 48. 求函数I(x)3t 1t t 1dt在区间[0,1]上的最大值与最小值. 解:被积函数f(t) I (x)3x 1x x 123t 1t t 12在[0,1]上连续,因此I(x)x 023t 1t t 1dt可导.0,因此I(x)x 023t 1t t 1dt在[0,1]上为增函数.将x 0,1代入求得最小值为I(0) 0,最大值为I(1) 9. 试证(1)xm(1 x)ndx1 01 023t 1t t 1dt.11 0x(1 x)dxnm证明:令x 1 t,则x(1 x)dx (1 t)ntmdtmn1 0(1 t)tdt nm1 0(1 x)xdxnm(2)11 t21dtx 111 t2dt证明:令t 1u,则1121 x 11 t 2dt 1 1x (1u 2)du 1 1 12x1 u du 1x 11 u 21 du 1x21du1x11 t21dt(3)sinxdx2nππ2cosxdx.n证明:令xπ2t,则2 0sinxdx πcosxdxπ2ncosxdx10. 判断下列广义积分的收敛性,若收敛,则算出广义积分的值(1)1dxx4解:收敛.1dxx413x3113(2)1解:发散. (3)edxx(lnx)解:收敛.edxx(lnx)2edlnx(lnx)21lnxe1(4)发散(4 )ex解:发散(5)1arctanxx2dx解:收敛.1arctanxx1 1arctanxd( arctanxd( 11x1x) )11xarctanxx1x1 x12dx41(1x1 x2)dx π4 12ln2ln+ -2(6)dxx 2x 2 解:收敛. + -2dxx 2x 2a 0+ -d(x 1)(x 1) 1 2arctan(x 1) + -(7)解:收敛 .2 1a 0d(x) arcsinxaa02(8)解:收敛. 令x sect,则(9)1 12 1arcsec2 arcsec1dt3dxx(x 2)解:发散(10)e 1解:收敛.e 1e 1arcsin(lnx)e1211.用抛物线线法计算x的近似值(取n 10,计算到小数点后三位).解:简要步骤如下:(1)用分点0 x0,x1,x2,xi,,x9,x10 1,把区间[0,1]10等分,每个小区间的长度为x110,并用yi表示函数y f(x)在分点xi处的函数值,相应的曲线被分成10段,曲线上的分点为Mi(xi,yi)(i 1,2,,10).(2)将通过相邻三点M0M1M2,M2M3M4,,M8M9M10的曲线段,分别用过该三点的抛物线2y px qx r的弧段代替.(3)计算各抛物线弧段下面的面积,设通过M0(x0,y0),M1(x1,y1),M2(x2,y2)三点的抛物线方程为则曲线弧段下的面积为S1x2 x02y px qx r(px qx r)dx (213px312x2qx rx)x02p3(x2 x0)33q2(x2 x0) r(x2 x0)22q p2 2(x2 x0) (x2 x2x0 x0) (x2 x0) r 2 31616(x2 x0)[2px2 2px2x0 2px0 3qx2 3qx0 6r]22(x2 x0)[(px2 qx2 r) (px0 qx0 r) p(x2 x0) 2q(x2 x0) 4r]222因为12(x2 x0) x1即x0 x2 2x1且M0,M1,M2都在抛物线上,故它们的坐标都满足方程(5 13),即px2 qx2 r y2222将它们代入上式,化简便得S1x2 x06px1 qx1 r y1px0 qx0 r y0(y2 4y1 y0)b a30(y2 4y1 y0)同理,可分别算出M2M3M4,,Mn 2Mn 1Mn各抛物线弧段下面的面积为S2 S3 S5b a30(y10 4y9 y8)b a30b a30(y4 4y3 y2)(y6 4y5 y4)(4)将S1,S2,,S5加起来,就得曲线梯形面积的近似计算公式x130[y0 4(y1 y3 y9) 2(y2 y4 y8) y10] 1.08912. 求由抛物线y x2 4x 5,直线x 3,x 5及x轴所围成图形的面积. 解:所围成图形的面积A53x 4x 5dx213x 2x 5x32531013. 求由抛物线y 3 2x x2与x轴所围成图形的面积. 解:先求抛物线y 3 2x x2与x轴交点,得x 3,1.所围成图形的面积A1 33 2x xdx 3x x2213x313102314. 求由曲线y ex,y e x及直线x 1所围成图形的面积.解:先求曲线y ex,y e x及直线x 1所围图形的交点,得(0,1),(1,e 1)与(1,e).所围成图形的面积A10e ex xdx e exe1e215. 求由曲线y x2与直线y x,y 2x所围成图形的面积.解:先求曲线y x2与直线y x,y 2x的交点,得(0,0),(1,1)和(2,4) 所围成图形的面积分为两部分,图略.A A1 A212 23 762x131[2x x]dx21[2x x]dx21xdx21[2x x]dx20[x2x3]216. 求由抛物线y x2 4x 3及其在点(0,3)和点(3,0)处的切线所围成图形的面积.解:先求抛物线在点(0,3)和点(3,0)处的切线方程y 2x 4,y (0) 4,y (3) 2,从而两切线方程为y 4x 3和y 2x 6.再求抛物线y x2 4x 3和两切线方程y 4x 3,y 2x 6的交点为(0,3),33),图略. (3,0)和(,2将所围图形的面积分为两部分3A A1 A2320[4x 3 ( x 4x 3)]dx 3[ 2x 6 ( x2 4x 3)]dx2320xdx 3x2 6x 9dx22398989417. 求下列曲线围成的图形绕指定轴旋转所产生的旋转体的体积. (1)y x2,x y2,绕x轴;解:y x2与x y2所围的图形在第一象限,交点为(0,0)和(1,1).所围图形绕x轴旋转而成的旋转体体积为V1dx (x)dx=2221.(2)y x2,y x,绕x轴;解:y x2与y x所围的图形在第一象限,交点为(0,0)和(1,1). 所围图形绕x轴旋转而成的旋转体体积为V10xdx (x)dx=2221215.(3)yrhx,x hrhx(r,h>0)及x轴,绕x轴;解:曲线y 与x h的交点为(h ,r).所围图形绕x轴旋转而成的旋转体体积为V(x)dx ()hhr2r2h0xdx2hr32.(4)x2 (y 5)2 16,绕x轴.解:将圆x2 (y 5)2 16分成两部分,分别绕x轴旋转,然后作差. 则旋转体的体积为V4244 425)dx(5)dx424(41 x x (41 x x 104424 x 16018. 弹簧所受压力与所压缩距离x成正比,F k x(k为比例常数). 今有一弹簧原长为1m,每压缩1cm需5g力,若弹簧自80cm压缩到60cm 时,问做功多少?(取1kg 10N).解:由题意描述,0.01k 10 5/1000,计算比例常数k 50.那么弹簧自80cm压缩到60cm时,压缩位移由20cm变为40cm,弹簧力做功为W0.4 0.20.4 0.20.4 0.2Fdsf(x)dxkxdx 3(J)。

高考数学定积分知识讲解与例题练习(含答案解析)

高考数学定积分知识讲解与例题练习(含答案解析)

高考数学定积分知识讲解与例题练习(含答案解析)一、基础知识1、相关术语:对于定积分()baf x dx ⎰(1),:a b 称为积分上下限,其中a b ≥ (2)()f x :称为被积函数(3)dx :称为微分符号,当被积函数含参数时,微分符号可以体现函数的自变量是哪个,例如:()2bax tx dx +⎰中的被积函数为()2f x x tx =+,而()2baxtx dt +⎰的被积函数为()2f t xt x =+2、定积分()baf x dx ⎰的几何意义:表示函数()f x 与x 轴,,x a x b ==围成的面积(x 轴上方部分为正,x 轴下方部分为负)和,所以只有当()f x 图像在[],a b 完全位于x 轴上方时,()baf x dx ⎰才表示面积。

()baf x dx ⎰可表示数()f x 与x 轴,,x a x b ==围成的面积的总和,但是在求定积分时,需要拆掉绝对值分段求解3、定积分的求法:高中阶段求定积分的方法通常有2种:(1)微积分基本定理:如果()f x 是区间[],a b 上的连续函数,并且()()'F x f x =,那么()()()()|bb aaf x dx F x F b F a ==−⎰使用微积分基本定理,关键是能够找到以()f x 为导函数的原函数()F x 。

所以常见的初等函数的导函数公式要熟记于心:()f x C = ()'0f x = ()f x x α= ()'1f x x αα−= ()sin f x x = ()'cos f x x = ()cos f x x = ()'sin f x x =− ()x f x a = ()'ln x f x a a = ()x f x e = ()'x f x e = ()log a f x x = ()'1ln f x x a =()ln f x x = ()'1f x x= ① 寻找原函数通常可以“先猜再调”,先根据导函数的形式猜出原函数的类型,再调整系数,例如:()3f x x =,则判断属于幂函数类型,原函数应含4x ,但()'434x x=,而()3f x x =,所以原函数为()414F x x C =+(C 为常数) ② 如果只是求原函数,则要在表达式后面加上常数C ,例如()2f x x =,则()2F x x C =+,但在使用微积分基本定理时,会发现()()F b F a −计算时会消去C ,所以求定积分时,()F x 不需加上常数。

(完整版)定积分典型例题精讲

(完整版)定积分典型例题精讲
从而
= .证毕.
证法2由于 单调增加,有 ,从而


= = .


例18计算 .
分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.
解 = = = .
注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如
,则是错误的.错误的原因则是由于被积函数 在 处间断且在被积区间内无界.
,


例32计算 .
分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.

. (1)
令 ,则
.(2)
将(2)式代入(1)式中得

例33设 在 上具有二阶连续导数, 且 ,求 .
分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.
解由于

故 .
例34(97研)设函数 连续,
,且 ( 为常数),

于是可得

又由于

因此
= .
例8设函数 在 上连续,在 内可导,且 .证明在 内存在一点 ,使 .
分析由条件和结论容易想到应用罗尔定理,只需再找出条件 即可.
证明由题设 在 上连续,由积分中值定理,可得

其中 .于是由罗尔定理,存在 ,使得 .证毕.
例9(1)若 ,则 =___;(2)若 ,求 =___.
图5-2
= = = , = ,于是
= = .
例43求心形线 与圆 所围公共部分的面积.
分析心形线 与圆 的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.
解求得心形线 与圆 的交点为 = ,由图形的对称性得心形线 与圆 所围公共部分的面积为

高中数学:1

高中数学:1


b
a
f
(
x)dx
c
a
f
(
x)dx
c
b
f
(
x)dx
c
b
a f ( x)dx c f ( x)dx.
(定积分对于积分区间具有可加性)
性质4
b
a
1
dx
b
a
dx
b a.
性质5 如果在区间[a, b]上 f ( x) 0,
b
则a f ( x)dx 0.
(a b)
证 f ( x) 0, f (i ) 0, (i 1,2,, n)
a
f
(
x
)dx
f ( )(b a).
(a b)
积分中值公式

m(b
a)
b
a
f
( x)dx
M(b a)
m
1 ba
b
a
f
( x)dx
M
由闭区间上连续函数旳介值定理知
在区间[a, b]上至少存在一个点 ,
使
f
()
b
1
a
b
a
f
(
x)dx,

b
a f ( x)dx
f ( )(b a).
积分中值公式旳几何解释:
三、牛顿—莱布尼茨公式
例1 利用定义计算定积分 1 x2dx. 0

将[0,1]n等分,分点为 xi
i ,(i n
1,2,, n )
小区间[ xi1 ,
xi
]的长度xi
1 ,(i n
1,2,, n)
取i xi ,(i 1,2,, n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分典型例题例1 求3321lim)n n n →∞++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n=⋅的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法 1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π.解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1 在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x xξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22x x e dx -⎰的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设2()xxf x e -=, 因为2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而(0)1f e ==, 2(2)f e =,141()2f e -=, 故124(),[0,2]ef x e x -≤≤∈,从而2122422xxee dx e --≤≤⎰,所以21024222x xe edx e---≤≤-⎰. 例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n =,故lim (b an g x →∞⎰=()bag x dx ⎰.例6求sin limn pnn xdx x+→∞⎰, ,p n 为自然数. 分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1 利用积分中值定理设 sin ()x f x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得sin sin n pnx dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1lnn pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln 0n n pn→∞+=,所以sin lim 0n pnn xdx x+→∞=⎰. 例7 求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理 ()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101n x dx x+⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01nn x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+.于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8 设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.分析 由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f ξ=即可.证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422xxxe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且310()x f t dt x -=⎰,则(26)f =_________.解 对等式31()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)xF x dt x =>⎰的单调递减开区间为_________.解()3F x '=,令()0F x '<3>,解之得109x <<,即1(0,)9为所求.例12 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于00型未定式,可用洛必达法则.解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)limsin x x x x→-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)limsin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于00型的未定式,可用洛必达法则.解2001limsin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求.例16 设sin 20()sin xf x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例17 证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxa aa x tf t dt f t dt+-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则()F x '=1()()()22xaa x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰ ≥1()()22x a x a f x f x dt --⎰=()()22x a x af x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba aa b xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a b x f x f ++--0≥,从而()[()()]22ba ab a b x f x f dx ++--⎰0≥.即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2ba ab f x dx +≥⎰. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩.解 232122212010011717max{,}[][]23236x x xx dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记10()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =.因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.错误解答 (1)求()F x 的表达式, 当[0,1)x ∈时,23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当[1,2]x ∈时,有0()()xF x f t dt ==⎰0(52)xt dt -⎰=25x x -.故由上可知32, 01()5,12x x F x x x x ⎧≤<⎪=⎨-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(5)4x x F x x x ++→→=-=, 311lim ()lim 1x x F x x --→→==, (1)1F =.因此, ()F x 在1x =处不连续, 从而()F x 在[0,2]上不连续.错解分析 上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因 为当[1,2]x ∈时,0()()xF x f t dt =⎰中的积分变量t 的取值范围是[0,2],()f t 是分段函数,1001()()()()xxF x f t dt f t dt f t dt ==+⎰⎰⎰才正确.例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解 21-⎰=211--+⎰⎰.2是偶函是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰ 由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解 3412e e⎰=34e 3412e e⎰=⎰=3412e e =6π.例24 计算40sin 1sin xdx xπ+⎰.解 40sin 1sin x dx x π+⎰=420sin (1sin )1sin x x dx xπ--⎰=244200sin tan cos x dx xdx x ππ-⎰⎰ =244200cos (sec 1)cos d xx dx xππ---⎰⎰ =44001[][tan ]cos x x x ππ--=24π- 注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25 计算20a⎰,其中0a >.解 2a⎰=20a⎰,令sin x a a t -=,则2a⎰=3222(1sin )cosat tdt ππ-+⎰=32202cos 0a tdt π+⎰=32a π.注 若定积分中的被积函数含有,一般令sin x a t =或cos x a t =.例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰[]201ln |sin cos |2t t t π=++=4π.解法2 令sin x a t =,则a⎰=20cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos u du u u π+⎰.所以,a⎰=22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π.注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰.分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰2221284du du u =-=+⎰⎰4π-.例28 计算220()xd tf x t dt dx-⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=22201()2xf x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()xtf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x . 错误解答22()x d tf x t dtdx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰ 中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解 30sin x xdx π⎰3(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=. 例30 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰ 11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于20sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰,(1)而20cos xe xdx π⎰2cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得2sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1)令sin x t =,则21⎰220sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2) 将(2)式代入(1)式中得1arcsin x xdx =⎰8π.例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研) 设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()lim x f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=. 当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则()()xf u du x xϕ=⎰,从而2()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为0200()()(0)()lim lim lim22xx x x f u du x f x A x x x ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u dux x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰.由于2200()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=.从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出02()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()lim x f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的. 例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f x dx π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得12()()0.f f ξξ==例36 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解 2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰.例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰=32lim aa +→⎰=32lim[arcsin(3)]aa x +→-=2π.43⎰=34lim bb -→⎰=34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点.解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得 5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cosd πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23.例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x =-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=++-⎰⎰⎰022dtt +∞-∞=++⎰⎰1arctan )22π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆图5-33πθ=3cos ρθ=3211-xoy121-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-1cos ρθ=+3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π.例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --, 令0dA dc=,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dA dc>.故当4c =1xo y23121-45673ln y x=2x =6x =(,ln )c c时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =+下半圆周的方程为1y b =图5-5则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为 V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V .分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e=与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为的面积为图5-7()A x 2=. 于是所求体积为 V =20()A x dx ⎰=20⎰=例48(03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问:(1)汽锤打桩3次后,可将桩打进地下多深(2)若击打次数不限,汽锤至多能将桩打进地下多深(注:m 表示长度单位米)分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=.假设n x =,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++. 由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +=.于是1lim n n n x +→∞==.()m .例49 有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。

相关文档
最新文档