生物化学第十一次作业

合集下载

《生物化学》作业及答案

《生物化学》作业及答案
4. 维持蛋白质溶液稳定的因素有两个:(1)水化膜:蛋白质颗粒表面大多为亲水基团,可吸引水分子,使 颗粒表面形成一层水化膜,从而阻断蛋白质颗粒的相互聚集,防止溶液中蛋白质的沉淀析出。(2)同种电荷:在 pH ≠ pI 的溶液中,蛋白质带有同种电荷。若 pH > pI,蛋白质带负电荷;若 pH < pI,蛋白质带正电荷。同种 电荷相互排斥,阻止蛋白质颗粒相互聚集而发生沉淀。沉淀蛋白质的方法,常用的有:(1)盐析法,在蛋白质溶 液加入大量的硫酸铵、硫酸钠或氯化钠等中性盐,去除蛋白质的水化膜,中和蛋白质表面的电荷,使蛋白质颗粒 相互聚集,发生沉淀。用不同浓度的盐可以沉淀不同的蛋白质,称分段盐析。盐析是对蛋白质进行粗分离的常用 方法。(2)有机溶剂沉淀法:使用丙酮沉淀时,必须在 0~4℃低温下进行,丙酮用量一般 10 倍于蛋白质溶液的 体积,蛋白质被丙酮沉淀时,应立即分离,否则蛋白质会变性。除了丙酮以外,也可用乙醇沉淀。此外,还可用 加重金属盐,加某些有机酸,加热等方法将样品中的蛋白质变性沉淀。
15. (5)D (6)E
1. 错 2. 对 3. 对 4. 错 5. 错 6. 错 7. 对 8. 对 9. 对 10. 错 11. 错 12. 对 13. 错 14.
错 15. 错 16. 错 17. 对 18. 对 19. 对 20. 错 21. 错 22. 对 23. 错 24. 错
二、判断
第2页共6页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
用,形成有规则、在空间上能辩认的二级结构组合体,充当三级结构的构件,称为超二级结构。超二级结构在结 构的组织层次上高于二级结构,但没有构成完整的结构域。常见的超二级结构有 αα,βαβ,Rossman 折叠,β-发 夹,β-曲折,希腊花式拓扑结构(Greek key topology)等。

生物化学习题第6~10次作业

生物化学习题第6~10次作业

生物化学习题第六次作业• 1. (单选题)从能荷的角度,以下物质能减慢氧化磷酸化水平的是()A. AMPB. ADPC. GDPD. ATP您的答案: D评语 2.00• 2. (单选题)在代谢过程中所产生的CO2主要来自于()A. 糖的无氧酵解B. 碳原子直接被氧化C. 呼吸链的氧化还原过程D. 有机酸脱羧过程您的答案: D评语 2.00• 3. (单选题)琥珀酸脱氢酶的电子传递链组分不包括()A. CoQB. CytcC. FMND. 铁硫蛋白您的答案: D评语 2.00• 4. (单选题)下列反应过程中伴随着底物水平磷酸化的是()A. 琥珀酸延胡索酸B. 柠檬酸α-酮戊二酸C. 甘油酸-1,3-二磷酸甘油酸-3-磷酸D. 苹果酸草酰乙酸您的答案: C评语 2.00• 5. (单选题)关于生物氧化的认识错误的是()A. 厌氧生物不具有生物氧化功能B. 生物氧化最本质的特征是有电子的得失C. 在细胞外也能进行生物氧化D. 生物氧化与体外燃烧的化学本质相同您的答案: A评语 2.00• 6. (单选题)以下结构中位于线粒体内膜内侧的是()A. 细胞色素cB. 辅酶Q因子C. ATP酶的F1D. ATP酶的F因子您的答案: C评语 2.00•7. (单选题)在电子传递链中将复合体I和复合体II联系起来的组分是()A. CytbB. FMNC. Fe-S蛋白D. CoQ您的答案: D评语 2.00•8. (单选题)在电子传递链中直接以氧作为电子受体的组分是()A. Cytc1B. 细胞色素CC. 细胞色素aa3D. 细胞色素B您的答案: C评语 2.00•9. (单选题)位于细胞质中的1分子乳酸在线粒体彻底氧化所产生ATP 的分子数是()A. 11或12B. 12或13C. 14或15D. 9或10您的答案: C评语 3.00•10. (单选题)抗霉素A对电子传递链的抑制作用发生部位在()A. NADH脱氢酶附近B. 细胞色素氧化酶C. 细胞色素b附近D. 偶联ATP生成您的答案: C评语 3.00•11. (单选题)能够证明化学渗透学说的实验是()A. 细胞融合B. 氧化磷酸化重组C. 冰冻蚀刻D. 同位素标记您的答案: B评语 2.00•12. (单选题)黄素脱氢酶类是组成电子传递链的重要部分,其辅酶是()A. CytcB. CoQC. FMN或FADD. NAD+或NADP+您的答案: C评语 2.00•13. (单选题)苹果酸穿梭过程的生理意义在于()A. 把胞液NADH+H+的2个H带入线粒体进入电子传递链B. 为保证TCA循环顺利进行并提供充足的草酰乙酸,维持TCA循环C. 维持线粒体内外的有机酸平衡D. 将草酰乙酸带入线粒体内进行完全氧化您的答案: A评语 3.00•14. (单选题)下列细胞色素中与线粒体内膜系统结合最不紧密的是()A. 细胞色素bB. 细胞色素aa3C. 细胞色素b1D. 细胞色素c您的答案: D评语 2.00•15. (单选题)乙酰CoA在线粒体内彻底氧化时的P/O值是()A. 2.0B. 1.5C. 2.5D. 3.5您的答案: B评语 3.00•16. (单选题)下列酶中不能催化底物水平磷酸化反应的是()A. 磷酸甘油酸激酶B. 琥珀酸硫激酶C. 磷酸果糖激酶D. 丙酮酸激酶您的答案: C评语 2.00•17. (单选题)如果H+未经过ATP合成酶返回到线粒体基质,则意味着()A. 紧密偶联B. 跨膜质子梯度消失C. 电子传递中断D. 解偶联您的答案: D评语 2.00•18. (单选题)下列关于化学渗透学说的叙述中错误的是()A. 各递氢体和递电子体均有质子泵的作用B. H+通过ATP酶返回膜内时可以推动ATP酶合成ATPC. 线粒体内膜外侧H+不能自由返回线粒体基质D. 电子传递链各组分按特定位置排列在线粒体的内膜上您的答案: A评语 3.00•19. (单选题)电子传递链复合体的排列顺序正确的是()A. I→II→IIIB. II→I→IVC. II→IV→IIID. I→III→IV您的答案: D评语 2.00•20. (单选题)外源NADH彻底氧化只能产生1.5个ATP通过的穿梭系统是()A. 柠檬酸穿梭B. α-磷酸甘油穿梭C. 苹果酸穿梭D. 草酰乙酸穿梭您的答案: B评语 2.00•21. (单选题)可以专一性地抑制ATP酶中的F0因子是()A. 缬氨霉素B. 抗霉素AC. 鱼藤酮D. 寡霉素您的答案: D评语 3.00•22. (单选题)有氧的条件下,关于NADH从胞液进入线粒体进行氧化的机制描述中正确的是()A. 磷酸二羟丙酮被NADH还原为3-磷酸甘油后进入线粒体,后在内膜上被氧化为磷酸二羟丙酮并伴随着NADH生成B. NADH可以直接穿过线粒体膜而进入线粒体C. 草酰乙酸被NADH还原为苹果酸后进入线粒体,接着被氧化成草酰乙酸,通过氨基转换作用生成天冬氨酸,最后转移到线粒体外D. 草酰乙酸被NADH还原为苹果酸后进入线粒体,接着被氧化为草酰乙酸而滞留于线粒体内您的答案: C评语 3.00•23. (单选题)关于ATP在能量代谢中的特点错误的是()A. 主要在氧化磷酸化过程中生成ATPB. 能量的生成、贮存、利用和转换都以ATP为中心C. 其化学能可转变成渗透能和电能D. 体内合成反应所需能量只能由ATP直接提供您的答案: D评语 2.00•24. (单选题)下列有关NADH的叙述不正确的是()A. 在线粒体中氧化并产生ATPB. 在胞液中氧化并产生ATPC. 可在胞液中形成D. 可在线粒体中形成您的答案: B评语 2.00•25. (单选题)下列关于解偶联剂的叙述错误的是()A. 使氧化反应和磷酸反应脱节B. 使ATP减少C. 可抑制氧化反应D. 使呼吸加快,耗氧增加您的答案: C评语 3.00•26. (单选题)下列物质中可穿过线粒体膜的是()A. NADHB. 草酰乙酸C. 谷氨酸D. NAD+您的答案: C评语 3.00•27. (单选题)以下物质不能穿过线粒体内膜的是()A. 谷氨酸B. 草酰乙酸C. 天冬氨酸D. 苹果酸您的答案: B评语 3.00•28. (单选题)以下组分不参与电子传递链的是()A. NAD+B. 肉毒碱C. CytcD. 辅酶Q您的答案: B评语 2.00•29. (单选题)下列关于氧化磷酸化偶联机理的化学渗透学说的描述中错误的是()A. 合成ATP的能量来自于质子重返于线粒体内电化学梯度的降低B. 膜外侧pH比膜内侧高C. 呼吸链中各递氢体可将H+从线粒体内转运到内膜外侧D. 在线粒体膜内外形成H+跨膜梯度您的答案: B评语 2.00•30. (单选题)2,4-二硝基苯酚拥有抑制细胞代谢的功能,其原因是阻断下列哪种生化作用()A. 糖酵解作用B. 肝糖原的异生作用C. 氧化磷酸化D. 柠檬酸循环您的答案: C评语 2.00•31. (单选题)下列物质中含有高能键的是()A. 1-磷酸甘油B. 1,3-二磷酸甘油酸C. α-磷酸甘油D. 3-磷酸甘油酸您的答案: B评语 2.00•32. (单选题)下列物质中属于呼吸链抑制剂()A. 寡霉素B. 2,4-二硝基苯酚C. 以上都不对D. 氰化物您的答案: D评语 2.00•33. (单选题)细胞色素aa3中除含有铁卟啉外还含有()A. 锰B. 镁C. 铜D. 钼您的答案: C评语 2.00•34. (单选题)1摩尔丙酮酸在线粒体内彻底氧化生成CO2及H2O可产生ATP的量是()A. 12.5B. 10C. 8D. 11.5您的答案: A评语 2.00•35. (单选题)呼吸链的电子递体中唯一一种不是蛋白质的组分是()A. CoQB. Fe-SC. CytCD. NAD+您的答案: A评语 2.00•36. (单选题)下列酶所催化的反应属于底物水平磷酸化的是()A. 3-磷酸甘油醛脱氢酶B. 琥珀酸脱氢酶C. 丙酮酸脱氢酶D. 3-磷酸甘油酸激酶您的答案: D评语 2.00•37. (单选题)有关呼吸链的叙述中正确的是()A. 如果不与氧化磷酸化偶联,电子传递将中断B. 体内最主要的呼吸链为NADH氧化呼吸链C. 氧化磷酸化发生于胞液中D. 呼吸链的电子传递方向总是从高电势流向低电势您的答案: B评语 2.00•38. (单选题)关于电子传递链的叙述错误的是()A. 抑制呼吸链中细胞色素氧化酶,则整个呼吸链的功能会丧失B. 呼吸链中的所有递氢体同时也都是递电子体C. 电子传递过程中伴着ADP磷酸化D. 呼吸链中的递电子体同时也都是递氢体您的答案: D评语 2.00•39. (单选题)下列物质分子中不包含高能磷酸键的是()A. 葡萄糖-6-磷酸B. 磷酸烯醇式丙酮酸C. ADPD. 1,3-二磷酸甘油酸您的答案: A评语 2.00•40. (单选题)在三羧酸循环中,通过底物水平磷酸化而形成高能磷酸化合物的步骤是()A. α-酮戊二酸→琥珀酸B. 延胡索酸→苹果酸C. 柠檬酸→α-酮戊二酸D. 琥珀酸→延胡索酸您的答案: A评语 2.00•41. (单选题)胞浆中形成NADH+H+,经苹果酸穿梭后每摩尔产生ATP 的摩尔数是:()A. 2.5B. 1C. 1.5D. 4您的答案: A评语 2.00•42. (单选题)氰化物能阻断呼吸链的生物氧化是通过结合()A. cytCB. cytaa3C. cytbD. cytb1您的答案: B评语 2.00•43. (单选题)生命体中能量的释放、贮存和利用的中心是()A. CTPB. ATPC. GTPD. TTP您的答案: B评语 2.00•44. (单选题)能直接以氧作为电子接受体的是()A. 细胞色素c1B. 细胞色素b1C. 细胞色素a3D. 细胞色素B您的答案: C评语 2.00•45. (单选题)电子传递链中NADH+H+的受氢体是()A. CytBB. FADC. FMND. CoQ您的答案: C评语 2.00第七次作业• 1. (单选题)下列哪种情况下会使血中酮体浓度增加A. 食用脂肪较高的混合膳食B. 食用高糖食物C. 食用高蛋白食物D. 禁食您的答案: D评语 2.50• 2. (单选题)乙酰CoA发生羧化反应形成丙二酸单酰CoA需要下列哪种辅助因子A. 辅酶 AB. 四氢叶酸C. 焦磷酸硫胺素D. 生物素您的答案: D评语 2.50• 3. (单选题)在脂肪酸β-氧化过程中,催化脂肪酸活化的酶是A. 脂酰CoA脱氢酶B. 脂酰CoA合成酶C. 脂肪酶D. 肉碱脂酰转移酶您的答案: B评语 2.50• 4. (单选题)脂肪动员过程的关键酶是A. 脂肪细胞中的甘油三酯脂肪酶B. 组织细胞中的甘油一酯脂肪酶C. 脂肪细胞中的甘油二酯脂肪酶D. 组织细胞中的甘油三酯脂肪酶您的答案: A评语 2.50• 5. (单选题)下列各种酶中属于多酶复合体的是A. β-羟脂酰-ACP脱水酶B. β-酮脂酰-ACP还原酶C. 丙二酸单酰CoA- ACP-转酰基酶D. 脂肪酸合成酶您的答案: D评语 2.50• 6. (单选题)机体在下列哪种情况下会出现酮体症和酮尿症A. 肝细胞内合成的酮体>肝外组织利用的酮体B. 肝细胞内合成的酮体<肝外组织利用的酮体C. 肝细胞内合成的酮体=肝外组织利用的酮体D. 肝细胞内合成的酮体>肝外组织合成的酮体您的答案: A评语 2.50•7. (单选题)乙醛酸循环发生的亚细胞定位在A. 细胞液B. 叶绿体C. 线粒体D. 乙醛酸循环体您的答案: D评语 2.50•8. (单选题)一分子硬脂酸(18C)经β-氧化、三羧酸循环和氧化磷酸化净生成ATP数目为A. 106B. 120C. 122D. 129您的答案: B评语 2.50•9. (单选题)下列各种脂肪酸不属于必需脂肪酸的是A. 亚麻酸B. 花生四烯酸C. 亚油酸D. 软脂酸您的答案: D评语 2.50•10. (单选题)下列各种物质代谢时不能产生乙酰辅酶A的是A. 胆固醇B. 葡萄糖C. 酮体D. 脂肪酸您的答案: A评语 2.50•11. (单选题)下列各种成分中能够决定长链脂酰CoA进入线粒体速度的是A. 草酰乙酸B. ADPC. ATPD. 肉毒碱您的答案: D评语 2.50•12. (单选题)在动物体脂肪酸生物合成过程中,乙酰基是以哪种形式从线粒体转运到胞液中的A. 苹果酸B. 草酰乙酸C. 柠檬酸D. 乙酰CoA您的答案: C评语 2.50•13. (单选题)葡萄糖与甘油代谢共同的中间产物是A. 磷酸烯醇式丙酮酸B. 3-磷酸甘油酸C. 丙酮酸D. 磷酸二羟丙酮您的答案: D评语 2.50•14. (单选题)下列关于脂肪酸生物合成与脂肪酸β-氧化区别的描述正确的是A. 前者反应需生物素参加,后者反应不需要B. 前者发生在线粒体进行,后者发生在细胞质C. 前者反应需NADH+H+,后者反应需FADD. 前者需ADP,后者需GTP您的答案: A评语 2.50•15. (单选题)脂肪酸从头合成能合成下列哪种产物A. 油酸(C18:1)B. 亚油酸(C18:2)C. 软脂酸(棕榈酸C16)D. 硬脂酸(C18)您的答案: C评语 2.50•16. (单选题)当乙酰CoA羧化酶受抑制时,下列哪种代谢会受影响A. 酮体的合成B. 糖异生C. 脂肪酸的合成D. 脂肪酸的氧化您的答案: C评语 2.50•17. (单选题)下列哪种物质与脂肪酸的生物合成无关A. 酰基载体蛋白B. 乙酰CoAC. 丙二酸单酰CoAD. NAD+您的答案: D评语 2.50•18. (单选题)脂肪酸合成酶系主要分布于细胞的A. 线粒体膜间腔B. 线粒体内膜C. 细胞质D. 线粒体基质您的答案: C评语 2.50•19. (单选题)乙酰CoA羧化酶和丙酮酸羧化酶的共同点是A. 以硫辛酸为辅酶B. 以NAD+为辅酶C. 以生物素为辅酶D. 以CoASH为辅酶您的答案: C评语 2.50•20. (单选题)脂肪酸β-氧化所需的辅因子不包括A. NADP+B. CoASHC. NAD+D. FAD您的答案: A评语 2.50•21. (单选题)当6-磷酸葡萄糖脱氢受抑制时,其影响脂肪酸生物合成。

生物化学作业参考答案

生物化学作业参考答案

《生物化学》作业参考答案第一章绪论一、名词解释:1.生物化学:是运用化学的理论、方法和技术,研究生物体的化学组成、化学变化极其与生理功能相联系的一门学科。

二、问答题:1.为什么护理学专业学生要学习生物化学?答:生物化学在医学教育中起了承前启后的重要作用,与医学基础学科和临床医学、护理各学科都有着程度不同的联系。

从分子水平阐明疾病发生的机制、药理作用的原理以及体内的代谢过程等,都离不开生物化学的知识基础。

生物化学的基础知识和生化技术,为临床护理观察和护理诊断提供依据,对维持人类健康,预防疾病的发生和发展都起着重要作用。

第二章蛋白质化学一、名词解释:1.蛋白质的一级结构:蛋白质分子中氨基酸残基以肽键连接的排列顺序称为蛋白质的一级结构。

2.肽键:一分子氨基酸α-羧基与另一分子氨基酸α-氨基脱水缩合形成的酰胺键。

3.蛋白质的等电点(pI):在某一pH条件下,蛋白质解离成正负离子数量相等,静电荷为零,此时溶液的pH称为蛋白质的等电点。

4.蛋白质的呈色反应:指蛋白质分子中,肽键及某些氨基酸残基的化学基团可与某些化学试剂反应显色,这种现象称为蛋白质的呈色反应。

二、问答题:1.什么是蛋白质的变性?简述蛋白质的变性后的临床使用价值。

答:蛋白质的变性是指蛋白质在某些理化因素的作用下,严格的空间构象受到破坏,从而改变理化性质并失去生物活性的现象称为蛋白质的变性。

利用蛋白质变性原理在临床应用中有重要意义和实用价值,如:(1)利用酒精、加热煮沸、紫外线照射等方法来消毒灭菌;(2)口服大量牛奶抢救重金属中毒的病人;(3)临床检验中在稀醋酸作用下加热促进蛋白质在pI时凝固反应检查尿液中的蛋白质;(4)加热煮沸蛋白质食品,有利于蛋白酶的催化作用,促进蛋白质食品的消化吸收等。

2.简述蛋白质的二级结构的种类和α-螺旋的结构特征。

答:蛋白质二级结构的种类包括α-螺旋、β-折叠、β-转角和无规则卷曲四种。

α-螺旋主要特征是多肽链主链沿长轴方向旋转,一般为右手螺旋。

《生物化学第十一章》课件

《生物化学第十一章》课件
字体颜色:选择与背景色对比度高的颜色,如白色、黑色 等
图片颜色:选择与背景色协调的颜色,如绿色可以选择浅 绿色、深绿色等
动画颜色:选择与背景色协调的颜色,如绿色可以选择浅 绿色、深绿色等
整体效果:保证PPT课件的整体视觉效果和谐统一,避免 过于花哨或过于单调
05
PPT课件使用说明
使用场景
图片处理
清晰度:确保图片清晰,避免模糊不清 尺寸:根据PPT页面大小调整图片尺寸,避免过大或过小 色彩:根据PPT主题选择合适的图片色彩,避免过于鲜艳或暗淡 布局:合理安排图片位置,避免过于拥挤或空旷 水印:去除图片中的水印,保持PPT的整洁美观 动画:适当添加图片动画效果,增加PPT的趣味性和互动性
生物化学第十一章 PPT课件
单击此处添加副标题
汇报人:PPT
目录
添加目录项标题 生物化学第十一章内容 PPT课件使用说明
课件概述 PPT课件制作技巧 PPT课件评价与反馈
01
添加章节标题
02
课件概述
课件简介
生物化学第十一章主要内容:蛋白质合成 蛋白质合成过程:转录、翻译、折叠、修饰 蛋白质合成的调控:基因表达调控、翻译后修饰调控 蛋白质合成的应用:基因工程、药物研发、生物技术等
动画效果
动画类型:包括进入、退出、强调、路径等 动画速度:根据内容调整动画速度,不宜过快或过慢 动画顺序:合理安排动画顺序,避免混乱 动画与内容结合:动画要与内容紧密结合,避免过度使用动画
配色方案
主色调:选择与主题相关的颜色,如生物化学可以选择绿 色、蓝色等
辅助色:选择与主色调协调的颜色,如绿色可以选择浅绿 色、深绿色等
添加标题
添加标题
添加标题
添加标题
蛋白质是生命的基础,是构成细 胞和生物体的主要成分

东华大学生物化学期末考试题11-12轻化工程(A答案)

东华大学生物化学期末考试题11-12轻化工程(A答案)

东华大学20 11 ----20 12学年第二学期期末试题(A卷)踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。

课程名称生物化学使用专业轻化工程班级__________________姓名学号(一)单选题(每题1分,共20分)01.纤维素与半纤维素的最终水解产物是( B )。

(A)杂合多糖(B)葡萄糖(C)直链淀粉(D)支链淀粉02.下列各类氨基酸中不含必需氨基酸的是( D )。

(A)碱性氨基酸(B)芳香族氨基酸(C)含硫氨基酸(D)酸性氨基酸03.双缩脲反应主要用于测定( C )。

(A)DNA (B)RNA (C)蛋白质(D)葡萄糖04.snRNA的功能是( D )(A)作为mRNA的前体物质(B)促进DNA合成(C)催化RNA合成(D)促进mRNA的成熟05.胸腺嘧啶除了是DNA的主要组成外,它经常出现在有的RNA分子中,它是( B )。

(A)mRNA (B)tRNA (C)rRNA (D)5S rRNA06.tRNA分子上3′端CCA-OH的功能为( B )(A)辨认mRNA上的密码子(B)提供-OH基与氨基酸结合(C)形成局部双链(D)被剪接的组分07.真核生物DNA缠绕在组蛋白上构成核小体,核小体含有的蛋白质是( D )。

(A)H1、H2、H3、H4各两分子(B)H1A、H1B、H2B、H2A各两分子(C)H2B、H2A、H3A、H3B各两分子(D)H2B、H2A、H3、H4各两分子108.丙二酸对琥珀酸脱氢酶的抑制效应是( C )(A)Vmax降低,Km不变(B)Vmax降低,Km降低(C)Vmax不变,Km增加(D)Vmax不变,Km降低09.已知某种酶的Km值为0.05mol/L要使此酶所催化的反应速度达到最大反应速度的80%时,底物浓度应是?( C )(A)0.04mol/L (B)0.8mol/L (C)0.2mol/L (D)1.0mol/L10.酶与一般催化剂的相同点是( C )(A)催化效率极高(B)高度专一性(C)降低反应的活化能(D)催化活性可以调节11.关于有氧条件下,NADH从胞液进入线粒体氧化的机制,下列描述中正确的是( D )。

生物化学(11.2)--作业DNA的生物合成(附答案)

生物化学(11.2)--作业DNA的生物合成(附答案)
随从链(lagging strand) [答案] 在 DNA 复制过程中,对每一个复制叉而言,有一股链的复制方向与解链方向相反, 不能顺着解链方向连续延长,而只能逆着解链方向一段接一段地合成后再连接成完整的 DNA 链,这条不连续合成的 DNA 单链就称为随从链。
CDK(cyclin-dependent kinase) [答案] 即细胞周期蛋白依赖激酶。它是细胞周期调节蛋白的催化亚基,与细胞周期蛋白结合 后,促进细胞周期的运转。
问答题 1. 简述 DNA 复制的基本规律 2. 参与原核生物 DNA 的复制的酶类和蛋白质因子有哪些? 3. 端粒酶的分子组成有何特点?有什么功能? 4. 简述原核生物 DNA 复制的基本过程 5. 简述突变的类型及 DNA 损伤修复类型 6. 试述参与原核生物 DNA 复制过程所需的物质及其作用。 7. 比较 DNA 复制与转录的异同点 8. 列表比较原核生物三种 DNA 聚合酶的特点 9. 催化磷酸二酯键形成的酶有哪些?比较它们的作用特点。 10. 原核生物复制起始的相关蛋白质有哪些?各有何功能 11. 讨论复制保真性的机制 12. 什么是冈崎片段?合成结束时,是如何连接的? 13. 试述细胞周期的调控机制。 14. 简述逆转录的基本过程,逆转录现象的发现在生命科学研究中有何重大研究价值?
Klenow 片段(Klenow fragment) [答案] 是原核生物 DNA-polⅠ 经特异的蛋白质酶水解后产生的大片段,具有 5’→3’核酸外切 酶活性和聚合活性,实验室合成 DNA 及分子生物学研究上,常用 Klenow 片段代替 DNA 聚合酶。
引发体(primosome) [答案] 含有解螺旋酶(DnaB)、DnaC 蛋白、引物酶(即 DnaG 蛋白)和 DNA 的起始复制区域的复 合结构称为引发体。

生化第十一章

生化第十一章
ห้องสมุดไป่ตู้
答:rRNA起装配和催化作用;tRNA携带氨基酸并识别密码子;mRNA携带DNA的遗传信息并作为蛋白质合成的模板。
10.如何看待RNA功能的多样性?它的核心作用是什么?
答:RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达与细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。核心功能是:遗传信息由DNA到蛋白质的中间传递体。
第十一章 维生素与辅酶
习题 1.例举水溶性维生素与辅酶的关系及其主要生物学功能。 答:水溶性维生素包括维生素B族、硫辛酸和维生素C。维生素B族的主要维生素有维生素B1、B2、PP、B6、泛酸、生物素、叶酸及B12等。 维生素B族在生物体内通过构成辅酶而发挥对物质代谢的影响。这类辅酶在肝脏内含量最丰富,体内不能多储存,多余的自尿中排出。 维生素B1在生物体内常以硫胺素焦磷酸(TPP)的辅酶形式存在,与糖代谢密切,可抑制胆碱脂酶活性。 维生素PP包括烟酸和烟酰胺,在体内烟酰胺与核糖、磷酸、腺嘌呤组成脱氢酶的辅酶,烟酰胺的辅酶是电子载体,在各种酶促氧化-还原过程中起着重要作用。 维生素B2有氧化型和还原型两种形式,在生物体内氧化还原过程中起传递氢的作用,以黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)形式存在,是生物体内一些氧化还原酶(黄素蛋白)的辅基。 泛酸是辅酶A和磷酸泛酰巯基乙胺的组成成分,辅酶A主要起传递酰基的作用。 维生素B6包括3中物质:吡哆醇、吡哆醛、吡哆胺;在体内以磷酸脂形式存在。 维生素B12在体内转变成2种辅酶形式,参与3种类型的反应:①分子内重排;②核苷酸还原成脱氧核苷酸;③甲基转移。 生物素在种种酶促羧化反应中作为活动羧基载体。 叶酸除了CO2外,是所有氧化水平碳原子一碳单位的重要受体和供体。四氢叶酸是叶酸的活性辅酶形式。 硫辛酸常不游离存在,而同酶分子中赖氨酸残基的ε-NH2以酰胺键共价结合,是一种酰基载体。 维生素C具有机酸性质,有防治坏血病功能。 2.对下列每一个酶促反应,写出参与反应的辅酶。 解:略 3.为谷氨酸变位酶反应选择一种适宜的辅酶并写出一个正确的机制:[化学方程式略] 解:该反应适宜的辅酶可为5ˊ-脱氧腺苷钴胺素,重排机制:Co-碳键裂解,钴还原成Co2+状态,产生一个-CH2基,从底物吸取氢原子形成5ˊ-脱氧腺苷,并脱离底物上的基团(未成电子对),该中间物重排,-CH2-从一个碳原子移动到另一个碳原子,随后氢原子从5ˊ-脱氧腺苷是甲基转移,5ˊ-脱氧腺苷钴胺素重生。 T4、T5、T6与T3同类,略。 7.蛋清可防止蛋黄的腐败,将鸡蛋贮存在冰箱4-6周不腐败。而分离的蛋黄(没有蛋清)甚至在冷冻下也迅速腐败。 腐败是什么引起的? 你如何解释观察到的蛋清存在下防止蛋黄腐败? 答:与生物素有关。 8.肾营养不良(renal osleodystrophy)也叫肾软骨病,是和骨的广泛脱矿物质作用相联系的一种疾病,常发生在肾损伤的病人中。什么维生素涉及到肾的矿质化?为什么肾损伤引起脱矿物质作用? 答:1,25-二羟维生素D3能诱导钙结合蛋白(CaBP)的合成和促进Ca-ATP酶的活性,这都有利于Ca2+的吸收。它也能促进磷的吸收;促进钙盐的更新及新骨的生成;促进肾小管细胞对钙磷的重吸收,减少从尿中排出。1,25-二羟维生素D3的主要耙细胞是小肠粘膜、骨骼和肾小管,肾损伤将影响1,25-二羟维生素D3的作用,故会引起脱矿物质作用。 9.一个临床病人由于代谢紊乱引起酸中毒,即低血和低尿pH。病人体液中化学分析显示分泌大量的甲基丙二酸。将这种化合物饲喂动物时,可以转变成琥珀酸。对于这一观察你能提供营养上的解释吗? 10.四氢叶酸(THF)都以何种形式传递一碳单位? 答:四氢叶酸(THF)传递一碳单位的形式有:N5-甲基-THF、N5,N10-亚甲基-THF、N5-甲酰基-THF、N10-甲酰基-THF、N5-亚胺甲基-THF、N5,N5-次甲基-THF。 第十二章 核酸通论 习题 1.核酸是如何被发现的?为什么早期核酸研究的进展比蛋白质研究缓慢? 答:1868年瑞士青年科学家F.Mescher由脓细胞分离得到细胞核,并从中提取出一种含磷量很高的酸性化合物,称为核素。 核酸中的碱基大部分由Kossel等所鉴定。1910年因其在核酸化学研究中的成就授予他诺贝尔医学奖,但他却认为决定染色体功能的是蛋白质,以后转而研究染色体蛋白质。Levene对核酸的化学结构以及核酸中糖的鉴定作出了重要贡献,但是他的“四核苷酸假说”认为核苷酸中含等量4种核苷酸,这4种核苷酸组成结构单位,核酸是由四核苷酸单位聚合而成。照这一假说,核酸只是一种简单的高聚物,从而使生物学家失去对它的关注,严重阻碍核酸的研究。当时还流行一种错误的看法,认为胸腺核苷酸代表动物核苷酸,酵母核苷酸代表植物核苷酸,这种观点也不利于对核酸生物功能的认识。 2.Watson和Crick提出DNA双螺旋结构模型的背景和依据是什么? 答:背景:20世纪上半叶,数理学科进一步渗入生物学,生物化学本身是一门交叉学科,也就成为数理学科与生物学之间的桥梁。数理学科的渗入不仅带来了新的理论和思想方法,而且引入了许多新的技术和实验方法。 依据:已知核酸的化学结构知识;E.Chargaff发现的DNA碱基组成规律;M.Wilkins和R.Franklin得到的DNA X射线衍射结果。此外,W.T.Astbury对DNA衍射图的研究以及L.Pauling提出蛋白质的α-螺旋结构也都有启发作用。 2.为什么科学界将Watson和Crick提出DNA双螺旋结构模型评为20世纪自然科学最伟大的成就之一? 答:因为DNA双螺旋结构模型的建立说明了基因的结构、信息和功能三者之间的关系,使当时分子生物学先驱者形成的三个学派(结构学派、信息学派和生化遗传学派)得到统一,并推动了分子生物学的迅猛发展。 4.什么是DNA重组技术?为什么说它的兴起导致了分子生物学的第二次革命? 答:DNA重组技术——在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入宿主细胞并在其中大量繁殖。 DNA重组技术极大推动了DNA和RNA的研究,改变了分子生物学的面貌,并导致了一个新的生物技术产业群的兴起,所以被认为是分子生物学的第二次革命/ 5.人类基因组计划是怎样提出来的?它有何重大意义? 答:1986年,著名生物学家、诺贝尔奖获得者H.Dubecco在Sience杂志上率先提出“人类基因组计划”,经过了3年激烈争论,1990年10月美国政府决定出资30亿美元,用15年时间(1990-2005年)完成“基因组计划”。 重大意义:人类对自己遗传信息的认识将有益于人类健康、医疗、制药、人口、环境等诸多方面,并且对生命科学也将有极大贡献。 6.为什么说生命科学已进入后基因时代?它的意思是什么? 答:由于技术上的突破,“人类基因组计划”进度一再提前,全序列的测定现已进入后基因组时代。意思:科学家的研究重心已从揭示基因组DNA的序列转移到在整体水平上对基因组功能的研究。 7.核酸可分为哪几种类?它们是如何分布的? 答:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。 原核细胞中DNA集中在核区,其核细胞DNA分布在核内,病毒只含DNA或只含RNA,RNA存在于原核生物、真核生物或部分RNA病毒中。 8.如何证明DNA是遗传物质? 答:用35S和32P标记的噬菌体T2感染大肠杆菌,结果发现只有32P标记的DNA进入大肠杆菌细胞内,而35S标记的蛋白质仍留在细胞外,由此证明:噬菌体DNA携带了噬菌体的全部遗传信息,DNA是遗传物质。 9.参与蛋白质合成的三类RNA分别起什么作用?

北京中医药大学生物化学B作业6-10

北京中医药大学生物化学B作业6-10

北京中医药大学生物化学B作业6-10北京中医药大学《生物化学B》第6-10次作业北京中医药大学继续教育生物化学B作业6A型题:1. 催化胆固醇合成的关键酶是 B.HMG-CoA还原酶2. 脂肪酸β氧化不会生成 C.丙二酰CoA3. 为软脂酸合成供氢的是 D NADPH4. 不能利用酮体的是 A.肝脏5. 脂肪酸活化需要 A.CoASH6. 低密度脂蛋白中的主要脂类是 A.胆固醇酯7. 形成脂肪肝的原因之一是缺乏 B.磷脂8. 磷脂酶A2催化磷脂酰胆碱水解生成E.溶血磷脂酰胆碱和脂肪酸9. 高密度脂蛋白中含量最多的是B.蛋白质10. 胆汁酸的主要作用是使脂肪在水中B.乳化11. 转运内源性甘油三酯的血浆脂蛋白主要是 E.VLDL12. 转运外源性甘油三酯的血浆脂蛋白主要是 A CM13. 血浆中脂类物质的运输形式是E脂蛋白14. 体内储存的脂肪主要来自 D.葡萄糖15. 脂肪酸分解产生的乙酰CoA的去路是:B合成酮体16. 转运内源性胆固醇的脂蛋白是:D LDL17. 主要发生在线粒体内的是D三羧酸循环和脂肪酸β氧化18. 血浆脂蛋白按密度由低到高的顺序是 B CM、VLDL、LDL、HDL19. 饥饿时肝酮体生成增强,为避免酮体引起酸中毒可补充 E.葡萄糖20. 下列哪种物质不属于类脂 A.甘油三酯21. 可转化成胆汁酸的物质是A.胆固醇22. 脂酰CoA的β氧化反应包括:C脱氢、加水、再脱氢、硫解23. 携带脂酰CoA通过线粒体内膜的载体是C.肉碱24. 小肠内乳化脂肪的物质主要来自C肝脏25. 向肝脏转运胆固醇的脂蛋白是: B.HDL26. 催化水解体内储存的甘油三酯的是 B.激素敏感性脂酶27. 类脂的主要功能是 A.是构成生物膜及神经组织的成分28. 关于酮体的错误叙述是 A.饥饿时酮体合成减少29. 脂库中的脂类是 B.甘油三酯B型题:A.HDLB.CMC.LDLD.VLDLE.游离脂肪酸30. 转运外源性甘油三酯的脂蛋白是 B 31. 转运内源性胆固醇的脂蛋白是 C 32. 能逆向转运胆固醇的脂蛋白是AA.甘油三酯B.游离脂肪酸C.卵磷脂D.基本脂E.胆固醇酯33. LDL中的主要脂类是E 34. 组织可从血中直接摄取利用B 35. 脂库中的脂类是AA.细胞浆B.微粒体C.线粒体D.内质网E.细胞膜36. 脂肪酸β-氧化的部位是C37. 脂肪酸合成的部位是A38. 酮体合成的部位是:CA.乙酰CoA羧化酶B.HMGCoA还原酶C.HMGCoA裂解酶D.HMGCoA合成酶E.乙酰乙酸硫激酶39. 胆固醇合成的关键酶是B40. 酮体合成的关键酶是D41. 脂肪酸合成的关键酶是A北京中医药大学生物化学B作业7答案A型题:1.测定下列哪种酶的活性可以辅助诊断急性肝炎?A√.ALT2.能提供一碳单位的是D√.丝氨酸3.腐败生成苯酚的是B√.酪氨酸4.氮负平衡常见于下列哪种情况?E√.以上都可能5.代谢生成牛磺酸的是A√.半胱氨酸6.氨中毒的根本原因是C√.肝损伤不能合成尿素7.天冬氨酸可由三羧酸循环的哪种中间产物直接生成?B√.草酰乙酸8.蛋白质的互补作用是指A√.不同的蛋白质混合食用以提高营养价值9.赖氨酸的脱羧产物是:B 腐胺10.天冬氨酸经联合脱氨基作用后生成D√.草酰乙酸11.血清中酶活性增高的主要原因通常是C√.细胞受损使细胞内酶释放入血12.指出必需氨基酸E√.苏氨酸13.生成活性硫酸根的是A√.半胱氨酸14.脑中氨的主要代谢去路是B√.合成谷氨酰胺15.氨基酸的最主要脱氨基方式是B√.联合脱氨基作用16.腐败生成吲哚的是E√.色氨酸17.可经转氨基反应生成谷氨酸的是A√√.α-酮戊二酸18.白化病患者先天性缺乏C√.酪氨酸酶19.与过敏反应有关的是E√.组胺20.高血氨症导致脑功能障碍的生化机制是氨增高会A√.大量消耗脑中α-酮戊二酸21.赖氨酸的脱羧产物是: B.腐胺22.生成儿茶酚胺的是D√.酪氨酸23.下列哪组是非必需氨基酸?B√.谷氨酸和脯氨酸24.单纯蛋白质代谢的最终产物是D√.CO2、H2O、尿素25.活性甲基供体是:A .S-腺苷甲硫氨酸26.肝中能直接进行氧化脱氨基作用的氨基酸是B√.谷氨酸27.赖氨酸的脱羧产物是D√.尸胺28.合成尿素所需的第二个氮原子由下列哪种氨基酸直接提供?E√.天冬氨酸B型题:A.苹果酸B.草酰乙酸C.琥珀酸D.α-酮戊二酸E.丙酮酸29.经氨基转移可生成谷氨酸的是 D30.经氨基转移可生成天冬氨酸的是 B31.经氨基转移可生成丙氨酸的是 EA.γ-氨基丁酸B.5-羟色胺C.牛磺酸D.多胺E.组胺32.促进细胞生长、增殖的是 D33.与过敏反应有关的是E34.参与形成结合型胆汁酸的是C北京中医药大学生物化学B作业8答案A型题B1. 别嘌呤醇抑制哪种酶?B.黄嘌呤氧化酶C2. 合成核苷酸所需的5-磷酸核糖来自C.磷酸戊糖途径D3. 脱氧核糖核苷酸的生成方式是 D.在二磷酸核苷水平上还原E4. 在动物体内不会发生 E.脂肪转化成氨基酸E5. 关于化学修饰调节的错误叙述是 E.与酶的变构无关C6. 通过细胞内受体起调节作用的激素是 C.类固醇激素E7. 摄入较多胆固醇后肝内HMG-CoA还原酶水平降低,这是由于胆固醇对酶的 E.阻抑合成C8. 在静息状态下,血糖主要被哪儿利用? C.脑E9. 长期饥饿时大脑的主要能量来源是 E.酮体B10. 关于嘧啶分解代谢的正确叙述是 B.产生3、CO2和β-氨基酸A11. 进行嘌呤核苷酸从头合成的主要器官是 A.肝脏D12. 肾上腺素调节肝细胞糖代谢是 D.通过细胞膜受体C13. 嘌呤核苷酸从头合成不需要 C.谷氨酸D14. 蛋白质的哪种营养作用可被糖或脂肪代替? D.氧化供能C15. 嘌呤核苷酸从头合成途径先合成 C.IMPA16. 饥饿1~3天时,肝脏糖异生的主要原料是 A.氨基酸D17. 在人体内,嘌呤碱基代谢的最终产物是 D.尿酸B18. 催化生成尿酸的是 B.黄嘌呤氧化酶C19. 最直接联系核苷酸合成与糖代谢的物质是 C.5-磷酸核糖B型题:A.脑B.小肠C.肾D.肝E.脾D20. 从头合成嘌呤核苷酸的主要器官是 D.肝A21. 只能进行嘌呤核苷酸补救合成的器官是 A.脑北京中医药大学继续教育生物化学B作业9A型题:1. 能切断和连接DNA链的酶[ E ] E.拓扑酶2. DNA半保留复制不需要[ C ] C.氨酰tRNA合成酶3. 转录时阅读模板信息的方向是[ A ] A.3'→54. 冈崎片段的合成是由于[C ] 后随链合成方向与其模板的解链方向相反5. 合成RNA的原料之一是[ B ] B.ATP6. 有外切酶活性、能除去RNA引物、在DNA复制发生错误时起修复作用的主要酶是[ A ] A.DNA聚合酶Ⅰ7. 关于RNA引物的错误叙述是[ D ] D.由RNA指导的DNA聚合酶催化合成8. RNA合成方向是[B ] 'B.5'→3'9. 关于RNA分子“帽子”的正确叙述是[ B ] B.存在于真核细胞mRNA的5'端10. 紫外线对DNA的损伤主要是引起[ E ] E.嘧啶二聚体形成11. 将核糖核苷酸序列信息转化成互补脱氧核糖核苷酸序列信息的过程是[ D ] D.逆转录12. 符合复制特点的是[ A ] A.DNA→DNA13. 识别启动子的是[ B ] B.δ因子14. 符合逆转录特点的是[C ] C.RNA→DNA15. DNA的合成原料是[ E ] E.dATP、dGTP、dCTP、dTTP16. 原核生物DNA复制时,①DNA聚合酶Ⅲ、②解旋酶、③DNA聚合酶Ⅰ、④引物酶、⑤DNA连接酶、⑥SSB的作用顺序是[ B ] B.②⑥④①③⑤17. 真核生物DNA复制特点不包括[ E ] E.主要是DNA聚合酶α、β参与复制延长18. 以RNA为模板的是[E ] E.逆转录酶19. 将脱氧核糖核苷酸序列信息转化成互补脱氧核糖核苷酸序列信息的过程是[ B ] B.复制20. 关于RNA合成的错误叙述是[A ] A.RNA聚合酶需要引物B型题:A.转换B.颠换C.缺失D.插入E.重排21. 碱基A被碱基T取代属于[ B ] 22. DNA分子中1个或多个碱基消失称为 CA.DNA聚合酶B.引物酶C.DNA连接酶D.转肽酶E.RNA聚合酶23. 催化合成DNA片段即冈崎片段的是[ A ] 24. 催化转录的是[ E ]A.DNA聚合酶B.RNA聚合酶C.逆转录酶D.DNA聚合酶和逆转录酶E.RNA聚合酶和逆转录酶25. 以NTP为底物的是 B 26. 以RNA为模板的是[ C ]A.转录B.复制和转录C.复制D.逆转录E.翻译27. 将脱氧核糖核苷酸序列信息转变成互补脱氧核糖核苷酸序列信息的过程是 C28. 将核糖核苷酸序列信息转变成互补脱氧核糖核苷酸序列信息的过程是[ D ]A.GDPB.dAMPC.ATPD.AMPE.dATP *29. 逆转录的底物之一是 E 30. 合成RNA的底物之一是[ C ]A.从3'→5'B.从C-端→N-端C.从5'→3'D.从N-端→C-端E.从两侧向中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一次作业1、hydrogen bond 氢键:与电负性大的原子X(氟、氯、氧、氮等)共价结合的氢,如与负电性大的原子Y(与X相同的也可以)接近,在X与Y之间以氢为媒介,生成X-H…Y形的键。

这种键称为氢键。

2、酶能降低化学反应的活化能,提高化学反应速率的机制酶的催化机理和一般化学催化剂基本相同,也是先和反应物(酶的底物)结合成络合物,通过降低反应的能来提高化学反应的速度,在恒定温度下,化学反应体系中每个反应物分子所含的能量虽然差别较大,但其平均值较低,这是反应的初态。

S(底物)→P(产物)这个反应之所以能够进行,是因为有相当部分的S分子已被激活成为活化(过渡态)分子,活化分子越多,反应速度越快。

在特定温度时,化学反应的活化能是使1摩尔物质的全部分子成为活化分子所需的能量(千卡)。

酶(E)的作用是:与S暂时结合形成一个新化合物ES,ES的活化状态(过渡态)比无催化剂的该化学反应中反应物活化分子含有的能量低得多。

ES再反应产生P,同时释放E。

E可与另外的S分子结合,再重复这个循环。

降低整个反应所需的活化能,使在单位时间内有更多的分子进行反应,反应速度得以加快。

如没有催化剂存在时,过氧化氢分解为水和氧的反应(2H2O2→2H2O+O2)需要的活化能为每摩尔18千卡(1千卡=4.187焦耳),用过氧化氢酶催化此反应时,只需要活化能每摩尔2千卡,反应速度约增加10^11倍。

3、PPP途径产生的主要中间产物及其功能氧化部分第一步和糖酵解的第一步相同,在已糖激酶的催化下葡萄糖生成6磷酸葡萄糖。

后来在6-磷酸葡萄糖脱氢酶(这也是磷酸戊糖途径的限速酶)(Glucose-6-phosphat-dehydrogenase),6-磷酸葡糖酸内酯酶(6-Phosphogluconolactonase)和6-磷酸葡萄糖酸脱氢酶(6-Phosphogluconatdehydrogenase)的帮助下生成5-磷酸核酮糖。

非氧化部分其实是一系列的基团转移反应。

在5-磷酸核酮糖的基础上可以通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而进入糖酵解途径。

这需要有酶的帮助,比如转羟乙醛酶可以转移两个碳单位。

而转二羟丙酮基酶则可转三个。

4、酶作用机理的酶共价调节的类型与机制:他是一类由其它酶对其结构进行可逆共价修饰,使其处于活性和非活性的互变状态,从而调节酶活性。

共价调节酶一般都存在相对无活性和有活性两种形式,两种形式之间互变的正、逆向反应由不同的酶催化。

磷酸化是可逆共价修饰中最常见的类型。

共价调节酶主要有磷酸化/ 脱磷酸化和腺苷酸化/ 脱腺苷酸化两种形式,此外还有甲基化/ 脱甲基化,乙酰基化/ 脱乙酰基化等。

如E.coli 谷氨酰胺合成酶及一些其它的酶,它们受ATP提供的腺苷酰基的共价修饰或酶促脱腺苷酰基而调节酶活性。

如糖原磷酸化酶有两种形式:活性较高形式——磷酸化酶a,是由四个亚基组成的寡聚酶,每一个亚基含有一个被磷酸化的Ser残基;活性较低形式——磷酸化酶b,由两个亚基组成。

两分子的磷酸化酶b在磷酸化酶b激酶的催化下,每个亚基上的Ser14残基接受ATP提供的磷酸基团,形成四聚体的磷酸化酶a。

磷酸化酶a在磷酸化酶磷酸酶的作用下脱去磷酸基又转变为磷酸化酶b。

磷酸化酶的活性形式和非活性形式之间的平衡,使磷酸基共价地结合到酶分子上或从酶分子上脱下,从而调节控制此酶的活性。

5、蛋白质合成后的主要加工与修饰:1.N端甲酰基或N端aa的除去:2.信号肽(signal peptide)的切除3. 二硫键的形成4. 氨基酸的修饰:乙酰化、甲基化、磷酸化、羟基化、泛酸化、糖基化等5. 切去新生肽链中非功能所需的肽段:6. 高级结构的形成:蛋白质的一级结构决定高级结构,多肽链的折叠在肽链合成没有结束时就已经开始6、细胞代谢间的联系与区域化的生理学意义:7、酶作用机理的酶别构调节的作用及意义:别构酶(allosteric enzyme)一种其活性受到结合在活性部位以外部位的其它分子调节的酶。

调节物也称效应物或调节因子。

一般是酶作用的底物、底物类似物或代谢的终产物。

调节物与别构中心结合后,诱导或稳定住酶分子的某种构象,使酶的活性中心对底物的结合与催化作用受到影响,从而调节酶的反应速度和代谢过程,此效应称为酶的别构效应(allosteric effect )。

因别构导致酶活力升高的物质,称为正效应物或别构激活剂,反之为负效应物或别构抑制剂。

不同别构酶其调节物分子也不相同。

有的别构酶其调节物分子就是底物分子,酶分子上有两个以上与底物结合中心,其调节作用取决于分子中有多少个底物结合中心被占据。

别构酶的反应初速度与底物浓度(V对[S])的关系不服从米氏方程。

而是呈现S形曲线。

S形曲线表明,酶分子上一个功能位点的活性影响另一个功能位点的活性,显示协同效应(cooperative effect ), 当底物或效应物一旦与酶结合后,导致酶分子构象的改变,这种改变了的构象大大提高了酶对后续的底物分子的亲和力。

结果底物浓度发生的微小变化,能导致酶促反应速度极大的改变。

10、脂肪酸ß-氧化与脂肪酸合成的异同机体内的脂肪酸大部分来源于食物,为外源性脂肪酸,在体内可通过改造加工被机体利用。

同时机体还可以利用糖和蛋白转变为脂肪酸称为内源性脂肪酸,用于甘油三酯的生成,贮存能量。

合成脂肪酸的主要器官是肝脏和哺乳期乳腺,另外脂肪组织、肾脏、小肠均可以合成脂肪酸,合成脂肪酸的直接原料是乙酰CoA,消耗ATP和NADPH,首先生成十六碳的软脂酸,经过加工生成机体各种脂肪酸,合成在细胞质中进行。

肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。

此过程可分为活化,转移,β-氧化共三个阶段。

脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。

11.磷酸戊糖途径的意义和作用:磷酸戊糖途径也称为磷酸戊糖旁路(对应于双磷酸已糖降解途径,即Embden-Meyerhof途径)。

是一种葡萄糖代谢途径。

这是一系列的酶促反应,可以因应不同的需求而产生多种产物,显示了该途径的灵活性。

磷酸戊糖途径的任务1 产生NADPH2 生成磷酸核糖,为核酸代谢做物质准备3 分解戊糖过程磷酸戊糖途径可以分为氧化和非氧化两个部分。

氧化部分第一步和糖酵解的第一步相同,在已糖激酶的催化下葡萄糖生成6磷酸葡萄糖。

后来在6-磷酸葡萄糖脱氢酶(这也是磷酸戊糖途径的限速酶)(Glucose-6-phosphat-dehydrogenase),6-磷酸葡糖酸内酯酶(6-Phosphogluconolactonase)和6-磷酸葡萄糖酸脱氢酶(6-Phosphogluconatde hydrogenase)的帮助下生成5-磷酸核酮糖。

非氧化部分其实是一系列的基团转移反应。

在5-磷酸核酮糖的基础上可以通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而进入糖酵解途径。

这需要有酶的帮助,比如转羟乙醛酶可以转移两个碳单位。

而转二羟丙酮基酶则可转三个。

调节11、虽然6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的限速酶,但是磷酸戊糖途径的调节主要是通过底物和产物浓度的变化实现的。

它是一“旁路”。

当机体需要NADPH和磷酸核糖的时候,葡萄糖就会流入这一途径。

特别是在脂肪酸和固醇合成发生的地方。

糖酵解途径与糖异生作用的酶促催化反应的异同:糖酵解中有三步反应都是强放热反应,它们分别是:1 葡萄糖经己糖激酶催化生成6磷酸葡萄糖ΔG= -33.5 kJ/mol2 6磷酸果糖经磷酸果糖激酶催化生成1,6二磷酸果糖ΔG= -22.2 kJ/mol3 磷酸烯醇式丙酮酸经丙酮酸激酶生成丙酮酸ΔG= -16.7 kJ/mol这三步反应在糖异生种会这样被绕过1 葡萄糖6磷酸酶催化6磷酸葡萄糖生成葡萄糖2 果糖1,6二磷酸酶催化1,6二磷酸果糖生成6磷酸果糖。

12、 3 丙酮酸在一元羧酸转运酶的帮助下进入线粒体,在丙酮酸羧化酶的催化下,消耗一分子ATP,生成草酰乙酸。

草酰乙酸不能通过线粒体膜。

在苹果酸-天冬氨酸循环里草酰乙酸通过了线粒体膜之后,在磷酸烯醇式丙酮酸羧化激酶的帮助下成为磷酸烯醇式丙酮酸。

反应消耗一分子GTP。

13、EMP-TCA循环途径与氨基酸代谢的关系:14、真核mRNA与原核mRNA结构的异同:原核生物mRNA:先导区(含Shine-Dalgarno (SD) sequence)+翻译区(多ORF,多顺反子) + 末端序列真核生物Mrna:“帽子”(m7G-5´ppp5´-N-3´p)+单顺反子 +“尾巴”(Poly A)15、嘌呤和嘧啶从头合成途径和补救合成途径的异同:嘌呤补救合成途径嘧啶补救合成途径:嘌呤从头合成途径:利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤核苷酸的过程,称为从头合成途径(denovo synthesis),是体内的主要合成途径。

16、鸟氨酸循环部位、过程、关键酶和意义总反应:NH3+CO2+3ATP+天冬氨酸+2H2O NH2-CO-NH2 + 2ADP +2+ AMP +PPi+延胡索酸意义:此循环生成尿素并将其排出体外,进行氮的循环。

17、葡萄糖的氧化途径、关键酶和生理意义:整个过程分为三个阶段: ①糖氧化成丙酮酸。

葡萄糖进入细胞后经过一系列酶的催化反应,最后生成丙酮酸的过程,此过程在细胞质中进行, 并且是不耗能的过程;②丙酮酸进入线粒体, 在基质中脱羧生成乙酰CoA; ③乙酰CoA进入三羧酸循环, 彻底氧化。

关键酶是磷酸果糖激酶。

18、肽链合成的过程、延伸方向和中止方式:蛋白质生物合成的方向:N端→C端,mRNA的翻译方向:5ˊ→3ˊ。

步骤:氨基酸活化,肽链起始,肽链延长,肽链的终止和释放,肽链合成后的加工。

终止:释放因子(release factor RF)能识别终止密码子与终止密码子结合。

19、肌红蛋白和血红蛋白的结构特征和生理意义肌红蛋白:多肽链中氨基酸残基上的疏水侧链大都在分子内部,亲水侧链多位于分子表面,因此其水溶性较好。

三级结构有8段α-螺旋区每个α-螺旋区含7~24个氨基酸残基,分别称为A、B、C…G及H肽段。

有1~8个螺旋间区肽链拐角处为非螺旋区(亦称螺旋间区),包括N端有2个氨基酸残基,C端有5个氨基酸残基的非螺旋区内部存在一口袋形空穴,血红素居于此空穴中血红素是铁卟淋化合物,它由4个吡咯通过4个甲炔基相连成一个大环,Fe2+居于环中。

铁与卟啉环及多肽链氨基酸残基的连接:铁卟啉上的两个丙酸侧链以离子键形式与肽链中的两个碱性氨基酸侧链上的正电荷相连。

血红素的Fe2+与4个咯环的氮原子形成配位键,另2个配位键1个与F8组氨酸结合,1个与O2结合,故血红素在此空穴中保持稳定位置。

相关文档
最新文档