多元统计分析课后习题解答_第四章知识讲解

合集下载

应用多元统计分析课后习题答案高惠璇第四章部分习题解答

应用多元统计分析课后习题答案高惠璇第四章部分习题解答


4
第四章 回归分析

L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i

2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y

应用多元统计分析课后习题答案高惠璇

应用多元统计分析课后习题答案高惠璇

x1 y2 (2)第二次配方.由于 x y y 1 2 2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22x1 14x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
X 1 X 2 ~ N ( 1 2 ,2 (1 ));
2
X 1 X 2 ~ N ( 1 2 ,2 (1 )).
2
5
第二章
多元正态分布及参数的估计
1 2 , 2 1
2-3 设X(1)和X(2) 均为p维随机向量,已知
3 解三:两次配方法
2 1 2 2 2 (1)第一次配方: 2 x12 2 x1 x2 x2 ( x1 x2 ) 2 x12
2 1 x1 2 1 1 1 1 1 因2 x 2 x1 x2 x ( x1 , x2 ) , 而 BB, 1 1 x2 1 1 1 0 1 0 y1 1 1 x1 x1 x2 2 2 2 2 令y , 则 2 x 2 x x x y y 1 1 2 2 1 2 y x x 1 0 2 1 2
12
第二章
1 2
多元正态分布及参数的估计

2 1
解二:比较系数法 1 1 f ( x , x ) exp 设 ( 2 x 2 2
1 21 2
2 x2 2 x1 x2 22x1 14x2 65)

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章判别分析简述欧几里得距离与马氏距离的区别和联系。

答:设p维欧几里得空间中的两点X=和Y=。

则欧几里得距离为。

欧几里得距离的局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲的影响。

设X,Y是来自均值向量为,协方差为的总体G中的p维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。

试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。

设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。

判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

简述距离判别法的基本思想和方法。

答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。

其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是1和 2,对于一个新的样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X ,D2(X ,G1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ,W(X)X ,W(X)<0②多个总体的判别问题。

多元统计习题答案(第4到7章)

多元统计习题答案(第4到7章)

第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β .ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++b ay y y y y (2)由题意知,检验b a H =:0的似然比统计量为23202ˆ⎪⎪⎭⎫⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。

当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'a y y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ 因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=第五章5-1 已知总体)1(=m G i 的分布为)2,1)(,(2)(=i N i i σμ,按距离判别准则为(不妨设21)2()1(,σσμμ<>)⎩⎨⎧≥≤∈<<∈,,,,**2**1μμμμx x G x x G x 或 若 若 其中 .,121221*211221*σσσμσμμσσσμσμμ--=++=)()()()( 试求错判概率)1|2(P 和)2|1(P 。

多元统计分析第4章作业题选讲

多元统计分析第4章作业题选讲

多元统计分析
解:由已知可得,
1 (1) 1 6 2 4 (2) x x 2 2 2 1 0.5
^
4 3 1 9 3 1 =S p 27 3 4 3 9 ^ ^ ^ ^ 1 9 3 4 1 1 a 1 2 27 3 4 3 0 x1 4 ^ ^ x 1 1 x 4 记x , 则W ( x) a x 1 1 x 0 x 2 2 2 6 6 当x , 则W ( x) 6 4=2 0 ,所以,x 属于总体G1. 0 0

i


1 令 W x a x μ ,其中 μ 2 μ1 μ2

i


i

a Σ 1 μ1 μ2 ,则上述判别规则可简化为:
x G1 , 若W x 0 x G2 , 若W x 0 待判, 若W x =0

由s≤min(k−1,p)知,组数k=2时只有一个判别式,k=3时最
多只有两个判别式,判别式的个数不可能超过原始变量的个 数p。
多元统计分析
第三步 写出判别式 第一判别式:y1=t1′x; 第二判别式:y2=t2′x;
一般地,第i判别式:yi=ti′x,i=1,2,⋯,s。
多元统计分析
(2)判别规则 选取前r(≤s)个判别式y1,y2,⋯,yr,使累计贡献率:
k
k
使ECM达到最小的判别规则:
k
l 1 l i
x l , 若 q j f j x C l | j min q j f j x C i | j

应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

0
2
)
3 2

2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3

2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0

2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )

应用多元统计分析-第四章 均值向量和协差阵检验

应用多元统计分析-第四章 均值向量和协差阵检验

假设检验的过程-以妇女身高为例
形式上,上面的关于总体均值的H0 相对 于H1的检验记为:
H 0 : 160cm H1 : 160cm
我们将 H1 : 160cm 的假设称为双 尾检验 ,即前面说述的假设检验。
假设检验的过程-以妇女身高为例
如果备选假设为: H1 : 160cm
第三,确定显著性水平 根据样本所得的数据来拒绝零假设的概 率应小于0.05,当然也可能是0.01, 0.005,0.001等等。 显著性水平就是小概率水平,但小概率 并不能说明不会发生,仅仅是发生的概 率很小罢了。拒绝正确零假设的错误常 被称为第一类错误(type I error)。
假设检验的过程
有第一类错误,就有第二类错误; 那是备选假设正确时反而说零假设正确 的错误,称为第二类错误(type II error)。 在一般的假设检验问题中,由于备选假 设往往不是一个点,所以无法算出犯第 二类错误的概率。
假设检验的过程
第四,根据数据计算检验统计量的实现 值(t-值)和根据这个实现值计算p-值; 这一步一般都可由计算机软件来完成。 第五,进行判断:如果p-值小于或等于a, 就拒绝零假设,这时犯错误的概率最多 为 ;如果p-值大于 ,就不拒绝零假 设,因为证据不足。
这就是双尾概率,p值为0.045,即p=4.5%
假设检验的过程-以妇女身高为例
首先要提出一个原假设,如妇女身高的 均值等于160cm( 160cm )。这种原假 设也称为零假设(null hypothesis),记 为H0。 与此同时必须提出对立假设,如妇女身 高均值不等于160cm( 160cm )。对立 假设又称为备选假设或备择假设 (alternative hypothesis)记为H1。

最新应用多元统计分析课后习题答案高惠璇PPT课件

最新应用多元统计分析课后习题答案高惠璇PPT课件
X2~N(0,1).
(2) 考虑随机变量Y= X1-X2 ,显然有
YX 1X2 0 X 1X 1,当 估计
P{Y0}P{X11或 X11} P{X11}P{X11} (X1~N(0,1)) 2(1)0.317 04
若(X1 , X2 ) 是二元正态分布,则由性质4可知,
31
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的.
以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
32
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
f(x;μ,Σ)= a
是一个椭球面. (2) 当p=2且
比较上下式相应的系数,可得:
1
2 2
2
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章判别分析4.1 简述欧几里得距离与马氏距离的区别和联系。

答:设p维欧几里得空间中的两点X=和Y=。

则欧几里得距离为。

欧几里得距离的局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲的影响。

设X,Y是来自均值向量为,协方差为的总体G中的p维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。

4.2 试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。

设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。

判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

4.3 简述距离判别法的基本思想和方法。

答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。

其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X,D 2(X ,G 1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2,具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X,W(X)X,W(X)<0②多个总体的判别问题。

设有k 个总体k G G G ,,,21Λ,其均值和协方差矩阵分别是k μμμ,,,21Λ和k ΣΣΣ,,,21Λ,且ΣΣΣΣ====k Λ21。

计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。

具体分析,21(,)()()D G ααα-'=--X X μΣX μ111122()C ααααα----'''=-+''=-+X ΣX μΣX μΣμX ΣX I X取ααμΣI 1-=,αααμΣμ121-'-=C ,k ,,2,1Λ=α。

可以取线性判别函数为()W C ααα'=+X I X , k ,,2,1Λ=α 相应的判别规则为i G ∈X 若 1()max()i kW C ααα≤≤'=+X I X4.4 简述贝叶斯判别法的基本思想和方法。

基本思想:设k 个总体k G G G ,,,21Λ,其各自的分布密度函数)(,),(),(21x x x k f f f Λ,假设k 个总体各自出现的概率分别为k q q q ,,,21Λ,0≥i q ,11=∑=ki iq。

设将本来属于i G 总体的样品错判到总体j G 时造成的损失为)|(i j C ,k j i ,,2,1,Λ=。

设k 个总体k G G G ,,,21Λ相应的p 维样本空间为 ),,,(21k R R R R Λ=。

在规则R 下,将属于i G 的样品错判为j G 的概率为x x d f R i j P jR i )(),|(⎰= j i kj i ≠=,,2,1,Λ则这种判别规则下样品错判后所造成的平均损失为∑==kj R i j P i j C R i r 1)],|()|([)|( k i ,,2,1Λ=则用规则R 来进行判别所造成的总平均损失为∑==ki i R i r q R g 1),()(∑∑===k i kj i R i j P i j C q 11),|()|(贝叶斯判别法则,就是要选择一种划分k R R R ,,,21Λ,使总平均损失)(R g 达到极小。

基本方法:∑∑===k i kj i R i j P i j C q R g 11),|()|()(x x d f i j C q ki kj R i i j∑∑⎰===11)()|(∑⎰∑===k j R ki i i jd f i j C q 11))()|((x x令1(|)()()k iiji q C j i f h ==∑x x ,则 ∑⎰==kj R j jd h R g 1)()(x x若有另一划分),,,(**2*1*kR R R R Λ=,∑⎰==kj R j jd h R g 1**)()(x x则在两种划分下的总平均损失之差为∑∑⎰==⋂-=-k i kj R R j i ji d h h R g R g 11**)]()([)()(x x x因为在i R 上)()(x x j i h h ≤对一切j 成立,故上式小于或等于零,是贝叶斯判别的解。

从而得到的划分),,,(21k R R R R Λ=为1{|()min ()}i i j j kR h h ≤≤==x x x k i ,,2,1Λ=4.5 简述费希尔判别法的基本思想和方法。

答:基本思想:从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数1122()p p U u X u X u X '=+++=X u X L系数),,,(21'=p u u u Λu 可使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出()U X 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。

答:① 费希尔判别与距离判别对判别变量的分布类型无要求。

二者只是要求有各类母体的两阶矩存在。

而贝叶斯判别必须知道判别变量的分布类型。

因此前两者相对来说较为简单。

② 当k=2时,若则费希尔判别与距离判别等价。

当判别变量服从正态分布时,二者与贝叶斯判别也等价。

③ 当时,费希尔判别用作为共同协差阵,实际看成等协差阵,此与距离判别、贝叶斯判别不同。

④ 距离判别可以看为贝叶斯判别的特殊情形。

贝叶斯判别的判别规则是 X,W(X)X,W(X)<lnd距离判别的判别规则是X,W(X)X,W(X)<0二者的区别在于阈值点。

当21q q =,)1|2()2|1(C C =时,1=d,0ln =d 。

二者完全相同。

4.7 设有两个二元总体和,从中分别抽取样本计算得到,,假设,试用距离判别法建立判别函数和判别规则。

样品X=(6,0)’应属于哪个总体?解:=,= ,==即样品X属于总体4.8 某超市经销十种品牌的饮料,其中有四种畅销,三种滞销,三种平销。

下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。

销售情况产品序号销售价格口味评分信任度评分畅销1 2.2 5 82 2.5 6 73 3.0 3 94 3.2 8 6平销5 2.8 7 66 3.5 8 77 4.8 9 8滞销8 1.7 3 49 2.2 4 210 2.7 4 3⑴根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

⑵现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。

解:增加group变量,令畅销、平销、滞销分别为group1、2、3;销售价格为X1,口味评分为X2,信任度评分为X3,用spss 解题的步骤如下:1.在SPSS窗口中选择Analyze→Classify→Discriminate,调出判别分析主界面,将左边的变量列表中的“group”变量选入分组变量中,将X1、X2、X3变量选入自变量中,并选择Enter independents together单选按钮,即使用所有自变量进行判别分析。

2.点击Define Range按钮,定义分组变量的取值范围。

本例中分类变量的范围为1到3,所以在最小值和最大值中分别输入1和3。

单击Continue按钮,返回主界面。

如图4.1图4.1 判别分析主界面3.单击Statistics…按钮,指定输出的描述统计量和判别函数系数。

选中FunctionCoefficients栏中的Fisher’s:给出Bayes判别函数的系数。

(注意:这个选项不是要给出Fisher判别函数的系数。

这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大的一组进行归类这种思想是由Fisher提出来的。

这里极易混淆,请读者注意辨别。

)如图4.2。

单击Continue按钮,返回主界面。

图4.2 statistics子对话框4. 单击Classify…按钮,弹出classification 子对话框,选中Display 选项栏中的Summary table 复选框,即要求输出错判矩阵,以便实现题中对原样本进行回判的要求。

如图4.3。

图4.3 classification 对话框5. 返回判别分析主界面,单击OK 按钮,运行判别分析过程。

1) 根据判别分析的结果建立Bayes 判别函数:Bayes 判别函数的系数见表4.1。

表中每一列表示样本判入相应类的Bayes 判别函数系数。

由此可建立判别函数如下:Group1: 3761.162297.121689.11843.811X X X Y ++--= Group2: 3086.172361.131707.10536.942X X X Y ++--=Group3: 3447.62960.41194.2449.173X X X Y ++--=将各样品的自变量值代入上述三个Bayes 判别函数,得到三个函数值。

比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。

Classification Function Coefficientsgroup1 2 3 x1 -11.689 -10.707 -2.194 x2 12.297 13.361 4.960 x3 16.761 17.086 6.447 (Constant)-81.843-94.536-17.449Fisher's linear discriminant functions表4.1 Bayes 判别函数系数根据此判别函数对样本进行回判,结果如表4.2。

相关文档
最新文档