全等三角形知识点总结及对应练习题(优选.)
八上数学全等三角形章节复习及经典例题
八上数学全等三角形章节复习及经典例题【知识梳理】一、全等三角形1.概念能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2.全等三角形的性质①全等三角形的对应边相等、对应角相等。
②全等三角形的周长相等、面积相等。
③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边二、角的平分线:1.(性质)角的平分线上的点到角的两边的距离相等.2.(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题(1)要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”【例题精讲】例1.如图,在ABC ∆中, 90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。
(完整版)全等三角形的判定常考典型例题及练习
(完整版)全等三角形的判定常考典型例题及练习-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN全等三角形的判定一、知识点复习 ①“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。
(SAS )图形分析:书写格式: 在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EFBC E B DEAB∴△ABC ≌△DEF (SAS )②“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。
(ASA)图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠FC EF BC EB∴△ABC ≌△DEF(ASA)③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS )图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EFBC F C EB∴△ABC ≌△DEF(AAS)④“边边边”定理:三边对应相等的两个三角形全等。
(SSS )图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧===EF BC DF AC DE AB∴△ABC ≌△DEF(AAS)⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。
(HL )图形分析:书写格式:在△ABC 和△DEF 中 ⎩⎨⎧==DF AC DE AB ∴△ABC ≌△DEF (HL )一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗两个三角形中对应相等的元素 两个三角形是否全等反例 SSA⨯AAA⨯二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是( )A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS ”判定三角形全等解决实际问题 4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋?娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。
全等三角形知识总结及典型例题
全等三角形知识总结及典型例题知识点1:全等三角形的定义和表示方法(1)定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角(2)“全等”用“≌”表示,读作“全等于”,记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
例1. 如图所示,图中两个三角形能完全重合,下列写法正确的是( )A .△ABE ≌△AFB B .△ABE ≌△ABFC .△ABE ≌△FBAD .△ABE ≌△FAB知识点2:全等三角形的性质性质:全等三角形中,对应边相等,对应角相等。
【注意:全等三角形的对应线段(对应边上的中线,对应边上的高,对应角的平分线)相等;全等三角形的周长相等,面积相等。
】例2.如图,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8,AD=6,BD=7,则BE 的长是( )A .1 B .2C .4D .6例3.如图,△ABD ≌△EBC ,AB=3cm ,BC=. (1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(1)“边边边”(SSS ):三边对应相等的两个三角形全等。
(2)“边角边”(SAS ):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA ):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等。
(5)“斜边,直角边”(HL ):斜边和一条直角边对应相等的两个直角三角形全等。
【注意:①三角形全等证明时要注意应用“公共边”、“公共角”、“对顶角”等 。
②证明线段或角相等通常转换证明线段或角所在的三角形全等。
③在判定两个三角形全等时,至少有一边对应相等。
④有两边和一角对应相等,角必须是这两边的夹角。
⑤“HL ”只适合于Rt ⊿ 。
⑥利用全等三角形可以测出不能(或不易)直接测量长度的线段长,例如,河宽,或利用全等测量小口瓶的内径等。
初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二全等三角形所有知识点总结和常考题知识点:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.常考题:一.选择题(共14小题)1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°6.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.58.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .410.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角11.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:512.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A .SASB .ASAC .AASD .SSS13.下列判断正确的是( )A .有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个二.填空题(共11小题)15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.17.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.18.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.19.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.20.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=cm.21.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.22.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.23.如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.25.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG ⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.三.解答题(共15小题)26.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.27.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.28.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.29.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.30.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.31.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.32.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE 上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.33.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点.求证:BD=AE.34.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.35.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.36.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.37.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.38.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.39.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.40.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•西宁)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.2.(2013•安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.(2014秋•江津区期末)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.(2007•中山)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项5.(2011•呼伦贝尔)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.6.(2000•安徽)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.【点评】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.7.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC =S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.8.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.(1998•南京)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角【分析】由已知可以得到∠ABC=∠BDE ,又CD=BC ,∠ACB=∠DCE ,由此根据角边角即可判定△EDC ≌△ABC .【解答】解:∵BF ⊥AB ,DE ⊥BD∴∠ABC=∠BDE又∵CD=BC ,∠ACB=∠DCE∴△EDC ≌△ABC (ASA )故选B .【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.11.(2017•石家庄模拟)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C . 故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.12.(2009•鸡西)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A.SAS B.ASA C.AAS D.SSS【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2002•河南)下列判断正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等【分析】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,对比选项进行分析.【解答】解:A、只有两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才能成立;B、30°角没有对应关系,不能成立;C、如果这个角是直角,此时就不成立了;D、符合全等三角形的判断方法:AAS或者ASA.故选D.【点评】本题要求对全等三角形的几种判断方法熟练运用,会对特殊三角形全等进行分析判断.14.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.二.填空题(共11小题)15.(2006•芜湖)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.16.(2013•邵东县模拟)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.17.(2016秋•宁城县期末)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.18.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.【分析】先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.【点评】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.19.(2009•杨浦区二模)如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去玻璃店.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.【点评】这是一道考查全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.20.(2015秋•西区期末)如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=4cm.【分析】先根据平行线的性质求出∠ADE=∠EFC,再由ASA可求出△ADE≌△CFE,根据全等三角形的性质即可求出AD的长,再由AB=9cm即可求出BD的长.【解答】解:∵AB∥CF,∴∠ADE=∠EFC,∵∠AED=∠FEC,E为DF的中点,∴△ADE≌△CFE,∴AD=CF=5cm,∵AB=9cm,∴BD=9﹣5=4cm.故填4.【点评】本题考查的是平行线的性质、全等三角形的判定定理及性质,比较简单.21.(2009秋•南通期末)在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是35度.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(2012秋•合肥期末)如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.23.(2015秋•蒙城县期末)如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是SAS.【分析】已知二边和夹角相等,利用SAS可证两个三角形全等.【解答】解:∵OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△OAB≌△OA′B′(SAS)所以理由是SAS.【点评】本题考查了三角形全等的应用;根据题目给出的条件,要观察图中有哪些相等的边和角,然后判断所选方法,题目不难.24.(2011•河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为4.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.【点评】本题主要考查了直线外一点到直线的距离垂线段最短、角平分线的性质,解题的关键在于确定好DP垂直于BC.25.(2015•鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= 4cm.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.三.解答题(共15小题)26.(2008•北京)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.【分析】根据AB∥ED推出∠B=∠E,再利用SAS判定△ABC≌△CED从而得出AC=CD.【解答】证明:∵AB∥ED,∴∠B=∠E.在△ABC和△CED中,,∴△ABC≌△CED.∴AC=CD.【点评】本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显.27.(2007•北京)已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.【分析】根据角平分线的性质得出∠AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB=∠COD,再利用SAS判定其全等从而得到AB=CD.【解答】证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP.∴∠AOB=∠COD.在△AOB和△COD中,.∴△AOB≌△COD.∴AB=CD.【点评】本题考查三角形全等的判定方法,以及全等三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.28.(2014•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC 于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.29.(2013•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.【分析】根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.【点评】本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.30.(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.【分析】(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC ≌△DFC.(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF⇒∠ABD=∠BDF,又BF=DF⇒∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.。
初二数学八上第十二章全等三角形知识点总结复习和常考题型练习(优选.)
第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(3)全等三角形的周长相等、面积相等。
(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。
期末复习全等三角形知识总结和经典例题
全等三角形复习[知识要点]【一、全等三角形】注: ①判定两个三角形全等必须有一组边对应相等;②全等三角形面积相等.2. 证题的思路:角平分线上的点到这个角的两边的距离相等(垂线段相等)判定: 到一个角的两边距离相等的点在这个角平分线上(常作垂线)[多边形的内角和]①三角形的一个外角等于及它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个及它不相邻的内角。
——常用来比较角的大小5.多边形的内角及外角2.多边形的内角和及外角和(识记)(1)多边形的内角和: (n-2)180° (2)多边形的外角和: 360°引申: (1)从n 边形的一个顶点出发能作(n-3)条对角线;(2)多边形有2)3(-n n 条对角线。
(3)从n 边形的一个顶点出发能将n 边形分成(n-2)个三角形;(4)边数=外角和360°÷一个外角 (5)内角和=(边数-2)×180① 3. 轴对称;一个图形沿着一条直线折叠, 两部分能够完全重合, 这个图形是轴对称图形 (选择题应用)点 关于 轴对称的点的坐标为 .[ 关于x 轴对称----横坐标x 不变纵坐标y 互为相反数]② 点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -[关于y轴对称----纵坐标y不变横坐标x互为相反数]x y关于原点对称的坐标为"P(-x,-y)③点P(,)[关于原点对称----横坐标相反, 纵坐标互为相反]4.垂直平分线的性质垂直平分线上的点到这条线段的两个端点的距离相等(直角三角形的斜边相等)---常用来算周长和角度5.等腰三角形的性质:①等腰三角形两腰相等..②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线, 底边上的高相互重合.⑸等边三角形的性质:3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等, 那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点, 作所连线段的垂直平分线.第十五章⑷作已知图形关于某直线的对称图形: (5)做平行线得到等腰、等边三角形第十六章(5)整式乘除及因式分解5.知识点归纳:一、幂的运算:1.同底数幂的乘法法则: (都是正整数)如:2.幂的乘方法则: (都是正整数)如:幂的乘方法则可以逆用: 即如:3.积的乘方法则:(是正整数)积的乘方, 等于各因数乘方的积。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
全等三角形讲义知识点+典型例题(完美打印版)
BPAa专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA%③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a .,【例2】作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形 已知:如图,线段a ,b ,c.'求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:【例4】已知两边及夹角作三角形 已知:如图,线段m ,n, ∠ .求作:△ABC,使∠A=∠α,AB=m,AC=n.…【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.@随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.3.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角#C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半%C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。
人教版数学《第十二章全等三角形》知识点梳理及同步训练
人教版数学《第十二章全等三角形》知识点梳理及同步训练知识梳理一.全等三角形概念1.全等形的概念:能够完全重合的两个图形叫做全等形.2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,和全等,记作.通常对应顶点字母写在对应位置上.二.全等三角形的性质:1.全等三角形的对应边相等;全等三角形的对应角相等.2.全等三角形的周长、面积相等.三.全等的变换1.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.2.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素四.两个三角形全等的条件1.全等三角形的判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架).2.全等三角形的判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.3.全等三角形的判定3——角边角公理两角和它们的夹边对应相等的两个三角形全等.简写为“角边角”或“ASA”.4.全等三角形的判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.5.直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边直角边”或“HL”.判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理五.判定三角形全等方法的选择:1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
(完整版)全等三角形的基础和经典例题含有答案
第十一章:全等三角形一、基础知识1.全等图形的有关概念(1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13—2就是全等图形图13-1图13—2(2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13—3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(4)全等多边形的表示例如:图13—5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
图13—5表示图形的全等时,要把对应顶点写在对应的位置.(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别 (1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等.相似三角形的识别法中有一个与(SSS )全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS )全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.A BDC E B'A’ C ’D ’E’(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
全等三角形知识点总结及练习
《全等三角形》知识点总结及练习【概念梳理】一、全三等角形的性质1.全等三角形对应边相等;2.全等三角形对应角相等。
二、全等三角形的判定1.三边对应相等的两个三角形全等。
(SSS)2.两角和它们的夹边对应相等的两个三角形全等。
(ASA)3.两角和其中一角的对边对应相等的两个三角形全等。
(AAS)4.两边和它们的夹角对应相等的两个三角形全等。
(SAS)5.斜边和一条直角边对应相等的两个直角三角形全等。
(HL)三、灵活选择适当的方法判定两个三角形全等1.已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)2.已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)3.已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)【典型例题】1.如图(1),已知△ABC≌△CDA,∠B=75°,∠BAC=62°,BC=18。
(1)写出△ABC和△CDA的对应边和对应角。
(2)求∠DAC的度数和边DA的长度。
解:(1)和为对应边∠和∠为对应角和为对应边∠和∠为对应角和为对应边∠和∠为对应角AB CD 1(2)在△ABC中,∠BCA=180°-∠1-∠B=180°--=°∵∠DAC和∠BCA为全等三角形的对应角∴∠=∠=°(全等三角形的相等)∵DA和BC为全等三角形的对应边∴==(全等三角形的相等)2.如图(2)△ABC≌△DCB,请说明∠ACD和∠DBA相等的理由。
解:∵△ABC≌△DCB∴∠ACB=,∠ABC=(全等三角形的相等)∴∠ACD=∠ACB-∠∠ABD=∠CBD-∠∴∠=∠。
【小试牛刀】一、选择1.一个图形经过平移后,发生变化的是()A.形状B.大小C.位置D.以上都变化了2.下列说法正确的是()A.有三个角对应相等的两个三角形全等B.有一个角和两条边对应相等的两个三角形全等C.有两个角和它们夹边对应相等的两个三角形全等D.面积相等的两个三角形全等3.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等 D。
全等三角形知识点归纳及同步练习
知识点归纳全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.一、全等三角形1.判定和性质注:①判定两个三角形全等必须有一组边对应相等;②全等三角形面积相等.证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.线段垂直平分线上任意一点到线段两段距离相等。
5.角平分线上任一点到角的两边距离相等。
6.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角。
5.同角(或等角)的余角(或补角)相等。
全等三角形性质的应用全等三角形的基本性质应用1.下列命题正确的是( )A.全等三角形是指形状相同的两个三角形 B.全等三角形是指面积相同的两个三角形C.两个周长相等的三角形是全等三角形 D.全等三角形的对应边相等、对应角相等2.如图1,ΔABD≌ΔCDB,且AB、CD是对应边;下面四个结论中不正确的是:( )A.ΔABD和ΔCDB的面积相等B.ΔABD和ΔCDB的周长相等C.∠A+∠ABD =∠C+∠CBDD.AD//BC,且AD = BC3.(2009海南)如图所示,已知图中的两个三角形全等,则∠ 度数是()A.72°B.60°C.58°D.50°第2题第3题4.(2009陕西)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A .20°B .30°C .35°D .40°5.如图,△ABC ≌△AEF ,AB 和AE ,AC 和AF 是对应边,那么∠BAE 等于 ( )A .∠ACBB .∠BAFC .∠FD .∠CAF .6.已知△ABC ≌△EFG ,有∠B=70°,∠E=60°,则∠C=( )A . 60°B . 70°C . 50°D . 65°7.如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= . 8.△ABC 中,∠A ∶∠B ∶∠C =4∶3∶2,且△ABC ≌△DEF ,则∠E =______.第4题 第5题 第7题全等三角形的证明1.如图:AB=DC ,BE=CF ,AF=DE 。
全等三角形全章知识点归纳与复习习题
全等三角形知识点归纳与复习(一)1. 的两个三角形全等;2.全等三角形的对应边_ ;对应角 ;对应边上的高;对应角的平分线;对应边的中线;对应周长,对应面积 . 3.证明全等三角形的方法(1)三边的两个三角形形全等,简写为“”或“”。
(2)的两个三角形全等,简写为“边角边”或“”。
(3)的两个三角形全等,简写为“角边角”或“”。
(4)的两个三角形全等,简写为“角角边”或“”。
(5)和对应相等的两个直角三角形全等,简写为“”或“HL”(6)和对应相等的两个直角三角形全等,简写为“”或“HH”(7)两边及第三边上的对应相等的两个锐角三角形(8)两边及其中一边上的对应相等的两个锐角三角形4.证明全等三角形的基本思路(1)已知两边(2)已知一边一角(3)已知两角5.角平分线的性质:_______________________________用法:∵_____________;_________;_________∴QD=QE6.角平分线的判定:______________________________用法:∵_____________;_________;_________∴点Q在∠AOB的平分线上二、基础过关1.下列条件能判断△ABC和△DEF全等的是()A.AB=DE,AC=DF,∠B=∠E B.∠A=∠D,∠C=∠F,AC=EFC.∠A=∠F,∠B=∠E,AC=DE D.AC=DF,BC=DE,∠C=∠D2.在△ABC和△DEF中,如果∠C=∠D,∠B=∠E,要证这两个三角形全等,还需条件()A.AB=ED B.AB=FD C.AC=DF D.∠A=∠F3.在△ABC和△A’B’C’中,AB=A’B’,AC=A’C’,要证△ABC≌△A’B’C’,有以下四种思路证明:①BC=B’C’;②∠A=∠A’;③∠B=∠B’;④∠C=∠C’,其中正确的思路有() A.①②③④ B.②③④ C.①② D.③④4.在△△中,已知,,要判定这两个三角形全等,还需要条件 ( )A.B.C.D.5.如图5,已知:∠1=∠2,要证明△ABC≌△ADE,还需补充条件()A.AB=AD,AC=AE B.AB=AD,BC=DEC.AC=AE,BC=DE D.以上都不对6.如图6,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A.∠A=∠D B.∠E=∠C C.∠A=∠C D.∠1=∠2 7.△ABC和中,若,,则需要补充条件可得到△ABC ≌.8.如图3所示,AB 、CD 相交于O,且AO=OB,观察图形,明显有,只需补充条件,则有△AOC≌△(ASA).三、综合提高1.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
全等三角形知识点总结及对应练习题
全等三角形专题讲解(一)知识储备1、全等三角形的概念:(1)能够重合的两个图形叫做全等形。
(2)两个三角形是全等形,就说它们是全等三角形。
两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。
(3)全等三角形的表示:如图,△ABC和△DEF是全等三角形,记作△ABC≌△DEF,符号“≌”表示全等,读作“全等于”。
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
2、全等三角形的性质:全等三角形的对应边相等,对应角相等。
【例1】如图,△ABC≌△DEF,则有:AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F。
3、全等三角形的判定定理:S.A.S “边角边”公理:两边和它们的夹角对应相等的两个三角形全等。
【例2】A.S.A “角边角”公理:两角和它们的所夹边对应相等的两个三角形全等。
【例3】A.A.S “角角边”公理:两个角和其中一个角的对边对应相等的两个三角形全等。
【例4】S.S.S “边边边”公理:三边对应相等的两个三角形全等。
【例5】H.L “斜边直角边“公理斜边和一条直角对应相等的两个直角三角形全等。
【例6】(二)双基回眸1、下列说法中,正确的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.12、如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.3、如图,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D.无法确定4、如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°5、能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E6、如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙(三)例题经典例1:如图,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____;(2)对应边AC=,AB= ;(3)如果ΔAOB≌ΔDOC,则AO= _,BO= _,∠A=_ ,∠ABC= .例2:如图,AB、CD相交于O点,AO=CO,OD=OB.求证:∠D=∠B.例3:如图,PM=PN,∠M=∠N.求证:AM=BN.例4:如图,AC BD.求证:OA=OB,OC=OD.例5:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.例6:如图,AB ⊥BD ,CD ⊥BD ,AD =BC . 求证:(1)AB =DC : (2)AD ∥BC .例7:阅读下题及一位同学的解答过程,回答问题:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C 。
苏教版《全等三角形》知识点总结+习题+单元测试题
第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。
2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
⑵全等三角形的周长相等、面积相等。
⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
④边边边公理(SSS) 有三边对应相等的两个三角形全等。
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).例题评析例1 已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.例2 已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.BCD EF AAC D E例3已知:BE ⊥CD ,BE =DE ,BC =DA , 求证:①△BEC ≌△DEA ; ②DF ⊥BC .例4如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .例5 如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC=60°,求∠EFD 的度数.例6如图,将长方形纸片ABCD 沿对角线AC 折叠,使点B 落到点B ′的位置,AB ′与CD 交于点E .(1)试找出一个三角形与△AED 全等,并加以证明.(2)若AB =8,D E =3,P 为线段AC 上的任意一点,PG ⊥AE 于G ,PH ⊥EC 于H , PG +PH 的值会变化吗?若变化,请说明理由; 若不变化,请求出这个值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改全等三角形专题讲解(一)知识储备1、全等三角形的概念:(1)能够重合的两个图形叫做全等形。
(2)两个三角形是全等形,就说它们是全等三角形。
两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。
(3)全等三角形的表示:如图,△ABC和△DEF是全等三角形,记作△ABC≌△DEF,符号“≌”表示全等,读作“全等于”。
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
2、全等三角形的性质:全等三角形的对应边相等,对应角相等。
【例1】如图,△ABC≌△DEF,则有:AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F。
3、全等三角形的判定定理:S.A.S “边角边”公理:两边和它们的夹角对应相等的两个三角形全等。
【例2】A.S.A “角边角”公理:两角和它们的所夹边对应相等的两个三角形全等。
【例3】A.A.S “角角边”公理:两个角和其中一个角的对边对应相等的两个三角形全等。
【例4】S.S.S “边边边”公理:三边对应相等的两个三角形全等。
【例5】H.L “斜边直角边“公理斜边和一条直角对应相等的两个直角三角形全等。
【例6】(二)双基回眸1、下列说法中,正确的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.12、如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.3、如图,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D.无法确定4、如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°5、能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E6、如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙(三)例题经典例1:如图,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____;(2)对应边AC=,AB= ;(3)如果ΔAOB≌ΔDOC,则AO= _,BO= _,∠A=_ ,∠ABC= .例2:如图,AB、CD相交于O点,AO=CO,OD=OB.求证:∠D=∠B.例3:如图,PM=PN,∠M=∠N.求证:AM=BN.例4:如图,AC BD.求证:OA=OB,OC=OD.例5:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.例6:如图,AB ⊥BD ,CD ⊥BD ,AD =BC . 求证:(1)AB =DC : (2)AD ∥BC .例7:阅读下题及一位同学的解答过程,回答问题:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C 。
那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由。
答:△AOD ≌△COB . 证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA )问:这位同学的回答及证明过程正确吗?为什么?例6图例7图例8:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.例9:如图,AD=AE,∠1=∠2,点D、E在BC上,BD=CE。
求证:△ABD≌△ACE.例9图例10:如图,已知AD∥CB,AD=CB,AE=BF,求证:(1)△AFD≌△BEC.(2)DF∥CE.拓展变式例1:如图, ∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?例2:要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,这时测得的DE的长就是AB的长。
写出已知和求证,并且进行证明。
实战演练 一、填空题1、如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.2、已知:如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E.欲证明BD =CE ,需证明Δ_____≌△______,理由为______.3、已知:如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.4、如图,根据SAS ,如果AB =AC , = ,即可判定ΔABD ≌ΔACE.5、如图,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是___________.第2题第3题第1题6、如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE ⊥AB于D,若AB=10,则△BDE的周长等于____.7、如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .8、如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是 .9、如图,AD⊥BC,DE⊥AB,DF⊥AC,D、E、F是垂足,BD=CD,那么图中的全等三角形有_______对.二、选择题1、AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()第4E DCBA第8第9AF(8)CED第5题ECDPAB第6EDCBADE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF2、下列语句中,正确的有( )(1)一条直角边和斜边上的高对应相等的两个直角三角形全等 (2)有两边和其中一边上的高对应相等的两个三角形全等 (3)有两边和第三边上的高对应相等的两个三角形全等 A.1个 B.2个 C.3个 D.4个 3、下列说法中,正确的是( )A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线 4、如图,若△ABE ≌△ACF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.55、如图,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( )第4F E C BA第5题A.AB =DEB.∠ACE =∠DFBC.BF =ECD.∠ABC =∠DEF6、如图,△ABC 是不等边三角形,DE =BC ,以D 、E 为两个顶点画位置不同的三角形,使所画的三角形与△ABC 全等,这样的三角形最多可画出( ) A.2个 B.4个 C.6个 D.8个7、如图,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACDB.∠B =∠CC.AD 是 BAC 的平分线D.△ABC 是等边三角形8、如图,∠1=∠2,∠C =∠D ,AC 、BD 交于E 点,下列结论中正确的有( ) ①∠DAE =∠CBE ②CE =DE ③△DEA ≌△CBE ④△EAB 是等腰三角形 A.1个 B.2个 C.3个 D.4个9、如图,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E ,ABABCD第7第6题B第82(12)CBA1EDA=10,△BCD 的周长为18,则BC 的长为( ) A.8 B.6 C.4 D.2 三、解答题1、如图,已知线段a 、b ,求作:Rt △ABC ,使∠ACB =90º,BC =a ,AC =b (不写作法,保留作图痕迹).2、如图,BP 、CP 是△ABC 的外角平分线,则点P 必在∠BAC 的平分线上,你能说出其中的道理吗?3、如图,已知∠1=∠2,∠3=∠4AP BC4、如图,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点. (1)G 点一定是AB 的中点吗?说明理由; (2)钉这两块木条的作用是什么?5、如图,已知点A 、E 、F 、D 在同一条直线上,AE =DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF =CE ,试说明AB 与CD 的位置关系.6、阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB =EC ,∠ABE =∠ACE ,试说明∠BAE 与G FE DCBAAF CE BD∠CAE 相等的理由. 理由:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB所以△AEB ≌△AEC(第一步) 所以∠BAE =∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.7、如图(1),在四边形ABCD 中,AD ∥BC ,∠ABC =∠DCB ,AB =DC ,AE =DF. (1)试说明BF =CE 的理由.(2)当E 、F 相向运动,形成如图(2)时,BF 和论和理由.8、已知:如图,AB =AC ,DB =DC ,(1)若E 、F 、G 、H 分别是各边的中点,求证:EH =FG.(2)若连结AD 、BC 交于点P ,问AD 、BC 有何关系?证明你的结论.9、如图,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上,有下面四个论断:(A )AD =CB ,(B )AE =CF ,(C )∠B =∠D ,(D )AD ∥BC.请用其中三个作为条件,余下一个作为结论,遍一道数学题,并写出解答过程.最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改ABCDEF。