八年级数学《三角形》单元经典易错题大全

合集下载

《易错题》初中八年级数学上册第十一章《三角形》知识点总结(专题培优)

《易错题》初中八年级数学上册第十一章《三角形》知识点总结(专题培优)

一、选择题cm cm cm cm的四根木棒首尾相接,组成一个凸四边形,若凸1.小李同学将10,12,16,22四边形对角线长为整数,则对角线最长为()A.25cm B.27cm C.28cm D.31cm2.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.3cm,4cm,5cm D.5cm,6cm,7cm3.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的值不可能是()A.2.4 B.3 C.5 D.8.54.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形5.已知三角形的两边长分别为1和4,则第三边长可能是()A.3 B.4 C.5 D.66.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为()A.8 B.9 C.10 D.117.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2 B.3 C.4 D.58.以下列各组线段为边,能组成三角形的是( )A.1,2,3 B.1,3,5 C.2,3,4 D.2,6,109.下列长度(单位:cm)的三条线段能组成三角形的是()A.13,11,12 B.3,2,1 C.5,12,7 D.5,13,510.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.411.现有两根木棒,长度分别为5cm和13cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 12.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 13.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠B .12A BC ∠=∠=∠ C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 14.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5 15.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°二、填空题16.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.17.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.18.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线19.七边形的外角和为________.20.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.21.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 22.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.23.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.24.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.25.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.26.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD的面积是_________________三、解答题27.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).28.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).29.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.30.已知一个n边形的每一个内角都等于120°.(1)求n的值;(2)求这个n边形的内角和;(3)这个n边形内一共可以画出几条对角线?。

(易错题精选)初中数学三角形经典测试题及答案

(易错题精选)初中数学三角形经典测试题及答案

(易错题精选)初中数学三角形经典测试题及答案一、选择题1.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6B .8C 5D .5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A =x ,则∠B =2x ,∠C =3x ,由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,解得x =30°,即∠A=30°,∠C=3×30°=90°,此三角形为直角三角形,故AB=2BC=2×4=8cm,故选B.【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.4.下列长度的三条线段能组成三角形的是()A.2, 2,5B.1,3,3C.3,4,8D.4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A、2+2=4<5,此选项错误;B、1+3<3,此选项错误;C、3+4<8,此选项错误;D、4+5=9>6,能组成三角形,此选项正确.故选:D.【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.5.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.6【答案】C【解析】【分析】由折叠的性质可知;DC=DE,∠DEA=∠C=90°,在Rt△BED中,∠B=30°,故此BD=2ED,从而得到BC=3BC,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.6.如图,在ABC 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C.【点睛】本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.7.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()A.60 B.48 C.24 D.96【答案】D【解析】【分析】由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=6,∴AO22100368AB OB-=-=,∴AC=16,BD=12,∴菱形面积=12162⨯=96,故选:D.【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.8.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.C.D.【答案】C【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、72+242=252,152+202≠242,(7+15)2+202≠252,故A不正确;B、72+242=252,152+202≠242,故B不正确;C、72+242=252,152+202=252,故C正确;D、72+202≠252,242+152≠252,故D不正确,故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB 于点E.如果点M是OP的中点,则DM的长是()A.2 B2C3D.3【答案】C【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM 的长.【详解】解:∵OP 平分∠AOB ,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°,∴CE=12CP=1, ∴PE=22CP CE 3-=, ∴OP=2PE=23,∵PD ⊥OA ,点M 是OP 的中点,∴DM=12OP=3. 故选C . 考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒== ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt△ABC中,AB=5,BC=10,∴AC=55,连接BE,∵BD是圆的直径,∴∠BED=90°=∠CBA,∵∠BAC=∠EDB,∴△ABC∽△DEB,∴AB AC DE DB=,∴5355DB =,∴DB=35,在Rt△ABD中,AD=2225BD AB-=,故选:D.【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.11.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.12.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.13.下列几组线段中,能组成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.2,5,5【答案】C【解析】【分析】要验证是否可以组成直角三角形,根据勾股定理的逆定理,只要验证三边的关系是否满足两边平方是否等于第三边的平方即可,分别验证四个选项即可得到答案.【详解】A.222+≠,故不能组成直角三角形;234B. 222+≠,故不能组成直角三角形;346C .22251213+=,故可以组成直角三角形;D .222255+≠,故不能组成直角三角形;故选C .【点睛】本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.14.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒, DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A 13B 31C 3+19D .7【答案】B【解析】如图,作点A 关于OB 的对称点点D ,连接CD 交OB 于点P ,此时PA +PC 最小,作DN ⊥x 轴交于点N ,∵B(3,3),∴OA=3,AB=3,∴OB=23,∴∠BOA=30°,∵在Rt△AMO中,∠MOA=30°,AO=3,∴AM=1.5,∠OAM=60°,∴∠ADN=30°,∵在Rt△AND中,∠ADN=30°,AD=2AM=3,∴AN=1.5,DN=332,∴CN=3-12-1.5=1,∴CD2=CN2+DN2=12+(332)2=314,∴CD=312.故选B.点睛:本题关键在于先借助轴对称的性质确定出P点的位置,然后结合特殊角30°以及勾股定理计算.17.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.18.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为( )A.30°B.45°C.36°D.72°【答案】A【解析】∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD,又∵∠BDC=∠A+∠ABD,∴∠BDC=∠C=∠ABC=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.19.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A .5cmB .4cmC .3cmD .2cm【答案】C【解析】 ∵点D 到AB 的距离是DE ,∴DE ⊥AB ,∵BD 平分∠ABC ,∠C =90°,∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处,∴DE=CD ,∵CD =3cm ,∴DE=3cm.故选:C.20.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.。

(易错题)初中数学八年级数学上册第一单元《三角形》测试(答案解析)

(易错题)初中数学八年级数学上册第一单元《三角形》测试(答案解析)

一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 3.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 4.下列长度的线段能组成三角形的是( ) A .2,3,5B .4,6,11C .5,8,10D .4,8,4 5.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 6.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒7.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .78.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°9.如图,已知AE 交CD 于点O ,AB ∥CD ,∠A =50°,∠E =15°,则∠C 的度数为( )A .50°B .65°C .35°D .15°10.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4011.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠B .12A BC ∠=∠=∠ C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 12.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°二、填空题13.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.14.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 15.如果三角形两条边分别为3和5,则周长L 的取值范围是________16.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.17.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.18.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.19.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°;②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°.20.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.三、解答题21.在ABC ∆中, ,AB AC CG BA =⊥交BA 的延长线于点G ,点D 是线段BC 上的一个动点.特例研究:()1当点D 与点B 重合时,过B 作BF AC ⊥交AC 的延长线于点F ,如图①所示,通过观察﹑测量BF 与CG 的长度,得到BF CC =.请给予证明.猜想证明:()2当点D 由点B 向点C 移动到如图②所示的位置时,过D 作DF AC ⊥交CA 的延长线于点F ,过D 作DE BA ⊥交BA 于点E ,此时请你通过观察,测量DE DF 、与CG 的长度,猜想并写出DE DF 、与CG 之间存在的数量关系,并证明你的猜想.拓展延伸:()3当点D 由点B 向点C 继续移动时(不与C 重合) ,过D 作DF AC ⊥交AC 于点F ,过D 作DF BA ⊥交BA (或BA 的延长线)于点E ,如图③,图④所示,请你判断(2)中的猜想是否仍然成立?(不用证明)22.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.23.如图1,△ABC 中,AD 是∠BAC 的角平分线,AE ⊥BC 于点E .(1)若∠C=80°,∠B=40°,求∠DAE 的度数;(2)若∠C >∠B ,试说明∠DAE=12(∠C-∠B); (3)如图2,若将点A 在AD 上移动到A′处,A′E ⊥BC 于点E .此时∠DAE 变成∠DA′E ,请直接回答:(2)中的结论还正确吗?24.如图,△ABC 中,D 为AC 上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB 的角平分线分别交BD 、BA 于点E 、F .(1)若α=90°,判断∠BEF 和∠BFE 的大小关系并说明理由;(2)是否存在α,使∠BEF 大于∠BFE ?如果存在,求出α的范围,如果不存在,请说明理由.25.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 26.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O .(1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数;(2)请直接写出BOC ∠与A D ∠+∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.2.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.3.B解析:B首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.4.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+6<11,不能组成三角形,不符合题意;C、5+8>10,能组成三角形,符合题意;D、4+4=8,不能够组成三角形,不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m,则5-2<x<5+2即3<x<7,∴当x=5时,能与2m、5m长的两根木棒钉成一个三角形,故选:C.本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.6.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.7.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C .【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.8.A解析:A延长BC 交刻度尺的一边于D 点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt △CDE 中,利用内角和定理求解.【详解】如图,延长BC 交刻度尺的一边于D 点,∵AB ∥DE ,∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°,∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 9.C解析:C【分析】先根据平行线的性质,得出A DOE ∠=∠,再根据DOE ∠是OCE ∆的外角,即可得到C ∠的度数.【详解】解:∵AB//CD ,45A ∠=︒,∴45DOE ∠=︒,∵DOE E C ∠=∠+∠,∴501535C DOE E ∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,正确得出DOE ∠的度数是解题的关键. 10.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.11.C解析:C【分析】利用三角形的内角和,代入已知条件求出角的度数,逐一判断是否有直角即可.【详解】A :ABC ∠+∠=∠,代入+=180A B C ∠+∠∠︒得:2=180C ︒∠⇒=90C ∠︒,故此选项不符合题意;B :12A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:11++=2=18022C C C C ︒∠∠∠∠⇒=90C ∠︒,故此选项不符合题意; C :3A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:3+3+=180C C C ︒∠∠∠⇒26C ≈︒∠,故此选项符合题意;D :1123A B C ∠=∠=∠代入+=180A B C ∠+∠∠︒得:12++=18033C C C ︒∠∠∠⇒=90C ∠︒,故此选项符合题意; 故答案选:C【点睛】本题主要考查了三角形的内角和,熟悉掌握三角形的内角和运算方式是解题的关键. 12.D解析:D【分析】根据三角形的外角的性质得到∠ADC=∠B+∠BAD ,得到x >70°,根据平角的概念得到x <180°,计算后进行判断得到答案.【详解】解:∵∠ADC=∠B+∠BAD ,∴x >70°,又x <180°,∴x 的度数可能为80°,故选:D .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题13.19【分析】根据从n边形的一个顶点出发连接这个点与其余各顶点可以把一个n边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形,∴n-2=17,n .∴19故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.14.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.15.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x ,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.16.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.17.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA=540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG=∠E+∠F,进而可求解.【详解】解:连接GD,∠A+∠B+∠C+∠CDG+∠DGA=(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG=180°,∠2+∠E+∠F=180°,∠1=∠2,∴∠FGD+∠EDG=∠E+∠F,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA=540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键.18.74°【分析】先根据三角形的内角和定理求得∠ACB的度数再根据CE平分∠ACB求得∠ACE的度数则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE再结合CD⊥ABDF⊥CE就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【详解】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.19.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故③正确;如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.20.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平解析:40【分析】如图(见解析),先根据直角三角板的定义可得445∠=︒,再根据平行线的性质可得1585=∠∠=︒,然后根据三角形的外角性质可得340∠=︒,最后根据对顶角相等即可得.【详解】如图,由题意得:445∠=︒,//a b,185∠=︒,1855∴∠∠==︒,35440∴∠=∠-∠=︒,由对顶角相等得:2340∠=∠=︒,故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.三、解答题21.(1)证明见解析;(2)CG DE DF=+,证明见解析;(3)结论不变:CG DE DF=+【分析】(1)根据12ABCS AC BF=⋅△,12ABCS AB CG=⋅△,即可解决问题;(2)结论CG DE DF =+,利用面积法证明即可;(3)结论不变,证明方法类似(2).【详解】(1)证明:如图①中,∵90F G ︒∠=∠=, ∴12ABC S AC BF =⋅△,12ABC S AB CG =⋅△, ∴1122AC BF AB CG ⋅=⋅, 又∵AB AC =,∴BF AC =;(2)解:结论CG DE DF =+,理由:如图②中,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;(3)结论不变:CG DE DF =+,证明如下:如图③,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+;如图④,连接AD ,∵ABC ABD ADC SS S =+,DE AB ⊥,DF AC ⊥,CG AB ⊥, ∴111222AB CG AB DE AC DF ⋅⋅=⋅⋅+⋅⋅, ∵AB AC =,∴CG DE DF =+.【点睛】本题考查三角形的判定和性质、三角形的面积等知识,解题的关键是利用面积法证明线段之间的关系.22.(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解. 【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒,BE 是CBD ∠的平分线,111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.23.(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得∠BAD的度数,在△ABE中,利用直角三角形的性质求出∠BAE的度数,从而可得∠DAE的度数.(2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B).【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=12∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C )=12∠C-12∠B=12(∠C-∠B);(3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+12∠B-12∠C)=12(∠C-∠B).【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.24.(1)∠BEF=∠BFE,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF,等量代换得到∠BEF=∠BFC,于是得到∠BEF=∠BFE;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF平分∠ACB,∴∠DCE=∠BCF,∴∠DEC=∠BFC,∵∠DEC=∠BEF,∴∠BEF=∠BFC,即∠BEF=∠BFE;(2)∵∠BEF=∠EBC+∠ECB,∠BFE=∠A+∠ACF,∠ECB=∠ACF,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A,∵∠EBC=∠ABC-∠ABD=α-∠ABD,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD,∴∠BEF-∠BFE=(α-∠ABD)-(180°-α-∠ABD)=2α-180°,若∠BEF>∠BFE,则∠BEF﹣∠BFE>0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.25.﹣2a+4b ﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a ,b ,c 为ABC 的三边,∴a+b >c ,b+c >a ,a+c >b∴|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b ﹣c|=﹣[a ﹣(b+c )]+2[b ﹣(c+a )]+(a+b ﹣c )=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b ﹣2c ﹣2a+a+b ﹣c=﹣2a+4b ﹣2c .【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 26.(1)120°;(2)1()2BOC A D ∠=∠+∠ 【分析】(1)先由四边形内角和定理求出∠ABC+∠DCB=120°,再由角平分线定义得出∠OBC+∠OCB=60°,最后根据三角形内角和定理求出∠O=120°即可;(2)方法同(1)【详解】解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=130°+110°=240°,∴∠ABC+∠BCD=360°-(∠A+∠D )=360°-240°=120°,∵OB ,OC 分别是∠ABC 和∠BCD 的平分线, ∴∠OBC+∠OCB=111(221)1206220AB ABC DC C BCD B ∠+∠=⨯+∠︒=∠=︒ , ∴∠O=180°-(∠OBC+∠OCB )=180°-60°=120°; (2)1()2BOC A D ∠=∠+∠ 证明:在四边形ABCD 中,360A B C D ∠+∠+∠+∠=︒∴360()ABC DCB A D ∠+∠=︒-∠+∠∵OB ,OC 分别是∠ABC 和∠BCD 的平分线,∴∠OBC+∠OCB=1111((222)180)2ABC BCD AB D A C D CB ∠+∠=︒-∠∠=+∠∠+ ∴180(1)()2O BOC BC OCB A D ∠+∠=︒-∠=∠+∠ 【点睛】 此题主要考查了四边形内角和定理,三角形的内角和定理以及角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;一个角的角平分线把这个角分成两个大小相等的角.。

八年级数学《三角形》单元经典易错题大全(11)

八年级数学《三角形》单元经典易错题大全(11)

⼋年级数学《三⾓形》单元经典易错题⼤全(11)⼋年级数学《三⾓形》单元经典易错题⼤全1.如图所⽰,⽤“>”连接∠1,∠2,∠3,∠4为____________.2.如果⼀个多边形的内⾓和为1260°,那么过这个多边形的⼀个顶点有_____?条对⾓线.3.已知,如图CE是△ABC的外⾓∠ACD的平分线,BE是∠ABC内任⼀射线,交CE于E.求证:∠EBC<∠ACE.4.如果⼀个多边形的边数增加1,则它的内⾓和将( )A增加90° B增加180° C增加360° D不变5.当围绕⼀点拼在⼀起的⼏个多边形的内⾓加在⼀起恰好组成⼀个周⾓时,就拼成⼀个平⾯图形.⽤正三⾓形和正⽅形组合铺满地⾯,每个顶点周围有___个正三⾓形和___个正⽅形。

6.阅读材料,并填表:在△ABC中,有⼀点P1,当P1、A、B、C没有任何三点在同⼀直线上时,可构成三个不重叠的⼩三⾓形(如图).当△ABC 内的点的个数增加时,若其他条件不变,三⾓形内互不重叠的⼩三⾓形的个数情况怎样?完成下表:7.三⾓形中最⼤的内⾓⼀定是( )A.钝⾓B.直⾓;C.⼤于60°的⾓D.⼤于等于60°的⾓8.已知:如图,P是△ABC内任⼀点,求证:∠BPC>∠A.9.如图所⽰,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.E CBA10.多边形的外⾓和等于___。

11.如图∠ACD是△ABC的外⾓,BE平⾏∠ABC,CE平分∠ACD,且BE、CE交于点E.求证:∠E=12∠A.12.如图所⽰,DE∥AB,FG∥BC,HM∥CA,求∠D+∠E+∠F+∠G+∠H+∠M的度数.13.在△ABC中,∠A等于和它相邻的外⾓的四分之⼀,这个外⾓等于等于∠B的两倍,那么∠A=______,∠B=_______,∠C=_______.14.如图AB⊥AC,则AB是△ABC的边____上的⾼,也是△BDC的边______上的⾼,也是△ABD的边____上的⾼.15.等腰三⾓形的⼀个⾓是80°,它的另外两个⾓的度数是___16.如图,分别画出三⾓形过顶点A的中线、⾓平分线和⾼。

八年级数学《三角形》单元经典易错题大全 (13)

八年级数学《三角形》单元经典易错题大全 (13)

八年级数学《三角形》单元经典易错题大全1.如图,∠A=32°∠B=45°∠C=38°,则∠DFE=( )A、120°B、115°C、110°D、105°2.多边形的每一个内角都等于135°,则从此多边形一个顶点出发引出的对角线有( )A、8条B、7条C、6条D、5条3.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.4.三角形的三个外角中,钝角最多有( )。

A:1个 B:2个 C:3个 D:4个5.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形6.如图,已知∠1=0.5∠BAC,∠2=∠3,则∠BAC的平分线为___,∠ABC的平分线为___;7.已知△ABC的周长为45cm,∠A、∠B、∠C的对边分别为a、b、c,且a∶b∶c=4∶5∶6,求三边的长.8.已知BD,CE是△ABC的高,直线BD,CE相交所成的角中有一个角为50°,则∠BAC=__________.9.已知等腰三角形的两边长分别为5cm和8cm,且它的周长大于19cm,则第三边长为__________.10.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.11.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个12.已知:如图,P是△ABC内任一点,求证:AB+AC>BP+PC.13.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.14.如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是( )A.10° B.20° C.30° D.40°15.已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是___________.16.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.17.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A、4B、5C、6D、718.如果一个多边形的内角和为1260°,那么过这个多边形的一个顶点有_____•条对角线.19.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.20.如图,AB∥CD,∠A=60°∠C=∠E,求∠C。

八年级数学三角形解答题易错题(Word版 含答案)

八年级数学三角形解答题易错题(Word版 含答案)

八年级数学三角形解答题易错题(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.【答案】(1)135°;(2)67.5°;(3)60°, 45°【解析】【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知CDE DCE 112.5∠+∠=︒,进而得出结论;(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°, ∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴1BAE OAB 2∠=∠,1ABE ABO 2∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=∠+∠=°, ∴∠AEB=135°;(2)∠CED 的大小不变.如图2,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴90∠=AOB °,∴OAB OBA 90∠+∠=°,∴PAB MBA 270∠+∠=°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴1BAD BAP 2∠=∠,1ABC ABM 2∠=∠, ∴()1BAD ABC PAB ABM 1352∠+∠=∠+∠=°,F 45∠=°, ∴FDC FCD 135∠+∠=°,∴CDA DCB 225∠+∠=°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴CDE DCB 112.5∠+∠=°,∴E 67.5∠=°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ , ∴()11E EOQ EAO BOQ BAQ ABO 22∠=∠-∠=∠-∠=∠, ∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴EAF 90∠=°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①EAF 3E ∠=∠,E 30∠=°,ABO 60∠=°;②EAF 3F ∠=∠,E 60∠=°,ABO 120∠=°;③EAF 3E ∠=∠,E 22.5∠=°,ABO 45∠=°;④EAF 3F ∠=∠,E 67.5∠=°,ABO 135∠=°.∴∠ABO 为60°或45°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2.已知在四边形ABCD 中,∠A =∠C =90°.(1)∠ABC +∠ADC = °;(2)如图①,若DE 平分∠ADC ,BF 平分∠ABC 的外角,请写出DE 与BF 的位置关系,并证明;(3)如图②,若BE ,DE 分别四等分∠ABC 、∠ADC 的外角(即∠CDE =14∠CDN ,∠CBE =14∠CBM ),试求∠E 的度数.【答案】(1)180°;(2)DE ⊥BF ;(3)450【解析】【分析】(1)根据四边形内角和等于360°列式计算即可得解;(2)延长DE 交BF 于G ,根据角平分线的定义可得∠CDE=12∠ADC ,∠CBF=12∠CBM ,然后求出∠CDE=∠CBF ,再利用三角形的内角和定理求出∠BGE=∠C=90°,最后根据垂直的定义证明即可;(3)先求出∠CDE+∠CBE ,然后延长DC 交BE 于H ,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.【详解】(1)解:∵∠A=∠C=90°,∴∠ABC+∠ADC=360°-90°×2=180°;故答案为180°;(2)解:延长DE 交BF 于G ,∵DE 平分∠ADC ,BF 平分∠CBM ,∴∠CDE=12∠ADC ,∠CBF=12∠CBM , 又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC )=∠ADC ,∴∠CDE=∠CBF ,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE ,∴∠BGE=∠C=90°,∴DG ⊥BF ,即DE ⊥BF ;(3)解:由(1)得:∠CDN+∠CBM=180°,∵BE 、DE 分别四等分∠ABC 、∠ADC 的外角,∴∠CDE+∠CBE=14×180°=45°, 延长DC 交BE 于H , 由三角形的外角性质得,∠BHD=∠CDE+∠E ,∠BCD=∠BHD+∠CBE ,∴∠BCD=∠CBE+∠CDE+∠E ,∴∠E=90°-45°=45°【点睛】本题考查了三角形的内角和定理,四边形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键,要注意整体思想的利用.3.已知:线段AB ,以AB 为公共边,在AB 两侧分别作ABC ∆和ABD ∆,并使C D ∠=∠.点E 在射线CA 上.(1)如图l ,若ACBD ,求证:AD BC ∥; (2)如图2,若BD BC ⊥,请探究DAE ∠与C ∠的数量关系,写出你的探究结论,并加以证明; (3)如图3,在(2)的条件下,若BAC BAD ∠=∠,过点D 作DF BC ∥交射线于点F ,当8DFE DAE ∠=∠时,求BAD ∠的度数.【答案】(1)见详解;(2)DAE ∠+2C ∠=90°,理由见详解;(3)99°.【解析】【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE 与BD 交点为G ,由三角形外角的性质得∠CGB=∠D+∠DAE ,由BD BC ⊥,得∠CGB+∠C=90°,结合C D ∠=∠,即可得到结论;(3)设∠DAE=x ,则∠DFE=8x ,由DF BC ∥,DAE ∠+2C ∠=90°,得关于x 的方程,求出x 的值,进而求出∠C ,∠ADB 的度数,结合∠BAD=∠BAC ,即可求解.【详解】(1)∵AC BD ,∴∠C+∠CBD=180°,∵C D ∠=∠,∴∠D+∠CBD=180°,∴AD BC ∥;(2)DAE ∠+2C ∠=90°,理由如下:设CE 与BD 交点为G ,∵∠CGB 是∆ADG 的外角,∴∠CGB=∠D+∠DAE ,∵BD BC ⊥,∴∠CBD=90°,∴在∆BCG 中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵C D ∠=∠,∴DAE ∠+2C ∠=90°;(3)设∠DAE=x ,则∠DFE=8x ,∴∠AFD=180°-8x ,∵DF BC ∥,∴∠C=∠AFD=180°-8x ,又∵DAE ∠+2C ∠=90°,∴x+2(180°-8x)=90°,解得:x=18°,∴∠C=180°-8x=36°=∠ADB ,又∵∠BAD=∠BAC ,∴∠ABC=∠ABD=12∠CBD=45°, ∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.4.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+12∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A=∠P,理由见解析;(3)∠P=90°﹣12∠A,理由见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.5.已知:点D是△ABC所在平面内一点,连接AD、CD.(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;(3)如图3,在(2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.【答案】(1) 111º ;(2) ∠A-∠C=2∠P,理由见解析;(3) ∠A+∠C=2∠P,理由见解析.【解析】【分析】(1)延长AD交BC于E,利用三角形外角的性质即可求解;(2)∠A-∠C=2∠P,由三角形外角等于不相邻的两个内角的和以及(1)结论即可求解;(3)∠A+∠C=2∠P,由(2)结论以及角平分线的性质即可得到.【详解】(1)如图1,延长AD交BC于E,在△ABE中,∠AEC=∠A+∠B=28º+72º=100º,在△DEC中,∠ADC=∠AEC+∠C=100º+11º=111º ;(2)∠A-∠C=2∠P,理由如下:如图2,∠5=∠A+∠1,∠5=∠P+∠3∴∠A+∠1=∠P+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠A+∠2=∠P+∠4由(1)知∠4=∠2+∠P+∠C∴∠A+∠2=∠P+∠2+∠P+∠C∴∠A-∠C=2∠P(3)∠A+∠C=2∠P,理由如下:如图3,同(2)理知∠A+∠1=∠P+∠3,∠C+∠4=∠P+∠2∴∠A+∠C+∠1+∠4=2∠P+∠2+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3∴∠A+∠C=2∠P【点睛】本题考查了三角形外角的性质,角平分线的定义,整体思想的利用是解题的关键.6.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②【答案】(1)∠EFD=12∠C-12∠B.()成立,理由见解析.【解析】【分析】先根据AE 平分∠BAC 推出∠BAE=12∠BAC=12[180°-(∠B+∠C )],再根据外角的定义求出∠FED=∠B+∠BAE ,然后利用直角三角形的性质求出∠EFD=90°-∠FED . 【详解】 解:(1)∠EFD =12∠C -12∠B . 理由如下:由AE 是∠BAC 的平分线知∠BAE =12∠BAC . 由三角形外角的性质知∠FED =∠B +12∠BAC , 故∠B +12∠BAC +∠EFD =90°①. 在△ABC 中,由三角形内角和定理得∠B +∠BAC +∠C =180°, 即12∠C +12∠B +12∠BAC =90°②. ②-①,得∠EFD =12∠C -12∠B . (2)成立.理由如下:由对顶角相等和三角形的外角性质知:∠FED =∠AEC =∠B +12∠BAC , 故∠B +12∠BAC +∠EFD =90°①. 在△ABC 中,由三角形内角和定理得: ∠B +∠BAC +∠C =180°,即12∠B +12∠BAC +12∠C =90°②.②-①,得∠EFD =12∠C -12∠B . 【点睛】 此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.7.如图 (1)所示,AB ,CD 是两条线段,M 是AB 的中点,连接AD ,MD ,BC ,BD , MC ,AC ,S △DMC ,S △DAC 和S △DBC 分别表示△DMC ,△DAC ,△DBC 的面积,当AB ∥CD 时,有S △DMC =2DAC DBC S S.(1)如图 (2)所示,当图6-9(1)中AB 与CD 不平行时,S △DMC =2DBC DAC S S +是否仍然成立?请说明理由; (2)如图 (3)所示,当图6-9(1)中AB 与CD 相交于点O 时,S △DMC 与S △DAC ,S △DBC 有什么样的数量关系?试说明你的结论.【答案】(1) S △DMC =2DAC DBC S S +仍成立,理由见解析; (2)S △DMC =2DBC DAC S S -,理由见解析.【解析】【分析】(1)先看题中给出的条件为何成立,由于三角形ADC ,DMC ,DBC 都是同底,而由于AB ∥DC ,因此高相等,就能得出题中给出的结论,那么本题也要用高来求解,过A ,M ,B 分别作BC 的垂线AE ,MN ,BF ,AE ∥MN ∥BF ,由于M 是AB 中点,因此MN 是梯形AEFB 的中位线,因此MN=12(AE+BF ),三个三角形同底因此结论①是成立的. (2)本题可以利用AM=MB ,让这两条边作底边来求解,三角形ADB 中,小三角形的AB 边上的高都相等,那么三角形ADM 和DBM 的面积就相等(等底同高),因此三角形OAD ,OMD 的和就等于三角形BMD 的面积,同理三角形AOC 和OMC 的面积和等于三角形CMB 的面积.根据这些等量关系即可得出题中三个三角形的面积关系.【详解】(1)当AB 与CD 不平行时,S △DMC =2DAC DBC S S+仍成立.分别过点A ,M ,B 作CD 的垂线AE ,MN ,BF ,垂足分别为E ,N ,F.∵M 为AB 的中点,∴MN =12(AE+BF),∴S △DAC +S △DBC =12DC·AE+12DC·BF =12DC·(AE+BF)= 12DC·2MN=DC·MN=2S △DMC .∴S △DMC =2DAC DBC S S +; (2)S △DMC =2DBC DAC S S-.理由:∵M 是AB 的中点,∴S △ADM =S △BDM ,S △ACM =S △BCM ,而S △DBC =S △BDM +S △BCM +S △DMC ,① S △DAC =S △ADM +S △ACM -S △DMC ,②∴①-②得S △DBC -S △DAC =2S △DMC ,故S △DMC =2DBC DAC S S-.【点睛】本题考查了三角形中位线和梯形,解题的关键是掌握三角形中位线定理和梯形的概念.8.学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.【答案】(1)∠BOC=∠BAC+∠B+∠C.理由见解析;(2)∠BOC=90°+12∠A.理由见解析;(3)∠BOC=60°+23∠A.理由见解析.【解析】【分析】(1)如图1,连接AO,延长AO到H.由三角形的外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.【详解】解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为:∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.9.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系.已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.并说明理由.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,请你利用上述结论探究∠P与∠A+∠B的数量关系,并说明理由.探究三:若将上题中的四边形ABCD改为六边形ABCDEF如图(3)所示,请你直接写出∠P 与∠A+∠B+∠E+∠F的数量关系.【答案】探究一: 90°+12∠A;探究二:12(∠A+∠B);探究三:∠P=12(∠A+∠B+∠E+∠F)﹣180°.【解析】试题分析:探究一:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12∠ACD,然后根据三角形内角和定理列式整理即可得解.探究二:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究一解答即可.探究三:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究一解答即可.试题解析:探究一:∵DP、CP分别平分∠AD C和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠ACD,= 180°-12(∠ADC+∠ACD),=180°-12(180°-∠A),=90°+12∠A;探究二:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠BCD,=180°-12(∠ADC+∠BCD),=180°-12(360°-∠A-∠B),=12(∠A+∠B);探究三:六边形ABCDEF的内角和为:(6-2)×180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD,=180°-12∠EDC-12∠BCD,=180°-12(∠EDC+∠BCD),=180°-12(720°-∠A-∠B-∠E-∠F),=12(∠A+∠B+∠E+∠F)-180°,即∠P=12(∠A+∠B+∠E+∠F)-180°.点睛:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,在此类题目中根据同一个解答思路求解是解题的关键.10.已知:如图,等边三角形ABD与等边三角形ACE具有公共顶点A,连接CD,BE,交于点P.(1)观察度量,BPC的度数为____.(直接写出结果)(2)若绕点A 将△ACE 旋转,使得180BAC ∠=︒,请你画出变化后的图形.(示意图)(3)在(2)的条件下,求出BPC ∠的度数.【答案】(1)120°;(2)作图见解析;(3)∠BPC =120°.【解析】分析:(1)∠BPC 的度数为120°,理由为:由△ABD 与△ACE 都是等边三角形,利用等边三角形的性质得到∠DAB=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形DAC 与三角形BAE 全等,由全等三角形的对应角相等得到∠ADC=∠ABE ,利用外角性质,等量代换即可得到所求;(2)作出相应的图形,如图所示;(3)解法同(1),求出∠BPC 的度数即可.本题解析:(1)∠BPC 的度数为120°,理由为:证明:∵△ABD 与△ACE 都是等边三角形,∴∠DAB=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△DAC 与△BAE 中,{AD ABDAC BAE AC AE=∠=∠=,∴△DAC≌△BAE(SAS ),∴∠ADC=∠ABE,∵∠ADC+∠CDB=60°,∴∠ABE+∠CDB=60°,∴∠BPC=∠DBP+∠PDB=∠ABE+∠CDB+∠ABC=120°;(2)作出相应的图形,如图所示;(3)∵△ABD 与△ACE 都是等边三角形,∴∠ADB=∠BAD=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,∴∠DAB+∠DAE=∠CAE+∠DAE,即∠DAC=∠BAE,在△DAC 与△BAE 中,{AD ABDAC BAC AC AE=∠=∠=,∴△DAC≌△BAE(SAS ),∴∠ADC=∠ABE,∵∠ABE+∠DBP=60°, ∴∠ADC+∠DBP=60°,∴∠BPC=∠BDP+∠PBD=∠ADC+∠DBP+∠ADB=120°.点睛:本题考查了等边三角形的性质,外角性质,以及全等三角形的判定与性质,熟练掌握等边三角形的性质是解本题的关键.。

八年级上册数学错题

八年级上册数学错题

八年级上册数学错题八年级上册数学错题集一、三角形错题 1:一个三角形的两边长分别为 3 和 6,第三边长是方程x^2 10x + 21 = 0的根,则三角形的周长为()A. 12B. 16C. 12 或 16D. 不能确定解析:解方程x^2 10x + 21 = 0,即(x 3)(x 7) = 0,解得x = 3或x = 7。

当第三边长为 3 时,因为 3 + 3 = 6,不满足三角形两边之和大于第三边,所以舍去。

当第三边长为 7 时,三角形的周长为 3 + 6 + 7 = 16。

故选 B。

错题 2:在\triangle ABC中,\angle A = 50^{\circ},\angle B = \angle C,则\angle B的度数为()A. 65°B. 50°C. 80°D. 40°解析:因为\angle A + \angle B + \angle C = 180^{\circ},且\angle B = \angle C,所以\angle B = (180^{\circ}50^{\circ})÷ 2 = 65^{\circ}故选 A。

二、全等三角形错题 3:如图,已知AB = AD,那么添加下列一个条件后,仍无法判定\triangle ABC ≌ \triangle ADC的是()A. CB = CDB. ∠BAC = ∠DACC. ∠B = ∠D = 90°D.∠BCA = ∠DCA解析:A 选项,因为AB = AD,CB = CD,AC = AC,根据 SSS 可判定\triangle ABC ≌ \triangle ADC。

B 选项,因为AB = AD,∠BAC = ∠DAC,AC = AC,根据 SAS 可判定\triangle ABC ≌ \triangle ADC。

C 选项,因为AB = AD,∠B = ∠D = 90°,AC = AC,根据 HL 可判定\triangle ABC ≌ \triangle ADC。

八年级数学《三角形》单元经典易错题大全 (3)

八年级数学《三角形》单元经典易错题大全 (3)

八年级数学《三角形》单元经典易错题大全1. 如图所示,△ABC 中,AB=AC ,BD 是∠ABC 的平分线,若∠ADB=93•°,•则∠A=_________.2. 如下图,BD=DE=EC,则AD 、AE 分别是___和___的中线.3. 一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.4. 如图,在正方形ABCD 中,已知∠AEF=30°,∠BCF=28°,求∠EFC 的度数.E FDC B A5. 三角形的三边分别为3,1-2a ,8,则a 的取值范围是( )A .-6<a <-3B .-5<a <-2C .2<a <5D .a <-5或a >-26. 已知△ABC 的周长为45cm ,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且a ∶b ∶c=4∶5∶6,求三边的长.7. 一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.8. 以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm,4cmC .12cm ,5cm ,6cmD .2cm ,3cm,6cm9. 如图:∠A=80°,BD 、CD 分别平分∠ABC 和∠ACE ,求∠BDC 的度数。

根据第3题猜测∠D 与∠A 的关系,并说明理由。

10. 下面四个图形中,线段BE 是⊿ABC 的高的图是( )11.图中有三角形的个数为( )A 、4个B 、6个C 、8个D 、10个第(4)题EDC BA12.已知:如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=_________.A .10°B .18°C .20°D .30°13.如图,比较∠A.∠BEC.∠BDC 的大小关系为_______________________.AB CD E14.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S 阴影等于__________.15.如图,∠1=∠2=∠3,且∠BAC=︒70,∠DFE=︒50,求∠ABC的度数.16.已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长。

(易错题精选)初中数学三角形真题汇编附答案

(易错题精选)初中数学三角形真题汇编附答案

(易错题精选)初中数学三角形真题汇编附答案一、选择题1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22'+=22BC BD+=5.故选B.342.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.85°【答案】B【解析】【分析】根据OA=OB,OC=OD证明△ODB≌△OCA,得到∠OAC=∠OBD,再根据∠O=50°,∠D=35°即可得答案.【详解】解:OA =OB ,OC =OD ,在△ODB 和△OCA 中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩∴△ODB ≌△OCA (SAS ),∠OAC=∠OBD=180°-50°-35°=95°,故B 为答案.【点睛】本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.3.如图,在△ABC 中,AC =BC ,D 、E 分别是AB 、AC 上一点,且AD =AE ,连接DE 并延长交BC 的延长线于点F ,若DF =BD ,则∠A 的度数为( )A .30B .36C .45D .72【答案】B【解析】【分析】 由CA=CB ,可以设∠A=∠B=x .想办法构建方程即可解决问题;【详解】解:∵CA=CB ,∴∠A=∠B ,设∠A=∠B=x .∵DF=DB ,∴∠B=∠F=x ,∵AD=AE ,∴∠ADE=∠AED=∠B+∠F=2x ,∴x+2x+2x=180°,∴x=36°,故选B .【点睛】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =3OD = ∴2221OA AD OD += ∴21OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.5.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm【答案】D【解析】【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确.故选D .6.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.7.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C .2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,2OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.8.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .9.如图,已知△ABC 是等腰直角三角形,∠A =90°,BD 是∠ABC 的平分线,DE ⊥BC 于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4,1, 点D的坐标为10.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()()0,1,则菱形ABCD的周长等于()A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.11.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【答案】D【解析】 解:∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC =EF ,利用SAS 可得△ABC ≌△DEF ;∴添加∠ACB =∠F ,利用AAS 可得△ABC ≌△DEF ;故选D .点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.12.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .14.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形; B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥Q ,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒,DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于12DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定...是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF【答案】A【解析】【分析】根据作图过程和等腰三角形的定义进行分析即可.【详解】由作图过程可得:CD=CD,DF=EF,CD=CK所以,是等腰三角形的有△CDK,△CDE,△DEF;△CDF不一定是等腰三角形.故选:A【点睛】考核知识点:等腰三角形.理解等腰三角形的定义是关键.17.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.18.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.19.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为( )A.30°B.45°C.36°D.72°【答案】A【解析】∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD,又∵∠BDC=∠A+∠ABD,∴∠BDC=∠C=∠ABC=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.20.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【答案】B【解析】【分析】 根据正方形的性质得到∠DAC =∠ACD =45°,由四边形EFGH 是正方形,推出△AEF 与△DFH 是等腰直角三角形,于是得到DE =22EH =22EF ,EF =22AE ,即可得到结论. 【详解】解:∵在正方形ABCD 中,∠D =90°,AD =CD =AB ,∴∠DAC =∠DCA =45°,∵四边形EFGH 为正方形,∴EH =EF ,∠AFE =∠FEH =90°,∴∠AEF =∠DEH =45°,∴AF =EF ,DE =DH ,∵在Rt △AEF 中,AF 2+EF 2=AE 2,∴AF =EF =22AE , 同理可得:DH =DE =22EH 又∵EH =EF ,∴DE =2EF =2×2AE =12AE , ∵AD =AB =6,∴DE =2,AE =4,∴EH DE =,∴EFGH 的面积为EH 2=()2=8,故选:B .【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.。

八年级数学三角形易错题精选附答案

八年级数学三角形易错题精选附答案

三角形易错题精选第1节与三角形有关的线段一、三角形的边易错点:没有验证是否满足三角形的三边关系 等腰三角形1、已知等腰三角形的一边长为4,另一边长为8,则该等腰三角形的周长为________.2、【变式1】已知等腰三角形的一边长等于8cm ,另一边长等于9cm ,则它的周长为________.3、【变式2】等腰三角形的一边长等于6cm ,周长等于28cm ,则它的腰长为________.4、【变式3】用一条36cm 长的细绳围成一个等腰三角形,若它的一边长为10cm ,则它的底边长为_____cm .5、【变式4】等腰三角形的两边长分别为5cm 、11cm ,则这个等腰三角形的周长为________cm.参考答案1、202、25cm 或26cm3、11cm4、10或165、27三边是连续的某种数1、一个三角形的三边长分别是三个连续的自然数,它的周长不超过12,则最短边x 的取值范围是________.2、【变式1】一个三角形的三边长分别为x cm ,(x +1)cm ,(x +2)cm ,它的周长不超过9cm ,则x 的取值范围是________.3、【变式2】一个三角形的三边长分别为xcm 、(x+2)cm 、(x+4)cm ,它的周长不超过39cm ,则x 的取值范围是______.4、【变式3】一个三角形的三边长分别为xcm 、(x-1)cm 、(x+1)cm ,它的周长不超过39cm ,则x 的取值范围是______.参考答案1、32≤≤x 2、21≤<x 3、2<x≤114、2<x≤13需要同时验证两边之和与两边之差1、已知三角形的两边长分别为2cm 和7cm ,第三边长为a cm ,则a 的取值范围是________.2、【变式1】已知三角形的两边长分别为2cm 和7cm ,最大边长为a cm ,则a 的取值范围是________.3、【变式2】已知三角形的两边长分别为2和7,最大边长为整数,则三角形的周长是________.4、【变式3】已知三角形的两边长分别为2和7,第三边长为整数,则三角形的周长为________.参考答案1、5<a<92、7<a<93、174、15,16或17易错点:不确定边的长短1、小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m 米,由于条件限制,第二条边长只能比第一条边长的3倍少2米.(1)请用含m 的式子表示第三条边长;(2)第一条边长能否为10米?为什么?(3)求m 的取值范围.参考答案1、(1)(52-4m)米;(2)不能,因为构不成三角形;(3)27/4<m<9二、三角形的高、中线与角平分线易错点:对三角形的高、中线、角平分线的概念理解不清1、【不定项选择】下列说法正确的是()A .三角形的角平分线是射线B .三角形的三条角平分线都在三角形内部,且相交于同一点C .三角形的三条高都在三角形内部,且相交于同一点D .三角形的一条中线把三角形分成面积相等的两部分参考答案1、BD易错点:图形不唯一导致漏解1、在△ABC 中,BC=6,BC 边上的高AD=4,且BD=2,则△ACD 的周长为________.2、已知在△ABC 中,AB=AC ,AC 上的中线BD把△ABC 的周长分为24cm 和30cm 两部分,求三角形的三边长.3、【变式1】如图,在△ABC 中,AB=AC ,BM 是腰AC 上的中线.△ABC 的周长为20,BM 将△ABC 的周长分成差4cm 的两部分,求△ABC 的底边长.参考答案1、8或162、16,16,22或20,20,143、4cm 或cm 328三、三角形的稳定性第2节与三角形有关的角一、三角形的内角和易错点:对三角形的类型考虑不全1、在△ABC 中,∠ABC=∠C ,BD 是AC 边上的高,∠ABD=30°,则∠C 的度数是多少?2、已知非直角三角形ABC 中,∠A=45°,高BD 与高CE 所在直线相交于点H ,则∠BHC 的度数是________.参考答案1、60°或30°2、45°或135°易错点:直角三角形中的直角顶点不确定1、如图,已知∠AOD=30°,点C 是射线OD 上的一个动点.在点C 的运动过程中,△AOC 恰好是等腰三角形,则此时∠A 所有可能的度数为______°.2、【变式1】在△ABC 中,∠A=50°,∠B=30°,点D 在AB 边上,连接CE .若△ACD 为直角三角形,则∠BCD=______.3、【变式2】如图,△ABC 中,∠A=70°,∠B=50°,点M ,N 分别是BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B'落在AC 上。

八年级上册数学易错题

八年级上册数学易错题

八年级上册数学易错题一、三角形相关1. 已知等腰三角形的两边长分别为3和5,则它的周长为()错解:11或13。

正解:11或13。

解析:当腰长为3时,三边长为3,3,5,因为3 + 3>5,满足三角形三边关系,此时周长为3+3 + 5 = 11;当腰长为5时,三边长为5,5,3,因为5+3>5,也满足三角形三边关系,此时周长为5 + 5+3 = 13。

2. 在△ABC中,∠A=50°,高BE、CF所在直线相交于点O,则∠BOC的度数为()错解:130°。

正解:130°或50°。

解析:当△ABC是锐角三角形时,因为∠A = 50°,∠AEB = 90°,∠AFC = 90°,在四边形AFOE中,根据四边形内角和为360°,可得∠EOF=360° 90°-90°50° = 130°,即∠BOC = 130°;当△ABC是钝角三角形时,∠A=50°,∠ABE = 40°,在Rt△BOE中,∠BOC = 50°。

二、全等三角形相关1. 如图,已知AB = AD,∠1 = ∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)。

错解:AC = AE。

正解:AC = AE或∠B=∠D或∠C = ∠E。

解析:已知AB = AD,∠1 = ∠2,所以∠BAC = ∠DAE。

如果添加AC = AE,根据SAS(边角边)可证△ABC≌△ADE;如果添加∠B = ∠D,根据ASA(角边角)可证全等;如果添加∠C=∠E,根据AAS(角角边)可证全等。

2. 如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,连接EF 交AD于G。

求证:AD垂直平分EF。

错解:只证明了DE = DF,就得出AD垂直平分EF。

正解:因为AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可知DE = DF。

八年级数学《三角形》单元经典易错题大全 (6)

八年级数学《三角形》单元经典易错题大全 (6)

八年级数学《三角形》单元经典易错题大全1.在锐角三角形中,最大角α的取值范围是___.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A、4B、5C、6D、73.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.将一个三角形截去一个角后,所形成的一个新的多边形的内角和______。

5.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<ADB.AH<AD<AEC.AH≤AD≤AED.AH≤AE≤AD6.如图,AD⊥BE,垂足为点D,AD是___________的高,△ABD的高是___________.7.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )A、3个B、4个C、5个D、6个8.下列说法:⑴四边形中四个内角可以都是锐角;⑵四边形中四个内角可以都是钝角;⑶四边形中四个内角可以都是直角;⑷四边形中四个内角最多可以有两个钝角;⑸四边形中最多可以有两个锐角;其中正确的是( )A、1个 B、2个 C、3个 D、4个9.[五]用正多边形拼地板10.画三角形内角的平分线交对边于一点,顶点与交点之间的线段叫做三角形的___。

11.如图,D是AB上的一点,E是AC上的一点,BE、CD相交于F,∠A=50°∠ACD=40°∠ABE=28°,则∠CEF的度数是( )A、62°B、68°C、78°D、90°12.不能作为正多边形的内角的度数的是( )A.120°B.128°C.144°D.145°13.如图所示,∠1=_______.140︒80︒114.一个零件的形状如图,按规定∠A=90°,∠B和∠C,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这两个零件不合格,运用三角形的有关知识说明零件不合格的理由。

《易错题》初中八年级数学上册第十一章《三角形》经典题(培优专题)

《易错题》初中八年级数学上册第十一章《三角形》经典题(培优专题)

一、选择题1.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6B 解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.3.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.4.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5A 解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、11+12>13,能组成三角形,符合题意;B 、1+2=3,不能组成三角形,不符合题意;C 、5+7=12,不能组成三角形,不符合题意;D 、5+5<13,不能组成三角形,不符合题意;故选A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒B解析:B【分析】 由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.6.下列长度的三条线段,能组成三角形的是( )A .3,5,6B .3,2,1C .2,2,4D .3,6,10A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意, 故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.7.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40D解析:D【分析】 由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.8.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°A解析:A【分析】 由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,即可求得∠BOD .【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE 内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.9.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°D解析:D【分析】 根据三角形的外角的性质得到∠ADC=∠B+∠BAD ,得到x >70°,根据平角的概念得到x <180°,计算后进行判断得到答案.【详解】解:∵∠ADC=∠B+∠BAD ,∴x >70°,又x <180°,∴x 的度数可能为80°,故选:D .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°D解析:D【分析】 根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题11.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒,故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键.12.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.13.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.14.七边形的外角和为________.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36 解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 15.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.4或5【分析】先求出正三角形和正六边形的内角大小然后列出关于mn 的二元一次方程然后确定mn 的值最后求m+n 即可【详解】解:∵正三边形和正六边形内角分别为60°120°∴60°m+120°n=360°解析:4或5【分析】先求出正三角形和正六边形的内角大小,然后列出关于m 、n 的二元一次方程,然后确定m 、n 的值,最后求m+n 即可.【详解】解:∵正三边形和正六边形内角分别为60°、120°∴60°m+120°n=360°,即m+2n=6∴当n=1时,m=4;当n=2时,m=2;∴m+n=5或m+n=4.故答案为:4或5.【点睛】本主要考查了正多边形的组合能否进行平面镶嵌,掌握位于同一顶点处的几个角之和能否为360°成为解答本题的关键.16.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____.【分析】先根据多边形的内角度数得出每个外角的度数再根据外角和为360°求出多边形的边数最后根据n边形多角线条数为求解即可【详解】∵一个正多边形的每个内角为108°∴每个外角度数为180°﹣108°=解析:【分析】先根据多边形的内角度数得出每个外角的度数,再根据外角和为360°求出多边形的边数,最后根据n边形多角线条数为(3)2n n-求解即可.【详解】∵一个正多边形的每个内角为108°,∴每个外角度数为180°﹣108°=72°,∴这个正多边形的边数为360°÷72°=5,则这个正多边形所有对角线的条数为(3)2n n-=5(53)2⨯-=5,故答案为:5.【点睛】本题主要考查多边形内角与外角、多边形的对角线,解题的关键是掌握多边形外角和度数为360°,n边形多角线条数为()32n n-.17.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB⊥AE,则∠BFC=75°;②图 2 中 BD过点C,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC等于 135°;④保持重合的顶点不变,改变三角板BAD的摆放位置,使得D在边AC上,则∠BAE=105°.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故③正确;如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.18.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .10【分析】依据AE 是△ABC 的边BC 上的中线可得CE=BE 再根据AE=AE △ACE 的周长比△AEB 的周长多2cm 即可得到AC 的长【详解】解:∵AE 是△ABC 的边BC 上的中线∴CE=BE 又∵AE=A解析:10【分析】依据AE 是△ABC 的边BC 上的中线,可得CE=BE ,再根据AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE=BE ,又∵AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC-AB=2cm ,即AC-8=2cm ,∴AC=10cm ,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.540°【分析】连接AGGD 先根据∠H+∠K=∠HGA+∠KAG ∠E+∠F=∠EDG+∠FGD 最后根据多边形的面积公式解答即可【详解】解:连接AGGD ∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG 、GD ,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG 、GD ,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.∆的高线和中线,则线段AM,AN的大小关系是20.若线段AM,AN分别是ABCAM_______AN(用“≤”,“≥”或“=”填空).;【分析】根据三角形的高的概念得到AM⊥BC根据垂线段最短判断【详解】解:如图∵线段AM是△ABC边BC上的高∴AM⊥BC由垂线段最短可知AN≥AM故答案为:【点睛】本题考查的是中线和高的概念掌握垂解析:≤;【分析】根据三角形的高的概念得到AM⊥BC,根据垂线段最短判断.【详解】解:如图,∵线段AM是△ABC边BC上的高,∴AM⊥BC,由垂线段最短可知,AN≥AM,故答案为:≤.【点睛】本题考查的是中线和高的概念,掌握垂线段最短是解题的关键.三、解答题21.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.解析:110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.22.已知AD 是ABC 的角平分线,CE 是AB 边上的高,AD ,CE 相交于点P ,BCE 40,APC 123∠∠=︒=︒,求ADC ∠和ACB ∠的度数.解析:∠ADC 83=︒,∠ACB 64=︒.【分析】由CE 是AB 边上的高,可得∠AEC=90︒,再利用三角形的外角性质可得∠ADC ,∠EAP ,∠B 的度数,再根据AD 是ABC 的平分线,可得∠BAC 的度数,再利用三角形的内角和定理即可得到∠ACB 的度数.【详解】∵CE 是AB 边上的高,∴CE ⊥AB ,即∠AEC=90︒,∵∠APC=∠BCE+∠ADC=123︒,∠BCE=40︒,∴∠ADC=123︒-4083︒=︒,∵∠APC=∠AEP+∠EAP=123︒,∴∠EAP=1239033︒-︒=︒,∵AD 是ABC 的角平分线,∴∠BAC=2∠EAP=23366⨯︒=︒,∵∠ADC=∠BAD+∠B ,∴∠B=833350︒-︒=︒,∵∠B+∠BAC+∠ACB=180︒,∴∠ACB=180665064︒-︒-︒=︒,即∠ADC 83=︒,∠ACB 64=︒.【点评】本题考查了三角形的角平分线、高线,三角形的外角性质和三角形的内角和定理.熟记性质并准确识图是解题的关键.23.()1若n 边形的内角和等于它外角和的3倍,求边数n .()2已知a ,b ,c 为三角形三边的长,化简:a b c b c a --+--.解析:()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.24.已知一个多边形的内角和比它的外角和的3倍还多180度.(1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.解析:(1)9;(2)27【分析】(1)利用多边形的外角和为360°,根据内角和与外角和的关系及多边形内角和公式求出边数即可得答案;(2)根据多边形对角线条数公式计算即可得答案.【详解】(1)设多边形的边数为n,∵多边形的外角和为360°,内角和比它的外角和的3倍还多180度,∴此多边形的内角和为360°×3+180°=1260°,∴(n-2)×180°=1260,解得:n=9,答:这个多边形的边数是9.(2)由(1)可知此多边形为9边形,∴从一个顶点可引出对角线9-3=6(条),∴这个多边形的对角线的总条数为6×9÷2=27(条),答:这个多边形的对角线的总条数为27条.【点睛】本题考查了多边形的内角与外角、多边形的对角线,掌握多边形的内角和定理、多边形的对角线的条数的计算公式是解题的关键.25.如图所示,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4 cm,BC=5 cm,∠CAB=90°.(1)求AD的长.(2)求△ABE的面积.解析:(1)125cm;(2)3cm2【分析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等【详解】解:∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴341255AB AC AD BC ⋅⨯===(cm ),即AD 的长度为125cm ; (2)如图,∵△ABC 是直角三角形,∠BAC=90°,AB=3cm ,AC=4cm , ∴S △ABC =12AB•AC=12×3×4=6(cm 2). 又∵AE 是边BC 的中线,∴BE=EC ,∴12BE•AD=12EC•AD ,即S △ABE =S △AEC , ∴S △ABE=12S △ABC =3(cm 2). ∴△ABE 的面积是3cm 2.【点睛】本题考查了中线的性质.解题的关键是利用三角形面积的两个表达式相等,求出AD . 26.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.解析:(1)证明见解析;(2),,B ADE DEF ∠∠∠.【分析】(1)先根据角的和差、等量代换可得EFG ADG ∠=∠,再根据平行线的判定可得//EF AB ,然后根据平行线的性质可得ADE DEF ∠=∠,从而可得B ADE ∠=∠,最后根据平行线的判定即可得证;(2)根据直角三角形的两锐角互余、等量代换即可得.【详解】(1)180,180BDG EFG BDG ADG ∠+∠=︒∠+∠=︒,EFG ADG ∴∠=∠,//EF AB ∴,ADE DEF ∴∠=∠,B DEF ∠=∠,B ADE ∴∠=∠,//DE BC ∴;(2)90A ∠=︒,90B C ∴∠+∠=︒,B DEF ∠=∠,90DEF C ∴∠+∠=︒,由(1)可知,B ADE ∠=∠,90ADE C ∴∠+∠=︒,综上,与C ∠互余的角有,,B ADE DEF ∠∠∠.【点睛】本题考查了直角三角形的两锐角互余、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.27.(问题引入)(1)如图1,△ABC ,点O 是∠ABC 和∠ACB 相邻的外角平分线的交点,若∠A=40°,请求出∠BOC 的度数.(深入探究)(2)如图2,在四边形ABDC 中,点O 是∠BAC 和∠ACD 的角平分线的交点,若∠B+∠D=110°,请求出∠AOC 的度数.(类比猜想)(3)如图3,在△ABC 中,∠CBO=13∠DBC ,∠BCO= 13∠ECB ,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程). (4)如果BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO=∠1n DBC ∠BCO=1n∠ECB ,则∠BOC=___(用n 、a 的代数式表示,直接写出结果,不需要写出解答过程). 解析:(1)70°;(2)55°;(3)120°-13α;(4)()11801n n nα-⨯︒- 【分析】(1)由三角形内角和定理可求得∠ABC+∠ACB ,再利用邻补角可求得∠DBC+∠ECB ,根据角平分线的定义可求得∠OBC+∠OCB ,在△BOC 中利用三角形内角和定理可求得∠BOC ; (2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC 与∠B+∠D 之间的关系;(3)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=120°-3α; (4)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=()11801n n nα-⨯︒-. 【详解】(1)∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°,∵BO 、CO 分别平分∠DBC 和∠ECB ,∴∠OBC+∠OCB=12(∠DBC+∠ECB) =12×220°=110°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-110°=70°;(2)∵点O 是∠BAC 和∠ACD 的角平分线的交点,∴∠OAC=12∠CAB ,∠OCA=12∠ACD , ∴∠AOC=180°-(∠OAC+∠OCA) =180°-12(∠CAB+∠ACD) =180°-12(360°-∠B-∠D) =12(∠B+∠D), ∵∠B+∠D=110°, ∴∠AOC=12(∠B+∠D)=55°; (3)在△OBC 中,∠BOC=180°-(∠OBC+∠OCB)=180°-13(∠DBC+∠ECB) =180°-13(∠A+∠ACB+∠A+∠ABC) =180°-13(∠A+180°) =120°-13α;故答案为:120°-13α; (4)在△OBC 中,∠BOC=180°-(∠OBC+∠OCB)=180°-1n(∠DBC+∠ECB) =180°-1n(∠A+∠ACB+∠A+∠ABC) =180°-1n (∠A+180°) =()11801n n nα-⨯︒-. 故答案为:()11801n n nα-⨯︒-. 【点睛】 本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,整体思想的利用是解题的关键.28.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)解析:(1)150︒ (2)60︒;理由见解析【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A ∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒, ∴180XBC XCB X ∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX ∠+∠ABC XBC ACB XCB =∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解决本题的关键.。

八年级数学《三角形》单元经典易错题大全 (9)

八年级数学《三角形》单元经典易错题大全 (9)

八年级数学《三角形》单元经典易错题大全1.如图所示,DE∥AB,FG∥BC,HM∥CA,求∠D+∠E+∠F+∠G+∠H+∠M的度数.2.如图,D、E是边AC的三等分点,图中有___个三角形,BD是三角形___中___边上的中线,BE是三角形___中___边上的中线;3.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BD=ECD.∠C的对边是DE4.在△ABC中,∠A=100°,∠B-∠C=40°,则∠B=___,∠C=___。

5.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B=______;∠C=______.6.如图∆ABC中,AD是BC上的中线,BE是∆ABD中AD边上的中线,若∆ABC的面积是24,则∆ABE的面积是________。

7.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是( )A.a>2 B.2<a<14 C.7<a<14 D.a<148.等腰三角形一边长为9cm,另一边长为6cm,则此三角形的周长是______厘米.9.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,∠F=40°,∠C=20°,则∠FBA的度数为( )A、50°B、60°C、70°D、80°10.(n+1)边形的内角和比n边形的内角和多( )A.180° B.360° C.n·180° D.n·360°11.不是利用三角形稳定性的是( )A.自行车的三角形车架B.三角形房架C.照相机的三角架D.矩形门框的斜拉条12.等腰三角形的周长为20cm,一边长为6cm,则底边长为____________.13.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm14.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形15.已知四边形ABCD的四个外角度数之比为8∶6∶3∶7,求这个四边形各内角度数分别是多少?16.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?n=1n=3n=217.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30B.36C.72D.2418.直角三角形的两个锐角___________.19.如图所示,在△ABC中,AD和CD分别平分∠BAC和∠BCA,如果∠B=40°,•那么∠ADC=________.20.等腰三角形的一个角是80°,它的另外两个角的度数是___21.下列说法错误的是( )。

八年级数学《三角形》单元经典易错题大全 (11)

八年级数学《三角形》单元经典易错题大全 (11)

八年级数学《三角形》单元经典易错题大全1.如图所示,用“>”连接∠1,∠2,∠3,∠4为____________.2.如果一个多边形的内角和为1260°,那么过这个多边形的一个顶点有_____•条对角线.3.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.4.如果一个多边形的边数增加1,则它的内角和将( )A增加90° B增加180° C增加360° D不变5.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就拼成一个平面图形.用正三角形和正方形组合铺满地面,每个顶点周围有___个正三角形和___个正方形。

6.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:7.三角形中最大的内角一定是( )A.钝角B.直角;C.大于60°的角D.大于等于60°的角8.已知:如图,P是△ABC内任一点,求证:∠BPC>∠A.9.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.E CBA10.多边形的外角和等于___。

11.如图∠ACD是△ABC的外角,BE平行∠ABC,CE平分∠ACD,且BE、CE交于点E.求证:∠E=12∠A.12.如图所示,DE∥AB,FG∥BC,HM∥CA,求∠D+∠E+∠F+∠G+∠H+∠M的度数.13.在△ABC中,∠A等于和它相邻的外角的四分之一,这个外角等于等于∠B的两倍,那么∠A=______,∠B=_______,∠C=_______.14.如图AB⊥AC,则AB是△ABC的边____上的高,也是△BDC的边______上的高,也是△ABD的边____上的高.15.等腰三角形的一个角是80°,它的另外两个角的度数是___16.如图,分别画出三角形过顶点A的中线、角平分线和高。

(易错题)初中数学八年级数学上册第一单元《三角形》测试题(答案解析)

(易错题)初中数学八年级数学上册第一单元《三角形》测试题(答案解析)

一、选择题1.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 2.下列四组线段中,不可以构成三角形的是( )A .4,5,6B .1.5,2,2.5C .13,14,15D .1,2,3 3.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 5.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒6.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60° 7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( ) A .10B .8C .6D .4 8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 9.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 10.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA 11.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒ 12.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.15.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.16.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.17.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.18.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.19.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.三、解答题21.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.22.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.23.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.24.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .25.如图,A 、O 、B 三点在同一直线上,OE ,OF 分别是∠BOC 与∠AOC 的平分线.求:(1)当∠BOC=30°时,∠EOF 的度数;(2)当∠BOC=60°时,∠EOF 等于多少度?(3)当∠BOC=n°时,∠EOF 等于多少度?(4)观察图形特点,你能发现什么规律?26.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD 的外角,∴∠2>∠1,∵∠1是△ABC 的外角,∴∠1>∠A ,∴21A ∠>∠>∠.故选D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键. 2.D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形; ∵14+15>13, ∴能构成三角形;∵<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.D解析:D【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∠ABC=30°,∴∠ABD=∠CBD=12DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.5.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA=60︒,∠BAE=45︒,∴∠ADE= 180︒−∠CEA−∠BAE=75︒,∴∠BDC=∠ADE=75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.6.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.7.A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.8.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm,7cm,∴第三边长的取值范围为7-3<x<7+3,即4<x<10,只有D符合题意,故选:D.【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.C解析:C【分析】设选取的木棒长为xcm ,再根据三角形的三边关系求出x 的取值范围,选出合适的x 的值即可.【详解】解:设选取的木棒长为xcm ,∵两根木棒的长度分别为5cm 和13cm ,∴13cm-5cm <x <13cm+5cm ,即8cm <x <18cm ,∴12cm 的木棒符合题意.故选:C .【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.10.C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE 是△ABC 的边BC 上的高,故不符合题意;B.线段BA 不是任何边上的高,故不符合题意;C.线段BD 是△ABC 的边AC 边上的高,故符合题意;D.线段DA 是△ABD 的边BD 上的高,故不符合题意;故选C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.11.B解析:B【分析】根据题意,结合三角形内角和定理、角平分线的性质,三角形外角的性质分别求解即可得出结论.【详解】解:由题意可得:在四边形BDCI 中,1180902IBD IBC CBD ∠=∠+∠=⨯︒=︒,90ICD ∠=︒, 可得180BDC BIC ∠+∠=︒,故A 选项不符合题意, 90ICE ∠=︒,故B 选项符合题意,48BAC ∠=︒,在三角形ICE 中, EIC ∠=18048662IBC ICB ︒-︒∠+∠==︒,90ICE ∠=︒, 906624E ∠=︒-︒=∴︒ ,故C 选项不符合题意,90DBE ∠=︒,故D 选项不符合题意,故选:B.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.12.B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A 中,1+2=3,排除;B 中,3+4>5,可以;C 中,6+6=12,排除;D 中,5+6<12,排除.故选:B .【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 14.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.15.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.16.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.17.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA ′D=50°,∠ACD=∠A ′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=12×90°=45°,∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.18.90°或40°【分析】画出图形可知有两种情况:∠BAC=∠BAD+∠CAD和∠BAC=∠BAD−∠CAD【详解】:如图:∠BAC=∠BAD+∠CAD=65°+25°=90°;如图:∠BAC=∠BAD解析:90°或40°.【分析】画出图形可知有两种情况:∠BAC=∠BAD+∠CAD和∠BAC=∠BAD−∠CAD.【详解】:如图:∠BAC=∠BAD+∠CAD=65°+25°=90°;如图:∠BAC=∠BAD−∠CAD=65°−25°=40°.故答案为:90°或40°.【点睛】本题考查了三角形的高线的概念:可能在三角形内部,也可能在三角形的外部.注意本题要分两种情况讨论.19.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和【详解】解:∵AB∥DC∴∠B+∠C=180°∴∠B的外角与∠C的外角的和为180°∵六边形ABCDEF的外角和为360解析:180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和.【详解】解:∵AB ∥DC ,∴∠B +∠C =180°,∴∠B 的外角与∠C 的外角的和为180°,∵六边形ABCDEF 的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B 和∠C 的外角的和为180° 20.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数再由三角形内角与外角的性质可求出∠ADF 的度数由AF ⊥BC 可求出∠AFD=90°再由三角形的内角和定理即可解答【详解】∵AF 是的高∴在中∴解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒ 20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.三、解答题21.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE 与AB 相交于点G ,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE与AB、BF相交于点M、N,如图所示:设∠ABF=x,∠DCF=y,∵∠EBF=2∠ABF,CF平分∠DCE,∴∠EBF=2x,∠ABE=3x,∠FCE=y,∠DCE=2y,∵AB∥DC,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x,∵∠CFB的2倍与∠CEB的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.22.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC ,然后以点C 为圆心,BC 为半径画弧,交射线AC 于点D ,连接BD ;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB 即为所求;②如图,直线BC 即为所求;③如图,射线AC ,点D ,线段BD 即为所求(2)如图,在△BCD 中,BC+CD >BD∴AB BC CD AB BD ++>+在△ABD 中,AB+BD >AD∴AB BC CD AB BD AD ++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.23.(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB ,再根据三角形的内角和定理列式计算即可得解; (2)设∠A=∠ACB=x ,根据直角三角形两锐角互余求出∠CDE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD 为△ABC 的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB ,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x ,∵CE 是△ABC 的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD 为△ABC 的角平分线,∴∠ACD=12∠ACB=12x , 由三角形的外角性质得,∠CDE=∠A+∠ACD , ∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 24.(1)35°;(2)90°-12α;(3)12β 【分析】(1)由角平分线的定义得到∠DCG=12∠ACG ,∠DBC=12∠ABC ,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC ,∠CBE=12∠CBF ,于是得到∠DBE=90°,由(1)知∠D=12∠A ,根据三角形的内角和得到∠E=90°-12α; (3)根据角平分线的定义可得,∠ABD=12∠ABC ,∠DAM=12∠MAC ,再利用三角形外角的性质可求解.【详解】解:(1)∵CD 平分∠ACG ,BD 平分∠ABC ,∴∠DCG=12∠ACG ,∠DBC=12∠ABC , ∵∠ACG=∠A+∠ABC ,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC ,∵∠DCG=∠D+∠DBC ,∴2∠DCG=2∠D+2∠DBC ,∴∠A+2∠DBC=2∠D+2∠DBC ,∴∠D=12∠A=35°; (2)∵BD 平分∠ABC ,BE 平分∠CBF ,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.25.(1)∠EOF=90°;(2)∠EOF=90°;(3)∠EOF=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【分析】根据∠BOC求得∠AOC,再由∠BOC和∠AOC的角平分线,即可求得;【详解】解:(1)∵∠BOC=30°,∴∠AOC=180°-30°=150°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=15°,∠COF=12∠COA=75°,∴∠EOF=75°+15°=90°;(2)∵∠BOC=60°,∴∠AOC=180°-60°=120°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=30°,∠COF=12∠COA=60°,∴∠EOF=60°+30°=90°;(3)∵∠BOC=n,∴∠AOC=180°-n,OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=90°-12n,∠COF=12∠COA=12n,∴∠EOF=90°-12n+12n=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【点睛】本题考查角平分线和规律的总结与归纳,掌握角平分线的性质是解题的关键.26.(1)a>b>c;(2)见解析【分析】(1)a、b、c两两作差可得出a、b、c之间的大小关系;(2)对于任意一个三角形的三边a,b,c,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a-b=m2+n2-m2=n2>0;a-c=m2+n2-mn=(m-n)2+mn>0;b-c= m2-mn=m(m-n)>0∴a>b>c;(2)由(1)a>b>c可得,a+b>c∵a-b= m2+n2-m2=n2<mn∴a-b<c∴以a、b、c为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。

初二数学三角形易错题

初二数学三角形易错题

A B M C N O 第13题 数学三角形易错题一、填空题1.已知一个三角形的三边长3、a+2、8,则a 的取值范围是 。

2.如图②,△ABC 中,∠C=70°,若沿虚线截去∠C ,则∠1+∠2= 。

3.如图③,一张△ABC 纸片,点D 、E 分别在边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A=70°,则∠1+∠2= 。

4.△ABC 中,∠A=80°,则∠B 、∠C 的内角平分线相交所形成的钝角为 ;∠B 、∠C 的外角平分线相交所形成的锐角为 ;∠B 的内角平分线与∠C 的外角平分线相交所形成的锐角为 ;高BD 与高CE 相交所形成的钝角为 ;若AB 、AC 边上的垂直平分线交于点O ,则∠BOC 为 。

5.等腰三角形的周长为20cm ,若腰不大于底边,则腰长x 的取值范围是 _________ .6.小亮家离学校1千米,小明家离学校3千米,如果小亮家与小明家相距x 千米,那么x 的取值范围是 .7.已知△ABC 两边长a ,b 满足,则△ABC 周长的取值范围是 .8.两边分别长4cm 和10cm 的等腰三角形的周长是 _________ cm .9.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

10.三角形有两条边的长度分别是5和7,则周长的取值范围是___________。

11.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|—|a -b -c|-|a+b -c|=______。

12.在 ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。

13.如图,已知△ABC 中,AC + BC =24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( ) A .12 B .24 C .36 D .不确定易错知识点1三角形任意两边之和大于第三边,任意两边之差小于第三边,也就是其中一边大于两边之差,小于两边之和。

八年级数学《三角形》单元经典易错题大全 (15)

八年级数学《三角形》单元经典易错题大全 (15)

八年级数学《三角形》单元经典易错题大全1.一个多边形的每一个内角都等于140°,则它的每一个外角等于___°,它是___边形;2.如图所示.(1)图甲是一个五角形ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的大小吗?(2)如图乙,如果点B向右移动到AC上时,还能算出∠A+∠EBD+∠C+∠D+∠E•的大小吗?(3)如图丙,点B向右移动到AC的另一侧时,(1)的结论成立吗?为什么?(4)如图丁,点B,E移动到∠CAD的内部时,结论又如何?3.n边形的内角和为___;多边形的外角和为___。

4.图中三角形的个数是( )A.8 B.9 C.10 D.115.如图,∠ABC=∠C=90°,∠A=∠CBD=25°,试求∠1和∠2的度数。

6. 如下图,BE 、CD 为两条角平分线,∠ABC=∠ACB,图中与∠1相等的角是___7. 一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )A .10B .12C .14 D.168. 锐角三角形中,最大角α的取值范围是( )A .0°<α<90°;B .60°<α<180°;C .60°<α<90°;D .60°≤α<90°9. 三角形的三边分别为3,1-2a ,8,则a 的取值范围是( )A .-6<a <-3B .-5<a <-2C .2<a <5D .a <-5或a >-210.小明在证明“三角形内角和等于180°”时用了如图所示的辅助线的方法,即延长BC 到D,延长AC 到E,过点C 作CF ∥AB,你能接着他的辅助线的做法证明出来吗?E FD CB A11.下列长度的三条线段中,能组成三角形的是( )3cm ,5cm ,8cm B 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm12.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个13.画三角形内角的平分线交对边于一点,顶点与交点之间的线段叫做三角形的___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《三角形》单元经典易错题大全1. 等腰三角形的两边长为25cm 和12cm,那么它的第三边长为___cm 。

2. 如图,∠A=32°∠B=45°∠C=38°,则∠DFE=( ) A 、120° B 、115°C 、110°D 、105°3. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500,则∠BPC 等于( )A 、90°B 、130°C 、270°D 、315°4. 已知△ABC 的周长为45cm ,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且a ∶b ∶c=4∶5∶6,求三边的长.5. 如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,求∠ACB 。

南北EDCB A6. 等腰三角形底边为4.腰长为b,则b 一定满足( )A .b >2 B.2<b <4 C.2<b <8 D.b <87. △ABC 中,∠A=12∠B =13∠C ,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.含30°角的直角三角形8. 已知,如图CE 是△ABC 的外角∠ACD 的平分线,BE 是∠ABC 内任一射线,交CE 于E .求证:∠EBC <∠ACE .9.三角形___两边组成的角叫三角形的内角.10.如图中,BD=DE=EF=FC ,那么_________是△ABE 的中线. A.AD B.AE C.AF D.以上都是11.如图所示,∠1=_______.140︒80︒112. 如图,一面小红旗其中∠A=60°,∠B=30°,则∠BCD=___。

13. 三角形的任何两边的和___第三边. 三角形的任何两边的差___第三边.14. 如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且相交于一点P ,若∠A=50°,则∠BPC 的度数是( )A.150° B.130° C.120° D.100°15.若等腰△的两边长分别为7和8,则其周长为___;16.如图,CE平分∠ACD,F为CA延长线上一点,FG∥CE交AB于点G,∠ACD=100°,∠AGF=20°,求∠B的度数17.在平面直角坐标系中,点A(-3,0),B(5,0),C(0,4)所组成的三角形ABC的面积是( )A、32;B、4;C、16;D、818.n边形内角和等于___。

19.从三角形的顶点向它所对的边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的___。

20.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为___.21.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( )A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形22.已知n边形的内角和与外角和之比为9:2,求n。

23.多边形及其内角和24.探究规律:如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点。

(1)请写出图中面积相等的各对三角形:______________________________。

(2)如果A、B、C为三个定点,点P在m上移动,那么无论P点移动到任何位置总有:___与△ABC的面积相等;理由是:___25.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是____________。

26.如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数是_______根.27.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于( )A.2cm2 B.1cm2 C.12cm2 D.14cm228.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.29.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=___°.30.三角形的三个外角中,最多有______个锐角.31.等腰三角形的高线、角平分线、中线的总条数为________.32.从n 边形的一个顶点可以引___条对角线,它们把n 边形分成___个三角形;33.已知等腰三角形的一边等于8cm ,另一边等于6cm ,求此三角形的周长;34.如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2FEA35. 如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求:(1)△ABC 的面积; (2)CD 的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm时,试求出DF的长。

A BC36.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.37.下列图中哪些具有稳定性?⑵对不具稳定性的图形,请适当地添加线段,使之具有稳定性。

38.正六边形的一个外角的度数为( )A.120° B.60° C.90° D.100°39.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.40.如图,P是△ABC内一点,请用量角器量出∠ABP.∠ACP.∠A和∠BPC的大小,再计算一下,∠ABP+∠ACP+∠A是多少度?这三个角的和与∠BPC有什么关系?你能用学到的知识来解释其中的道理吗?你能判断∠BPC和∠A的大小吗?把你的想法与同伴交流,看谁说得更有道理.ABC P D41.如图:(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°;(2)AE平分∠BAC,交BC于点E,则AE叫________,∠________=∠________=21∠________,AH叫________;(3)若AF=FC,则△ABC的中线是________;(4)若BG=GH=HF,则AG是________的中线,AH是________的中线.42.一个多边形的内角和外角和的比是7∶2,则这个多边形是___边形;43.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.44.如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A,B两岛的视角∠ACB是多少度?45.如图,D在BC延长线上一点,∠ABC.∠ACD平分线交于E.求证:∠E=12∠A AB C DE46.现有两根木棒,它们的长度分别为40cm和50cm,若要钉成一个三角架,则在下列四根棒中应选取( )。

A:10cm的木棒 B:40cm的木棒 C:90cm的木棒 D:100cm的木棒47.如果一个角的两边与另一个角的两边互相垂直,则这两个角的关系是:___;48.如图,BE、CD交于A点,∠C与∠E的平分线交于F⑴∠F与∠B、∠D有何等量关系?⑵当∠B∶∠D∶∠F=2∶4∶x时,x为多少?△ABC中∠A=96°,延长BC到D,∠ABC与∠ACD平分线相交于A1点,∠A1BC 与∠A1CD的平分线交于A2点,依此类推,∠A4BC与∠A4CD的平分线相交于A5点,则A5的大小是多少度?49.一个零件的形状如图,按规定∠A=90°,∠B和∠C,应分别是32°和21°,检验工人量得∠BDC=148°,就断定这两个零件不合格,运用三角形的有关知识说明零件不合格的理由。

50.把一副三角板按如图所示的方式放置,则两条斜边所形成的钝角α=__________.51.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为____________.52.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB 、CD ),这样做的数学道理是___;53.一个三角形的三个内角中( )A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D 、至少有两个锐角54. n 边形的内角和为___;多边形的外角和为___。

55.如下图,AD 、AE 、AF 分别是△ABC 的高线、中线、角平分线,则___=___=90°,∠1=___=21___,BE=___=21___.△ABC中,∠A=50°,∠B=60°,则∠C=___。

56.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.57.三角形的三条中线相交于一点,这一点叫做三角形的___。

58.如图,已知AD是△ABC的高,AE平分∠BAC,∠B=25O,∠ACD=45O,求∠AED的度数59.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是( )A.15cm B.20cm C.25cm D.20cm或25cm60.如图所示,AB=29,BC=19,AD=20,CD=16,若AC=,则的取值范围为___.61.在△ABC中AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长。

62.在△ABC中,∠A=100°,∠B-∠C=40°,则∠B=___,∠C=___。

63.已知AD是△ABC的角平分线,AE是△ABC的中线,写出图中相等的线段和角.64.图中三角形的个数是( )A.8 B.9 C.10 D.1165.如图,已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=_____.CBD66.三条线段a=5,b=3,c为整数,从a、b、c为边组成的三角形共有( ).A:3个 B:5个 C:无数多个 D:无法确定67.如图所示,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.OBA68.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.可知哪些线段是哪个三角形的角平分线、中线或高?69.分单元全70.如图,AB∥CD,∠B=72°,∠D=32°,求∠F的度数?71.如图,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=___度。

相关文档
最新文档