双水相萃取解析
第十三章双水相萃取
第三节 影响双水相萃取的因素
形成相系统的高聚物分子量和化学性质、被分配物质的大小 和化学性质对双水相萃取都有直接影响。
1、成相高聚物浓度-界面张力
位于临界点附近的相系统,细胞粒子可完全分 配于上相或下相,此时不存在界面吸附。 一般:高聚物浓度增大,系统组成偏离临界点, K>1或<1。 高聚物浓度增大,界面吸附增强。细胞粒子向 界面转移,可能完全转移至另一相,主要依赖 于它们的表面性质。
4、生物亲和分配:
成相高聚物偶联生物亲和配基后,对生物大分子的 分配系数影响很显著。
5、疏水效应
一般情况下,蛋白质的表面存在疏水区,疏水区所 占比表面越大,其疏水性越强,不同组分由于其 表面疏水性的差异使得其各自在上下相中产生相 应的分配平衡。
6、温度及其他(通气、搅拌)
作业
名词解释:双水相萃取技术、 影响双水相萃取的因素有哪些?
第十三章 双水相萃取
第一节 概述
传统萃取法:有机溶剂萃取;蛋白质易失活;部 分蛋白质具较强亲水性,不溶于有机溶剂。 双水相萃取法:利用物质在互不相溶的两水相间 分配系数的差异来进行萃取的方法。 主要有两大类: 1、聚合物—聚合物—水系统:聚合物分子在空间 阻碍作用使相互间无法渗透,从而在一定条件下 特点:能保留产物活性,操作可连续化,在去除细胞 分为两相。 碎片方面比过滤、离心方法优越得多。 2、聚合物—无机盐——水系统:主要是由于盐析 应用:酶的中间规模分离,小分子生物活性物质分离。 作用,只要浓度达到一定值之后,也会产生两相。
2、成相高聚物的分子量
一般原则:同种高聚物分子量减小,将有利于萃 取物在低分子高聚物一侧的分配。 当高聚物浓度、盐浓度、温度等其他条件保持不变时, 被分配的蛋白质易为相系统中低分子量高聚物所吸引, 而易被高分子量高聚物所排斥。
双水相萃取名词解释
双水相萃取名词解释双水相萃取是一种分离和提取物质的物理化学方法,它基于物质在两种不相溶的水相中的分配差异来实现。
其中,一相为有机溶剂相,另一相为水相。
双水相萃取能够实现目标物质从混合物中的分离纯化,常用于生物化学、制药、环境监测等领域。
与传统的单相溶剂萃取相比,双水相萃取具有高选择度、高灵敏度、快速分离和减少环境污染等优点,在实际应用中具有广泛的应用前景。
双水相萃取的核心原理是不同物质在两相之间的分配差异。
混合物溶解在有机溶剂相中后,目标物质会因其在两相中的溶解度不同而分配到两相中。
根据目标物质在两相中的分配系数,可以通过调整两相的物理化学性质,例如溶剂种类、pH值和离子强度等,来控制目标物质的转移和分离。
在双水相萃取中,通常使用的有机溶剂相为水不溶性有机溶剂,例如丁醚、乙醚、正己烷等。
水相通常为含有盐或酸碱调节剂的水溶液。
混合物溶解在有机溶剂相中后,通过搅拌、超声波处理等方法,使混合物中的目标物质与两相中的溶剂发生混溶,然后静置使两相分层。
最后,可以通过分液、离心等方式分离出两相,从而得到纯净的目标物质。
双水相萃取在实际应用中,常常与其他分离和纯化技术相结合,例如薄层色谱、气相色谱、高效液相色谱等,以实现更精确、高效的分离和纯化。
该技术不仅适用于分离化学品、天然产物、有机合成产物等有机化学领域,也可用于生物分子、生物体内代谢产物等在生物化学、制药等领域中的应用。
总之,双水相萃取是一种基于物质在两种不相溶的溶剂相中分配差异来实现目标物质的分离和纯化的物理化学方法。
它具有许多优点,广泛应用于化学、生物化学、制药和环境监测等领域,并与其他分离和纯化技术相结合,促进了科学研究和工业生产的发展。
蛋白分离纯化技术之双水相萃取技术
蛋白分离纯化技术之双水相萃取技术双水相萃取是一项蛋白分离和蛋白纯化技术,是利用物质在两相间的选择分配差异而进行分离提纯的,目前已经被广泛应用与医药化学、细胞生物学、生物化工和食品工业等领域。
双水相萃取技术用于提取蛋白质等生物活性物质时,具有操作简单、体系含水量高,在萃取过程中可以保持物质的构象稳定、蛋白不易失活并获得高的萃取率的特点。
1、双水相萃取技术可分离和纯化蛋白双水相萃取技术可以用于蛋白分离和蛋白纯化,包含在一些蛋白分离公司提供的服务。
早期,如在20世纪60年代,有研究者全面进行了生物大分子在双水相系统中的分配行为的研究,得到了蛋白质、酶、核酸、病毒、抗体抗原复合物以及细胞等的分配数据。
双水相系统具有温和的操作条件,对于在极性条件下易造成变性失活的蛋白质和酶的提取中表现出了很大的优势。
双水相萃取法进行蛋白分离和蛋白纯化的原理是:聚合物与聚合物之间或聚合物与盐之间由于分子空间阻碍作用形成了双水相。
当待分离物质进入体系后,由于各组分表面性质、电荷作用和各种力的作用和溶液环境的影响,使其在上、下相中的分配系数不同,通过调节体系参数使被分离物质在两相间选择性分配,从而实现目标组分的分离纯化。
双水相萃取技术进行蛋白分离和蛋白纯化具有以下优点:(1)易于放大,各种参数可以按照比例放大而不降低产物收率[1];(2)双水相系统传质和平衡过程速度快,回收效率高、能耗较小;(3)易于进行连续化操作、设备简单,且可以直接与后续提纯工序相连接,无需进行特殊处理;(4)相分离条件温和,双水相体系的张力很小,有利于保持生物分子的活性,可以直接用在发酵液中;(5)影响双水相体系的因素比较复杂,可调参数多,便于改变操作条件提高纯化效果。
美迪西提供蛋白质分离纯化技术服务,可以根据客户要求,提供从小试到规模生产全程的蛋白分离纯化服务,并根据工艺的要求结合产品特点给客户定制适用的工艺和系统。
2、双水相萃取技术分离和纯化物质的研究α-淀粉酶是一类用途十分广泛的酶,在粮食、食品加工,以及医药行业等都经常使用,由于α-淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。
双水相萃取名词解释
双水相萃取名词解释双水相萃取是一种分离技术,是通过在混合液体中将一种物质分离出来的过程。
该过程常用于将两种不同物质分离开来,如果它们具有相同的电荷和形状,它们就可以在混合液体中被有效分离。
双水相萃取基于一种叫作分配系数的概念。
分配系数是物质之间的电荷和形状的比率,它决定了物质在混合液体中的分布情况。
根据分配系数的不同,被萃取的物质将分布在两个不同的表面上。
在双水相萃取中,混合液体会被分为两个相分离部分,一部分富含物质A,而另一部分富含物质B。
在双水相萃取过程中,混合液体会被放入一容器中,然后以静态或动态的方式搅拌,使物质A和B之间的分配系数得到改变。
当混合液体中的物质A和B改变分布率时,它们就会被从中分离出来。
这种技术可以极大地提高物质分离的速度,从而使分离的效率极高,而且还可以分离出非常精细的物质,如大小不一的纳米粒子等。
双水相萃取技术在药物分离、石油分离、食品加工等领域具有广泛应用,可以帮助工程师们解决大量问题,提高产品质量与生产效率。
此外,双水相萃取还可以用于能源转换,可以将太阳能和风能有效转换为其它形式的能源,以满足人类的能源需求。
综上所述,双水相萃取是一种重要的技术,它可以解决大量混合液体中不同物质的分离问题,在药物分离、石油分离、食品加工等领域有着广泛应用,帮助工程师们极大地提高分离的速度和效率,并可以将能源有效转换。
虽然双水相萃取技术带来了诸多好处,但是它也有一定的局限性。
由于其基本原理是以分配系数为基础的,在进行双水相萃取时,受到混合液体种类的限制,只能用于水基混合液体。
此外,双水相萃取过程中所产生的废水也不能直接排放,必须经过处理才能安全排放。
因此,在进行双水相萃取之前,需要进行充分的技术评估,确保双水相萃取过程安全有效。
双水相萃取技术的发展越来越快,它不仅帮助我们解决了大量的分离问题,而且还能帮助满足人类能源需求。
未来,双水相萃取技术将会得到更深入的研究,希望有一天它能够应用到更加广泛的领域,为促进人类社会发展作出更多的贡献。
双水相萃取全解
1、双水相体系的组成
双水相体系的主要成因——聚合物的 不相溶性
双水相现象是当两种聚合物或一种聚 合物与一种盐溶于同一溶剂时,由于聚合 物之间或聚合物与盐之间的分子空间阻碍 作用,无法相互渗透,当聚合物或无机盐 浓度达到一定值时,就会分成不互溶的两 相,因为使用的溶剂是水,所以称为双水 相。
① 聚合物∕聚合物双水相
影响双水相萃取平衡的主要因素有: 组成双水相体系的高聚物类型、高聚物 的平均分子量和分子量分布、高聚物的 浓度、成相盐和非成相盐的种类、盐的 离子浓度、pH值、温度等。
1)聚合物的类型
不同聚合物的水相系统显示出不同的疏水 性,聚合物的疏水性按下列次序递增:葡萄 糖硫酸盐糖<葡萄糖<羟丙基葡聚糖<甲基 纤维素<聚乙二醇<聚丙三醇,这种疏水性 的差异对目的产物的作用是重要的。
双水相萃取全解
主要内容:
一、双水相萃取的基本理论 二、双水相萃取工艺流程操作 三、影响双水相的因素 四、双水相萃取的应用 五、双水相萃取技术的发展
前言
• 双水相萃取现象最早是1896年由Bei jerinck 在琼脂与可溶性淀粉或明胶混合时发现的, 这种现象被称为聚合物的“不相溶性” (incompatibility)。
但一般来说,当双水相系统离双节线足够远 时,温度的影响很小,1-2度的温度改变不影 响目标产物的萃取分离。
大规模双水相萃取操作一般在室温下进行, 不需冷却。这是基于以下原因:
(l)常温下,溶液的粘度较低,容易分相 (2)成相聚合物PEG对某些具有生物活性溶质 如蛋白质有稳定的作用,常温下蛋白质一般不 会发生失活、变性。 (3)常温操作节省冷却费用。
6)无机盐的浓度
盐的正、负离子在两相间分配系数不 同,两相间形成电位差,从而影响带电 生物大分子的分配。无机盐浓度的不同 能改变两相间的电位差。
双水相萃取全解
聚乙二醇
非离子型聚合物/ 非离子型聚 合物
聚丙二醇
聚乙烯醇 聚乙二醇 聚乙烯吡咯烷酮
高分子电解质/非离子型聚合物
羧甲基纤维素钠
聚乙二醇
高分子电解质/高分子电解质
聚合物/ 低分子量化合物
葡聚糖硫酸钠
葡聚糖
羧甲基纤维素钠
丙醇
磷酸钾
聚合物/ 无机盐 聚乙二醇 硫酸铵
双水相的形成
在聚合物∕盐或聚合物∕聚合物系统混合时, 会出现两个不相混溶的水相
②聚合物∕无机盐双水相
某些聚合物溶液和一些无机盐溶液 相混时,在一定浓度下,由于盐析作 用,也会形成两相,即聚合物/ 无机 盐双水相体系,常用的无机盐有磷酸 盐和硫酸盐。除高聚物、无机盐外, 能形成双水相体系的物质还有高分子 电解质、低分子量化合物。
各种类型的双水相体系
类 型 形成上相的聚合物 形成下相的聚合物 葡聚糖
影响双水相萃取平衡的主要因素有: 组成双水相体系的高聚物类型、高聚物 的平均分子量和分子量分布、高聚物的 浓度、成相盐和非成相盐的种类、盐的 离子浓度、pH值、温度等。
1)聚合物的类型
不同聚合物的水相系统显示出不同的疏水 性,聚合物的疏水性按下列次序递增:葡萄 糖硫酸盐糖<葡萄糖<羟丙基葡聚糖<甲基 纤维素<聚乙二醇<聚丙三醇,这种疏水性 的差异对目的产物的作用是重要的。
缺点:
• 成相聚合物的成本较高, 且高聚物回收困难。 • 水溶性高聚物大多数粘度 较大,不易定量控制。 • 易乳化,相分离时间较长。 • 影响因素复杂。
3、双水相萃取原理
(1) 分配系数
双水相萃取与一般的水-有机物萃取的 原理相似, 都是依据物质在两相间的选择 性分配。当萃取体系的性质不同, 物质进 入双水相体系后, 由于分子间的范德华力、 疏水作用、分子间的氢键、分子与分子之 间电荷的作用, 目标物质在上、下相中的 浓度不同, 从而达到分离的目的。
双水相的萃取原理及应用
双水相的萃取原理及应用双水相萃取是一种常用的分离纯化技术,其原理是将两种互不相溶的溶剂(一般是水和有机溶剂)在适当的条件下混合形成两个相,通过溶质在两相间的分配系数差异,使溶质转移到另一相中来实现分离纯化。
双水相萃取技术在生物医药、食品工业、环境监测等领域有广泛的应用。
双水相萃取的原理可以通过亲水基团和疏水基团之间的相互作用来解释。
当有机溶剂向水中注入时,溶剂分子中的疏水基团与水中的活泼基团(如羟基和胺基)发生作用,形成一层水合包裹层。
这种水合包裹层使有机溶剂和水发生互溶性差异,从而使两种溶剂形成不相容的两个相。
双水相萃取的应用可以归纳为以下几个方面:1. 生物活性物质分离纯化:双水相萃取广泛应用于生物活性物质分离纯化领域,例如从植物提取出天然产物(如植物提取物中的生物碱、黄酮、甾醇等);从微生物培养液中提取酶、蛋白质等生物活性物质;海洋生物样品的提取等。
双水相萃取可以有效地分离目标物质并去除一些干扰性物质,提高目标物质的纯度和产率。
2. 蛋白质的分离纯化:双水相萃取可以用于蛋白质的分离纯化。
由于蛋白质在不同的条件下会有不同的溶解度,通过调节溶剂的性质和条件,可以使目标蛋白质在双水相中的分配系数大于1,从而实现蛋白质的富集和分离纯化。
3. DNA/RNA的提取:双水相萃取也可用于DNA/RNA的提取。
DNA/RNA在某些条件下与有机溶剂形成复合物,可以通过双水相萃取的方法将DNA/RNA 从混合物中分离出来。
这是分子生物学研究中常用的一种DNA/RNA提取方法。
4. 药物研发:双水相萃取在药物研发中有着重要的应用。
药物研发中常常需要提取、分离纯化目标化合物,双水相萃取可以通过调节溶剂体系的性质和条件,实现对复杂混合物中目标化合物的分离纯化,从而提高化合物的纯度和产率,为药物研发提供了有效的手段。
除了上述应用外,双水相萃取还可以用于环境监测、食品工业等领域。
例如,在环境监测中,可以利用双水相萃取将有机污染物和水样分离,进而进行有机污染物的检测与分析。
双水相萃取的名词解释
双水相萃取的名词解释双水相萃取是萃取的一种方法。
两种水溶性不同的聚合物,或一种聚合物和无机盐的混合溶液,在一定的浓度下,其体系会自然分成互不相溶的两相。
当被分离物质进入双水相体系后,由于表面性质、电荷间作用和各种作用力等的影响,被分离物质在两相间的分配系数不同,导致其在上下相的浓度不同,即可达到分离的目的。
早在1896年人们就已观察到,明胶与琼脂,或明胶与可溶性淀粉溶液混合时,会得到一种不透明的混合溶液。
静置后可分为两相,上相中含有大部分的明胶,下相中含有大部分琼脂(或淀粉),这种现象称为聚合物的不相容性,从而产生了双水相。
双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比。
各种物质的K值不同,例如各种类型的细胞粒子、噬菌体等分配系数都大于100或小于0.01,酶、蛋白质等生物大分子的分配系数在0.1~10之间,而小分子盐的分配系数在1.0左右。
因而,双水相体系对生物物质的分配具有很大的选择性。
双水相的优势ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:(1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;(3)分相时间短,自然分相时间一般为5min~15 min;(4)界面张力小(10-7~10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;(5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;(6)大量杂质可与固体物质一同除去;(7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;(8)操作条件温和,整个操作过程在常温常压下进行;(9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。
5.3 双水相萃取解析
酶蛋白分子的相互作用进行分配的双水相萃取。
2)影响因素 • 蛋白质的表面电荷性质 • pH、盐浓度和种类、 • 利用共价键将疏水基团,如烷基或芳香基结合在水溶性聚 合物上,构成的双水相萃取系统。 2)优点: • 由于盐浓度对疏水作用影响很小,疏水分配萃取可以用 于高盐浓度的物料的分离。
1)定义: •将对目的酶具有离子交换、疏水作用或适当亲和力的亲和
配结合在构成双水相系统的某一水溶性聚合物上,与另一
水溶性聚合物构成双水相系统。 2)根据使用基团的性质分类: • 离子分配萃取 • 疏水萃取 • 亲和萃取 • 手性分配萃取 免疫配基亲和萃取 金属螯合亲和萃取等 染料配基亲和萃取
离子分配萃取:
5.3 双水相萃取与应用
5.3.1 概 述
双水相系统的形成: 因两种水溶性聚合物的水溶液,或一 种水溶性聚 合物水溶液与盐溶液混合时的不相容性而形成有 明显界面的两相系统。
5.3.1 概 述
双水相特点: • 两相均含有大量的水(高达80%以上);
• 界面张力小,一般只有0.5-10-4mN/m;
• 系统经济,成本低,无毒,适合大规模应用。
5.3.4 双水相系统相图
PEG (%)
PEG (%)
葡聚糖(%)
图1 PEG/葡聚糖系统相图
盐(%) 图2 PEG/盐系统相图
5.3.4 双水相系统相图
PEG (%)
相图的双节点 线的位置和形 状与哪些因素 相关?
cT K cB
葡聚糖(%)
图3 PEG/葡聚糖系统的双节点线形状和 临界点与聚合物分子量的关系 PEG6000,葡聚糖分子量: 1: D5 (Mn=2800) 2: D17 (Mn=2300) 3: D24 (Mn=40500) 4: D37 (Mn=8800) 5: D43 (Mn=180000) 6: D67 (Mn=630000)
双水相萃取技术
三、双水相体系的组成
• 当两种高聚物的水溶液相互混合时,若两种 被混合分子间存在空间排斥作用,使它们之间无 法相互渗透,则在达到平衡时就有可能分成两相, 形成双水相。两相的组成和密度均不相同,通常 密度较小的一相浮于上方,称为上相(轻相); 密度较大的一相沉于下方,称为下相(重相)。 一般认为,只要两种聚合物水溶液的水溶性有所 差异,混合时就可以发生相分离,并且差别越大, 相分离倾向就越大。 • 聚乙二醇/葡聚糖和聚乙二醇/无机盐是常用 的双水相体系,由于葡聚糖价格昂贵,因此聚乙 二醇/无机盐体系应用更为广泛。聚乙二醇/无机 盐中所用无机盐主要是磷酸盐和硫酸盐。
参考文献
• [1]郭会灿.双水相萃取技术及其在药物分离中的应 用[J].河北化工.Vol.34,No.8.Aug.201 1. • [2]王志华,马会民,马泉莉. 双水相萃取体系的研究 [J].应用化学.Vol.18,No.3.Mar.2001. • [3]胡松青,李琳,郭祀远.双水相萃取技术研究新进 展[J].现代化工.22.Jun. 2004. • [4]马春宏,朱红,王良.双水相萃取技术的应用研究 进展[J].光谱实验室.Vol.27,No.5September,2010.
3、无机盐的循环
将盐相冷却,结晶,然后用离心机离心 分离回收。其它方法有电渗析法、膜分离 法回收盐类或除去PEG 相的盐。
五、影响双水相萃取技术的因素
• • • • • •
组成双水相系统的高聚物类型 高聚物的平均分子量及浓度 组成双水相系统的盐的种类 离子强度和浓度 被分离的各种物质的种类、性质、分配特性等 操作条件如pH值、温度等
四、双水相萃取技术的工艺流程
双水相萃取技术的工艺过程主要由3 部分构成:目的产物的萃取、PEG 的循 环、无机盐的循环。
双水相萃取技术
三、双水相萃取3.1 双水相萃取的原理及特点3.1.1 双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。
3.1.2 双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。
由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。
3.2 双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。
在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。
在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。
萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。
用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。
双水相萃取技术
三、双水相萃取3.1双水相萃取的原理及特点3.1.1双水相萃取的原理双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。
当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。
3.1.2双水相萃取的特点双水相体系萃取具有如下特点:(1)含水量高(70%〜90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min ;⑶界面张力小(10-7〜10-4mN/m),有助于强化相际间的质量传递;⑷不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。
由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。
3.2双水相萃取在分离和提取各种蛋白质(酶)上的应用用聚乙二醇(PEG)/羟丙基淀粉酶(Reppal PEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。
在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。
在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH 在下相的收率均在80%以上。
萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。
用PEG/(NH4)2SO4 双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取a淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2S04(20%),pH=8,a淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。
双水相萃取技术详解
4.3 在医药行业的应用
双水相体系不仅可以用于分离医药行业需要的细胞,还 可以用来高效的提取抗生素。抗生素不仅能杀灭细菌,而且 对支原体、衣原体等致病微生物也具有良好的抑制及杀灭效 果。所以双水相萃取技术在医药行业得到广泛认可。 如: ①利用免疫亲和性PEG/Dextran 双水相体系从脐带血中分离 造血干细胞/源细胞。 ②亲水性离子液体 1-丁基-3- 甲基咪唑四氟硼 BF₄和 NaH₂PO₄形成的双水相体系能够快速从青霉素水溶液中萃取 青霉素G。 ③用亲水性离子液体四氟硼酸 1-丁基-3- 甲基咪唑四氟硼 BF4 和 NaH2PO₄组成的双水相体系萃取分离四环素。
2.1.4 相图
图1是典型的高聚物-高聚 物-水双水相体系的直角坐标 相图。两种聚合物A、B以适 当比例溶于水就会分别形成 有不同组成密度的两相。轻 相组成用T点表示,重相组成 用B点表示。曲线TCB称为 结线,直线TMB称为系线 。结线上方是两相区,下方 为单相区。
●
其中上下相组成分别为T和B, T和B量的遵循杠杆定律: 即T和B相质量之比等于系线 上MB与MT的线段长度之比。
⑤为降低成本和保证安全操作,应将成本高的和易燃易爆的液
体作为分散相。
产生分散相的动 力 重力差
微分接触式 喷啉塔、填料塔
逐级接触式 筛板塔、流动混合 器
机械搅拌
转盘萃取塔、搅拌 萃取塔、振动筛板 塔 脉冲填料塔、脉冲 筛板塔 连续式离心萃取器
混合澄清器
脉冲
离心力作用
脉冲混合澄清器
逐级式离心萃取器
3.5.2 脉动填料塔
3.3进行两水相生物转化反应需满足以下条件
● 催化剂应单侧分配; ● 底物应分配于催化剂所处的相中;产物应分配 在另
一相中;要有合适的相比。如产物分配在上相中,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 一般采用室温操作: 成相系统聚合物PEG对蛋白质有稳定作用,常温下蛋 白质不会发生变性; 常温下溶液粘度较低, 容易相分离; 常温操作节省冷却费用。
4.双水相萃取技术的发展
(1)历史:
➢ 早在1896年,Beijerinck发现,当明胶与琼脂或明胶与 可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随 之分为两相,上相富含明胶,下相富含琼脂(或淀粉), 这种现象被称为聚合物的不相溶性(incompatibility); ➢ 20世纪60年代,瑞典Lund大学的Albertsson P A及同事 最先提出了双水相萃取技术; ➢ 1979年,西德的Kula M R等人首次将ATPE应用于生物产 品分离;
➢大量研究表明:生物分子的分配系数取决于溶质与双水相系统 间的各种相互作用,主要有静电作用、疏水作用和亲和作用等, 其分配系数可为各种相互作用之和。
ln m ln me ln mh ln ml
①静电作用:两相系统中若有带电溶质存在,会ห้องสมุดไป่ตู้大分子在两 相间的分配系数产生影响。(图5-15) Donnan Potential:当大分子或粒子带有静电荷时,在带有电荷 分配不相等时,就会在两相间产生电位差,称为道南电位。 ②疏水作用:某些大分子物质表面具有疏水区,溶质的表面疏 水性会对其在两相间的分配系数产生影响。
3.影响双水相分配的主要因素
高聚物的相对分子质量 高聚物的浓度 盐的种类和浓度 PH值 温度
(1)高聚物的相对分子质量:
➢在高聚物浓度保持不变的前提下,降低该高聚物的相对分子质 量,被分配的可溶性生物大分子如蛋白质或核酸,或颗粒如细 胞或细胞碎片和细胞器,将更多地分配于该相。
以PEG-Dextran体系为例,↓Dextran→K↓ ↓PEG→K↑(表5-4)
➢这种影响与蛋白质相对分子质量也存在关系,相对分子质量越 大,影响也随之增大。
(2)高聚物的浓度:
➢成相物质的总浓度越高,蛋白质越容易分配于其中的某一相; 而对于细胞等颗粒来说,在临界点附近细胞大多分配于其中的 某一相。
(3)盐的种类和浓度:
➢盐的种类和浓度对分配系数的影响,主要反映在相间电位和
蛋白质的疏水性差异上,这是由于当双水相系统中存在这些
VT CA VB AB
(4)双水相体系的种类:
①高聚物-高聚物双水相(如PEG-Dextran):易于与后续
处理连接,如直接上离子交换柱而不必脱盐。
②高聚物-盐双水相(如PEG-
PO3 4
/ NH
4
SO4
):盐浓度高,蛋
白质易盐析,废水处理困难。
③非离子表面活性剂水胶团双相体系(如Triton-114表
93%水
3%PEG6000 下层组成:7%Dextran500
90%水
(2)双水相体系形成的原因: 聚合物的不相溶性(空间位阻)
➢聚合物的不相溶性:各个聚合物分子,都倾向于在其 周围有形状、大小和极性相同的分子,同时,由于不同 类型分子间的斥力大于同它们的亲水性有关的相互吸引 力,因此聚合物发生分离,形成两个不同的相。
内容提纲:
1.双水相体系 2.双水相萃取的基本原理 3.影响双水相分配的主要因素 4.双水相萃取技术的发展 5.双水相萃取操作及应用
1.双水相体系
(1)双水相系统:一定浓度的两种水溶性高聚物或一
种高聚物与盐类在水中能形成两层互不相溶的匀相水溶液, 这样的水相系统称为双水相系统。
5%PEG6000 上层组成:2%Dextran500
➢对于某些聚合物溶液与一些无机盐溶液相混时,只要 浓度达到一定范围时,体系形成双水相的机理尚不清楚。
➢聚合物溶液的混合 混合过程熵的增加:两种物质混合时,熵的增加与涉
及的分子数目有关。 分子间相互作用力(能):主要表现为分子中各个集团
间的相互作用力,随着分子量的增加,分子间各个集团数 目相应增加,其相互作用力也增大。
二醇
羧甲基纤维素钠盐
磷酸钾
聚乙二醇-聚乙烯 醇
羧甲基纤维素钠盐-甲基纤 维素
甲氧基聚乙二醇 -磷酸钾
聚乙二醇-葡萄糖
聚乙二醇-磷酸 钾
聚吡咯烷酮-甲基 纤维素
聚丙烯乙二醇葡萄糖
(5)双水相体系萃取的特点:
①易于工业放大; ②纯化倍数高(2-20倍),目标产物有较高的收率(80%); ③易于实现连续化操作,设备简单; ④不易引起生物活性物质失活(含水量高达75%-90%); ⑤操作条件温和(常温常压); ⑥不存在有机溶剂残留问题,而且操作环境对人体无害 (高聚物一般为不挥发性物质); ⑦成本较高(聚合物价格昂贵,难以回收)。
电解质时,达到平衡时,各项均需保持电中性的原则。
(4)PH的影响:
➢双水相系统的PH值能影响蛋白质上可解离集团的离解度,使
蛋白质表面电荷改变,影响其分配系数;另外,PH值也会影
响盐的解离( )。 PO3 4
HPO24
H
2
PO4
(5)操作温度:
➢温度影响双水相系统的相图,继而影响蛋白质的分配系数,
在临界点附近尤为显著。
2.双水相萃取的基本原理
➢双水相萃取法:不同的高分子溶液相互混合可产生两相
或多相系统,利用物质在互不相溶的两水相间分配系数的 差异来进行萃取的方法。 ➢基本原理:物质在两相间的选择性分配。(双水相系统萃 取属于液-液萃取范畴)
m cT cB
m:总分配系数,CT、CB分别为上相和下相中溶质的浓度。
面活性剂):相成分简单,易于回收,应用还不多。
④阴阳离子表面活性剂双水相体系(如SDS-CATB)
⑤醇-盐双水相体系(如乙醇/丙醇-无机盐-水)
常见的双水相系统
聚合物-聚合物-水
聚合物电解质-聚合物-水
聚合物电解质-聚 合物电解质-水
聚合物-盐-水
聚丙烯乙二醇-甲 氧基聚乙二醇
硫酸葡萄糖钠盐-聚丙烯乙 硫酸葡萄糖钠盐- 聚丙烯乙二醇-
当分子间相互作用力与熵的增加相比占主导地位时, 就会分层。 ➢一般认为,只要两聚合物水溶液的憎水程度有所差异, 混合时就会发生相分离。
(3)双水相体系的相图:
➢ 双节线;A-体系总组成;B、C-节点;B(A)C-系线;系线 的长度;K-临界点;
➢在同一系线上的不同点,总组成不同,而上下两相组成相 同,只是体积VT、VB不同,但它们均服从杠杆原理。
双水相萃取
很多生物产品无法使用有机溶剂萃取的方法进行分离纯化。 蛋白质一般亲水性强,不溶于有机溶剂; 蛋白质在有机溶剂相中易变形失活。
双水相萃取(溶剂萃取法新技术之一)
(ATPE:Two-aqueous phase extraction)
萃取
超临界萃取 液固萃取或浸提
液液萃取
有机溶剂萃取 双水相萃取 液膜萃取 反胶团萃取