高中数学选修2-1课时作业27:§3.2 立体几何中的向量方法(一)

合集下载

高中数学选修2-1配套(课件+检测):3.2立体几何中的向量方法3.2 第1课时

高中数学选修2-1配套(课件+检测):3.2立体几何中的向量方法3.2 第1课时

第三章 3.2 第1课时A 级 基础巩固一、选择题1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为u =(-2,0,-4),则导学号 21324937( B )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交[解析] ∵u =-2a ,∴u ∥a ,∴l ⊥α.2.在如图所示的坐标系中,ABCD -A 1B 1C 1D 1为正方体,给出下列结论:①直线DD 1的一个方向向量为(0,0,1);②直线BC 1的一个方向向量为(0,1,1);③平面ABB 1A 1的一个法向量为(0,1,0);④平面B 1CD 的一个法向量为(1,1,1). 其中正确的个数为导学号 21324938( C )A .1个B .2个C .3个D .4个[解析] DD 1∥AA 1,AA 1→=(0,0,1);BC 1∥AD 1,AD 1→=(0,1,1),直线AD ⊥平面ABB 1A 1,AD →=(0,1,0);C 1点坐标为(1,1,1),AC 1→与平面B 1CD 不垂直,∴④错.3.(2017·菏泽高二检测)已知A (1,-3,5),B (-1,-1,4)是直线l 上两点,则下列可作为直线l 的方向向量的是导学号 21324939( B )A .(1,1,0)B .(4,-4,2)C .(-3,-3,0)D .(4,4,2)4.(2017·福州高二检测)已知向量n =(2,3,-1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是导学号 21324940( D )A .(0,3,-1)B .(2,0,-1)C .(-2,3,-1)D .(-2,-3,1)5.已知向量a =(2,4,5)、b =(5,x ,y )分别是直线l 1、l 2的方向向量,若l 1∥l 2,则导学号 21324941( D )A .x =6,y =15B .x =3,y =152C .x =10,y =15D .x =10,y =252[解析] ∵l 1∥l 2,∴a ∥b ,∴52=x 4=y 5,∴⎩⎪⎨⎪⎧ x =10y =252.6.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k =导学号 21324942( C )A .2B .-4C .4D .-2[解析] ∵α∥β,∴1-2=2-4=-2k,∴k =4,故选C . 二、填空题7.已知A 、B 、C 三点的坐标分别为A (1,2,3)、B (2,-1,1)、C (3,λ,λ),若AB →⊥AC →,则λ等于 145.导学号 21324943 [解析] AB →=(1,-3,-2)、AC →=(2,λ-2,λ-3),∵AB →⊥AC →,∴AB →·AC →=0,∴2-3(λ-2)-2(λ-3)=0,解得λ=145. 8.已知直线l 的方向向量为u =(2,0,-1),平面α的一个法向量为v =(-2,1,-4),则l 与α的位置关系为_l ∥α或l ⊂α__.导学号 21324944[解析] u ·v =2×(-2)+0×1+(-1)×(-4)=0,∴l ∥α或l ⊂α.三、解答题9.如图,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是P A 、BD 上的点,且PM ︰MA =BN ︰ND =5︰8.求证:直线MN ∥平面PBC .导学号 21324945[证明] MN →=MP →+PB →+BN →=-PM →+PB →+BN →=-513P A →+PB →+513BD → =-513(BA →-BP →)+PB →+513(BA →+BC →) =513BP →-BP →+513BC →=513BC →-813BP →, ∴MN →与BC →、BP →共面,∴MN →∥平面BCP ,∵MN ⊄平面BCP ,∴MN ∥平面BCP .10.(2017·枣庄高二检测)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,P A ⊥底面ABCD ,P A =2,点M 为P A 的中点,点N 为BC 的中点.AF ⊥CD 于F ,如图建立空间直角坐标系.求出平面PCD 的一个法向量并证明MN ∥平面PCD .导学号 21324946[解析] 由题设知:在Rt △AFD 中,AF =FD =22, A (0,0,0),B (1,0,0),F (0,22,0),D (-22,22,0), P (0,0,2),M (0,0,1),N (1-24,24,0). MN →=(1-24,24,-1),PF →=(0,22,-2). PD →=(-22,22,-2) 设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·PF →=0,n ·PD →=0⇒⎩⎨⎧ 22y -2z =0,-22x +22y -2z =0,令z =2,得n =(0,4,2).因为MN →·n =(1-24,24,-1)·(0,4,2)=0, 又MN ⊄平面PCD ,所以MN ∥平面PCD .B 级 素养提升一、选择题1.下面各组向量为直线l 1与l 2方向向量,则l 1与l 2一定不平行的是导学号 21324947( D )A .a =(1,2,-2)、b =(-2,-4,4)B .a =(1,0,0)、b =(-3,0,0)C .a =(2,3,0)、b =(4,6,0)D .a =(-2,3,5)、b =(-4,6,8)[解析] l 1与l 2不平行则其方向向量一定不共线.A 中:b =-2a ,B 中:b =-3a ,C 中:b =2a .故选D .2.(2017·甘肃天水一中高二期末测试)两个不重合平面的法向量分别为v 1=(1,0,-1)、v 2=(-2,0,2),则这两个平面的位置关系是导学号 21324948( A )A .平行B .相交不垂直C .垂直D .以上都不对[解析] ∵v 1=(1,0,-1),v 2=(-2,0,2),∴v 2=-2v 1,∴v 1∥v 2,∴两个平面平行.3.已知点A (4,1,3)、B (2,-5,1),C 为线段AB 上一点且|AC →||AB →|=13,则点C 的坐标为导学号 21324949( C )A .(72,-12,52)B .(38,-3,2)C .(103,-1,73)D .(52,-72,32) [解析] ∵C 在线段AB 上,∴AC →∥AB →,∴设C (x ,y ,z ),则由|AC →||AB →|=13得,(x -4,y -1,z -3)=13(2-4,-5-1,1-3), 即⎩⎨⎧x -4=-23y -1=-2z -3=-23,解得⎩⎨⎧ x =103y =-1z =73. 故选C . 4.对于任意空间向量a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),给出下列三个命题: ①a ∥b ⇔a 1b 1=a 2b 2=a 3b 3; ②若a 1=a 2=a 3=1,则a 为单位向量; ③a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0. 其中真命题的个数为导学号 21324950( B ) A .0 B .1 C .2 D .3[解析] 由a 1b 1=a 2b 2=a 3b 3⇒a ∥b ,反之不一定成立,故①不正确;②显然错误;③是正确的,故选B .二、填空题5.过点A (1,0,0)、B (0,1,0)、C (0,0,1)的平面的一个法向量为_(1,1,1)__.导学号 21324951[解析] 设法向量n =(x ,y,1),由⎩⎪⎨⎪⎧ n ·AB →=0n ·AC →=0,得⎩⎪⎨⎪⎧ -x +y =0-x +1=0,∴⎩⎪⎨⎪⎧x =1y =1.∴n =(1,1,1). 6.在空间直角坐标系O -xyz 中,已知A (1,-2,3)、B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为___(53,0,13)___.导学号 21324952 [解析] 设点C 的坐标为(x,0,z ),则AC →=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB→共线,所以x -11=23=z -3-4,解得⎩⎨⎧ x =53z =13,所以点C 的坐标为(53,0,13). 三、解答题 7.设a 、b 分别是不重合的直线l 1、l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:导学号 21324953(1)a =(4,6,-2)、b =(-2,-3,1);(2)a =(5,0,2)、b =(0,1,0);(3)a =(-2,-1,-1)、b =(4,-2,-8).[解析] (1)∵a =(4,6,-2)、b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.(2)∵a =(5,0,2)、b =(0,1,0),∴a ·b =0,a ⊥b ,∴l 1⊥l 2.(3)∵a =(-2,-1,-1),b =(4,-2,-8),∴a 与b 不共线也不垂直.∴l 1与l 2相交或异面.8.已知三棱锥P -ABC ,D 、E 、F 分别为棱P A 、PB 、PC 的中点,求证:平面DEF ∥平面ABC .导学号 21324954[证明] 证法一:如图.设PD →=a ,PE →=b ,PF →=c ,则由条件知,P A →=2a ,PB →=2b ,PC →=2c ,设平面DEF 的法向量为n ,则n ·DE →=0,n ·DF →=0,∴n ·(b -a )=0,n ·(c -a )=0,∴n ·AB →=n ·(PB →-P A →)=n ·(2b -2a )=0,n ·AC →=n ·(PC →-P A →)=n ·(2c -2a )=0,∴n ⊥AB →,n ⊥AC →,∴n 是平面ABC 的法向量,∴平面DEF ∥平面ABC .证法二:设PD →=a ,PE →=b ,PF →=c ,则P A →=2a ,PB →=2b ,PC →=2c ,∴DE →=b -a ,DF →=c -a ,AB →=2b -2a ,AC →=2c -2a ,对于平面ABC 内任一直线l ,设其方向向量为e ,由平面向量基本定理知,存在唯一实数对(x ,y ),使e =xAB →+yAC →=x (2b -2a )+y (2c -2a )=2x (b -a )+2y (c -a )=2xDE →+2yDF →,∴e 与DE →、DF →共面,即e ∥平面DEF ,∴l ⊄平面DEF ,∴l ∥平面DEF .由l 的任意性知,平面ABC ∥平面DEF .C 级 能力拔高在正四棱锥P -ABCD 中,底面正方形边长为32,棱锥的侧棱长为5,E 、F 、G 分别为BC 、CD 、PC 的中点,用向量方法证明下列问题.导学号 21324955(1)EF ⊥P A ;(2)EF ∥平面PBD ;(3)直线P A 与平面EFG 不平行.[解析] 设AC 与BD 的交点为O ,∵P -ABCD 为正四棱锥,∴PO ⊥平面ABCD ,且AC ⊥BD ,以O 为原点,OB ,OC 、OP 分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方形ABCD 边长为32,∴OB =OC =3,又PC =5,∴OP =4,∴A (0,-3,0)、B (3,0,0)、C (0,3,0)、D (-3,0,0)、P (0,0,4).(1)∵E 、F 分别为BC 、CD 的中点,∴E (32,32,0)、F (-32,32,0),∴EF →=(-3,0,0)、P A →=(0,-3,-4),EF →·P A →=0,∴EF ⊥P A .(2)显然OC →=(0,3,0)为平面PBD 的一个法向量,∵EF →·OC →=0,∴EF ∥平面PBD .(3)∵G 为PC 中点,∴G (0,32,2),设平面EFG 的法向量为n =(x ,y ,z ),则n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧ -3x =0-32x +2z =0,∴⎩⎪⎨⎪⎧ x =0z =0. 取n =(0,1,0),∵n ·P A →=-3≠0,∴P A 与平面EFG 不平行.。

高中数学选修2-1课时作业3:3.2 立体几何中的向量方法(三)

高中数学选修2-1课时作业3:3.2 立体几何中的向量方法(三)

3.2立体几何中的向量方法(三) ——向量法求空间中的角一、选择题1.平面α的斜线l 与它在这个平面上射影l ′的方向向量分别为a =(1,0,1),b =(0,1,1),则斜线l 与平面α所成的角为( ) A .30° B .45° C .60° D .90°[答案] C[解析] l 与α所成的角为a 与b 所成的角(或其补角),∵cos 〈a ,b 〉=a ·b |a |·|b |=12,∴〈a ,b 〉=60°.2.(08·全国Ⅱ)已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为( ) A.13 B.23 C .-33 D.23[答案] C[解析] 如下图,设棱长为1,∵AE →=12(AB →+AS →)=12(DC →+DS →-DA →),∴|AE →|=14(1+1+1+2×1×1cos60°-2×1×1cos60°)=32, ∴cos 〈AE →,SD →〉=AE →·SD →|AE →|·|SD →|=12(AB →+AS →)·SD →32·1=12(DC →+DS →-DA →)·SD →32=-33,故选C.3.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角的余弦值为( )A.32B.1010C.35D.25[答案] D[解析] 解法一:∵AM →=AA 1→+A 1M →,CN →=CB →+BN →, ∴AM →·CN →=(AA 1→+A 1M →)·(CB →+BN →)=AA 1→·BN →=12.而|AM →|=(AA 1→+A 1M →)·(AA 1→+A 1M →)=|AA 1→|2+|A 1M →|2=1+14=52. 同理,|CN →|=52.如令α为所求角,则cos α=AM →·CN →|AM →||CN →|=1254=25.应选D.解法二:如图以D 为原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM →=⎝⎛⎭⎫1,12,1-(1,0,0)=(0,12,1),CN →=(1,1,12)-(0,1,0)=(1,0,12). 故AM →·CN →=0×1+12×0+1×12=12,|AM →|=02+⎝⎛⎭⎫122+12=52,|CN →|=12+02+⎝⎛⎭⎫122=52.∴cos α=AM →·CN →|AM →||CN →|=1252·52=25.4.把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( ) A .(0°,90°) B .90°C .120° D .(60°,120°)[答案] C[解析] OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°,故选C.5.把正方形ABCD 沿对角线AC 折起,当A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为( ) A .90° B .60° C .45° D .30°[答案] C[解析] 翻折后A 、B 、C 、D 四点构成三棱锥的体积最大时,平面ADC ⊥平面BAC ,设未折前正方形的对角线交点为O ,则∠DBO 即为BD 与平面ABC 所成的角,大小为45°. 6.在正方体ABCD -A 1B 1C 1D 1中,若F 、G 分别是棱AB 、CC 1的中点,则直线FG 与平面A 1ACC 1所成角的正弦值等于( ) A.23B.54 C.33 D.36[答案] D[解析] 解法一:过F 作BD 的平行线交AC 于M ,则∠MGF 即为所求.设正方体棱长为1,MF =24,GF =62,∴sin ∠MGF =36. 解法二:分别以AB 、AD 、AA 1为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,则易知平面ACC 1A 1的一个法向量为n =(-1,1,0),∵F (12,0,0),G (1,1,12),∴FG →=⎝⎛⎭⎫12,1,12, 设直线FG 与平面A 1ACC 1所成角θ,则sin θ=|cos 〈n ,FG →〉|=|n ·FG →||n |·|FG →|=122·62=36.7.从点P 引三条射线P A 、PB 、PC ,每两条的夹角都是60°,则二面角B —P A —C 的余弦值是( ) A.12 B.13 C.33 D.32[答案] B[解析] 在射线P A 上取一点O ,分别在面P AB ,P AC 内作OE ⊥P A ,OF ⊥P A 交PB ,PB 于EF ,连接E 、F ,则∠EOF 即为所求二面角的平面角.在△EOF 中可求得cos ∠EOF =13.8.在边长为a 的正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B —AD —C 后,BC =12a ,这时二面角B —AD —C 的大小为( ) A .30° B .45° C .60° D .90°[答案] C 二、填空题9.如下图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,点D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.[答案]64[解析] 解法一:取AC 、A 1C 1的中点M 、M 1,连结MM 1、BM .过D 作DN ∥BM ,则容易证明DN ⊥平面AA 1C 1C .连结AN ,则∠DAN 就是AD 与平面AA 1C 1C 所成的角. 在Rt △DAN 中,sin ∠DAN =ND AD =322=64.解法二:取AC 、A 1C 1中点O 、E ,则OB ⊥AC ,OE ⊥平面ABC ,以O 为原点OA 、OB 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系,在正三角形ABC 中,BM =32AB =32,∴A ⎝⎛⎭⎫12,0,0,B ⎝⎛⎭⎫0,32,0,D ⎝⎛⎭⎫0,32,1, ∴AD →=⎝⎛⎭⎫-12,32,1,又平面AA 1C 1C 的法向量为e =(0,1,0),设直线AD 与平面AA 1C 1C 所成角为θ,则sin θ=|cos 〈AD →,e 〉|=|AD →·e ||AD →|·|e |=64.解法三:设BA →=a ,BC →=b ,BD →=c ,由条件知a ·b =12,a ·c =0,b ·c =0,又AD →=BD →-BC →=c -b ,平面AA 1C 1C 的法向量BM →=12(a +b ).设直线BD 与平面AA 1C 1C 成角为θ,则sin θ=|cos 〈AD →,BM →〉|=|AD →·BM →||AD →|·|BM →|,∵AD →·BM →=(c -b )·12(a +b )=12a ·c -12a ·b +12b ·c -12|b |2=-34.|AD →|2=(c -b )2=|c |2+|b |2-2b ·c =2,∴|AD →|=2,|BM →|2=14(a +b )2=14(|a |2+|b |2+2a ·b )=34,∴|BM →|=32,∴sin θ=64.10.在正方体ABCD -A 1B 1C 1D 1中,则A 1B 与平面A 1B 1CD 所成角的大小为________. [答案] 30°[解析] 解法一:连结BC 1,设与B 1C 交于O 点,连结A 1O . ∵BC 1⊥B 1C ,A 1B 1⊥BC 1,A 1B 1∩B 1C =B 1.∴BC 1⊥平面A 1B 1C ,∴A 1B 在平面A 1B 1CD 内的射影为A 1O .∴∠OA 1B 就是A 1B 与平面A 1B 1CD 所成的角, 设正方体的棱长为1.在Rt △A 1OB 中,A 1B =2,BO =22, ∴sin ∠OA 1B =BO A 1B =222=12.∴∠OA 1B =30°.即A 1B 与平面A 1B 1CD 所成的角为30°.解法二:以D 为原点,DA ,DC ,DD1分别x ,y ,z 轴,建立如图所示的空间直角坐标系,设正方体的棱长为1,则A 1(1,0,1),C (0,1,0).∴DA 1→=(1,0,1),DC →=(0,1,0).设平面A 1B 1CD 的一个法向量为n =(x ,y ,z )则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DC →=0⇒⎩⎪⎨⎪⎧x +z =0y =0令z =-1得x =1.∴n =(1,0,-1),又B (1,1,0),∴A 1B →=(0,1,-1),cos 〈n ,A 1B →〉=A 1B →·n |A 1B →||n |=12·2=12.∴〈n ,A 1B →〉=60°,所以A 1B 与平面A 1B 1CD 所成的角为30°.11.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,则SC 与平面ABCD 所成的角的大小为________.[答案] π2-arccos 33[解析] AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1.|AS →|=1,|CS →|=3,∴cos φ=AS →·CS →|AS →|·|CS →|=33.∴φ=arccos 33.从而CS 与平面ABCD 所成的角为π2-arccos 33.三、解答题12.在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB =3,BC =1,P A =2,E 为PD 的中点.(1)求直线AC 与PB 所成角的余弦值; (2)在侧面P AB 内找一点N ,使NE ⊥平面P AC . [解析] (1)建立如图所示的空间直角坐标系,则A (0,0,0)、B (3,0,0)、C (3,1,0)、D (0,1,0)、P (0,0,2),E (0,12,1),∴AC →=(3,1,0),PB →=(3,0,-2)设AC →与PB →的夹角为θ,则cos θ=AC →·PB →|AC →|·|PB →|=327=3714,∴AC 与PB 所成角的余弦值为3714.(2)由于N 点在侧面P AB 内,故可设N (x,0,z ),则NE →=(-x ,12,1-z ),由NE ⊥平面P AC可得,⎩⎪⎨⎪⎧NE →·AP →=0,NE →·AC →=0.即⎩⎨⎧(-x ,12,1-z )·(0,0,2)=0,(-x ,12,1-z )·(3,1,0)=0.化简得⎩⎪⎨⎪⎧z -1=0-3x +12=0.∴⎩⎪⎨⎪⎧x =36z =1,即N 点的坐标为(36,0,1). 13.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱D 1C 1、B 1C 1的中点,求平面EFC 与底面ABCD 所成二面角的正切值.[解析] 以D 为原点,{DA →,DC →,DD 1→}为单位正交基底建立空间直角坐标系如图,则C (0,1,0),E (0,12,1),F (12,1,1).设平面CEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CE →=0n ·CF →=0,∵CE →=⎝⎛⎭⎫0,-12,12,CF →=⎝⎛⎭⎫12,0,1, ∴⎩⎨⎧-12y +12z =012x +z =0,∴⎩⎪⎨⎪⎧y =z x =-2z ,令z =1,则n =(-2,1,1).显然平面ABCD 的法向量e =(0,0,1),则cos 〈n ,e 〉=n ·e |n |·|e |=66. 设二面角为α,则cos α=66,∴tan α= 5. 14.如下图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论; (3)求DB 与平面DEF 所成角的大小.[解析] 以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系(如图),设AD =a ,则D (0,0,0)、A (a,0,0)、B (a ,a,0)、C (0,a,0)、E (a ,a 2,0)、F (a 2,a 2,a2)、P (0,0,a ).(1)EF →·DC →=(-a 2,0,a 2)·(0,a,0)=0,∴EF ⊥DC .(2)设G (x,0,z ),则G ∈平面P AD .FG →=(x -a 2,-a 2,z -a 2),FG →·CB →=(x -a 2,-a 2,z -a 2)·(a,0,0)=a (x -a 2)=0,∴x =a 2;FG →·CP →=(x -a 2,-a 2,z -a 2)·(0,-a ,a )=a 22+a (z -a 2)=0,∴z =0.∴G 点坐标为(a2,0,0),即G 点为AD 的中点.(3)设平面DEF 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·DF →=0n ·DE →=0得,⎩⎨⎧(x ,y ,z )·(a 2,a 2,a2)=0,(x ,y ,z )·(a ,a 2,0)=0.即⎩⎨⎧a2(x +y +z )=0,ax +a2y =0.取x =1,则y =-2,z =1,∴n =(1,-2,1).cos<BD →,n >=BD →·n |BD →||n |=a 2a ·6=36,∴DB 与平面DEF 所成角大小为π2-arccos 36.15.如图5所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.[解析] 解法一:设正方体的棱长为1,如下图所示,以AB →,AD →,AA 1→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E (0,1,12),A (0,0,0),D (0,1,0),所以BE →=(-1,1,12),AD →=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中,因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量,设直线BE 与平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.即直线BE 与平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1→=(-1,0,1), BE →=(-1,1,12).设n =(x ,y ,z )是平面A 1BE 得一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1)(0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0),而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在一点F (C 1D 1的中点),使B 1F ∥平面A 1BE . 解法二:(1)如图(a)所示,取AA 1的中点M ,连结EM ,BM . 因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD . 又在正方体ABCD -A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 直线BE 与平面ABB 1A 1所成的角.设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23.即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连结EG ,BG ,CD 1,FG .因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1为平行四边形,因此D 1C ∥A 1B . 又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B . 这说明A 1,B ,G ,E 共面.所以BG ⊂平面A 1BE .因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B ,因此四边形B 1BGF 为平行四边形,所以B 1F ∥BG . 而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .点评 本题考查了直线与平面所成的角,直线与平面平行的性质与判定.综合考查了学生空间想象能力、探究能力和运算能力.。

【人教A版】高中数学选修2-1:立体几何中的向量方法

【人教A版】高中数学选修2-1:立体几何中的向量方法
立体几何中的向量方法
方向向量与法向量
为了用向量来研究空间的线面位置关系,首先我 们要用向量来表示直线和平面的“方向”。那么 如何用向量来刻画直线和平面的“方向”呢?
1、直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定.
l
e
直线l上的向量e 以及与e 共线
X
EG
DCFY来自B例3 四棱锥P-ABCD中,底面ABCD是正 方形,PD⊥底面ABCD,PD=DC, E是PC的 中点, 求证:PA//平面EDB.
Z
证法1 立体几何法
P
E
D
C
Y
A
G
B X
证法2:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1 证明:连结AC,AC交BD于点G,连结EG
依题意得A(1, 0, 0), P(0, 0,1),
的向量叫做直线l的方向向量。
eB
A
2.平面的法向量:如果表示向量n 的有向线段所在
直线垂直于平面 ,则称这个向量垂直于平
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
l
注意:法向量是否可为零向量?
1)、平面的法向量为非零向量
n
平面的法向量是否只有一个?
2)、一个平面有无数多个法向量,
E(0, 1 , 1 ) 22
G( 1 ,1,0) 22
PA (1, 0, 1), EG (1 , 0, 1)
Z
P
22
所以PA 2EG,即PA // EG
E
而EG 平面EDB,
且PA 平面EDB
D
C Y
所以,PA// 平面EDB A

选修(2-1)3.2立体几何中的向量方法

选修(2-1)3.2立体几何中的向量方法

时间:两课时山东省桓台第一中学课题:选修(2-1)3.2立体几何中的向量方法三维目标:1、知识与技能(1)在学习了方向向量的基础上理解平面的法向量的概念;(2)能由直线的方向向量和平面的法向量的关系及向量的运算来判断或证明直线、平面的位置关系;(3)理解运用直线的方向向量、平面的法向量及向量的运算来解决关于直线、平面的夹角及距离的问题的方法(主要是关于角的问题);(4)能初步利用向量知识解决相关的实际问题及综合问题。

2、过程与方法(1)在初步运用向量解决相关问题的基础上,引领学生对向量进行系统的运用,从而全面掌握立体几何的向量方法;(2)通过探究立体几何中的向量方法,并进行针对性地运用,体会向量这个重要的数学工具的强大和广泛的作用,从而为进一步解决更加广泛的问题打好基础;(3)通过向量方法的学习和应用,进一步认识重要的数学思想方法(如:数形结合、转化思想、类比思想等等)。

3、情态与价值观(1) 通过对立体几何中的向量方法的探究和运用,进一步培养学生自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神;(2)通过培养学生数形结合、等价转化等数学思想方法,渗透更广泛地育人思想,使学生进一步认识学习的本质,有利于形成正确的人生观和价值观;(3)通过各种形象而具体的问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

体验在学习中获得成功的成就感,为远大的志向而不懈奋斗。

教学重点:立体几何中的向量方法教学难点:立体几何中的向量方法的灵活准确及恰当运用。

教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:科学导入:前面我们已经学习了空间向量的基本知识,并利用空间向量初步解决了一些立体几运算的强大作用。

这一节,我们将全面地探究向量在立体几何中的运用,较系统地总结出立体几何的向量方法。

人教版高中数学选修2-1学案:第3章 空间向量与立体几何 §3.2 立体几何中的向量方法

人教版高中数学选修2-1学案:第3章  空间向量与立体几何   §3.2 立体几何中的向量方法

§3.2 立体几何中的向量方法知识点一用向量方法判定线面位置关系(1)设a、b分别是l1、l2的方向向量,判断l1、l2的位置关系:①a=(2,3,-1),b=(-6,-9,3).②a=(5,0,2),b=(0,4,0).(2)设u、v分别是平面α、β的法向量,判断α、β的位置关系:①u=(1,-1,2),v=(3,2,12 -).②u=(0,3,0),v=(0,-5,0).(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α的位置关系.①u=(2,2,-1),a=(-3,4,2).②u=(0,2,-3),a=(0,-8,12).解(1)①∵a=(2,3,-1),b=(-6,-9,3),∴a=-13b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l1⊥l2.(2)①∵u=(1,-1,2),v=(3,2,12 -),∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.②∵u=(0,3,0),v=(0,-5,0),∴u=-35v,∴u∥v,∴α∥β.(3)①∵u=(2,2,-1),a=(-3,4,2),∴u·a=-6+8-2=0,∴u⊥a,∴l⊂α或l∥α.②∵u=(0,2,-3),a=(0,-8,12),∴u=-14a,∴u∥a,∴l⊥α.知识点二利用向量方法证明平行问题如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明方法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则可求得M (0,1,12),N (12,1,1), D(0,0,0),A 1(1,0,1),B(1,1,0), 于是MN =(12,0,12), 设平面A 1BD 的法向量是 n=(x ,y ,z ). n =(x ,y ,z).则n ·DB =0,得0,0,x z x y +=⎧⎨+=⎩取x =1,得y =-1,z =-1.∴n =(1,-1,-1).又 MN ·n = (12,0,12)·(1,-1,-1)=0, 方法二 ∵MN = 111111122C N C M C B C C -=-111111()22D A D D DA =-=∴MN ∥1DA ,又∵MN ⊄平面A 1BD.∴MN ∥平面A 1BD.知识点三 利用向量方法证明垂直问题在正棱锥P —ABC 中,三条侧棱两两互相垂直,G 是△PAB 的重心,E 、F分别为BC 、PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是PG 与BC 的公垂线段. 证明 (1)方法一如图所示,以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.令PA =PB =PC =3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0). 于是PA =(3,0,0),FG =(3,0,0),故 PA =3FG ,∴PA ∥FG .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又FG ⊂平面EFG ,∴平面EFG ⊥平面PBC. 方法二 同方法一,建立空间直角坐标系,则 E(0,2,1)、F(0,1,0)、G(1,1,0).EF =(0,-1,-1),EG =(0,-1,-1),设平面EFG 的法向量是n =(x ,y ,z), 则有n ⊥EF ,n ⊥PA ,∴0,0,y z x y z +=⎧⎨--=⎩令y =1,得z =-1,x =0,即n =(0,1,-1).而显然PA =(3,0,0)是平面PBC 的一个法向量.这样n ·PA = 0,∴n ⊥PA即平面PBC 的法向量与平面EFG 的法向量互相垂直,∴平面EFG ⊥平面PBC. (2)∵EG =(1, -1, -1),PG =(1,1,0),BC =(0, -3,3),∴EG ·PG =1-1= 0,EG ·BC =3-3 = 0,∴EG ⊥PG ,EG ⊥BC , ∴EG 是PG 与BC 的公垂线段.知识点四 利用向量方法求角四棱锥P —ABCD 中,PD ⊥平面ABCD ,PA 与平面ABCD 所成的角为60°,在四边形ABCD 中,∠D =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线PA 与BC 所成角的余弦值.解 (1)如图所示,以D 为原点,射线DA ,DC ,DP 分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D —xyz ,∵∠D =∠DAB =90°,AB =4,CD =1,AD =2, ∴A(2,0,0),C(0,1,0),B(2,4,0).由PD ⊥面ABCD 得∠PAD 为PA 与平面ABCD 所成的角. ∴∠PAD =60°.在Rt △PAD 中,由AD =2,得PD =23. ∴P(0,0,23). (2)∵PA =(2,0,-23), BC =(-2, -3,0)∴cos 〈PA ,BC 〉=1313PA BC PA BC⋅=-∴PA与BC所成角的余弦值为1313.正方体ABEF-DCE′F′中,M、N分别为AC、BF的中点(如图所示),求平面MNA与平面MNB所成二面角的余弦值.解取MN的中点G,连结BG,设正方体棱长为1.方法一∵△AMN,△BMN为等腰三角形,∴AG⊥MN,BG⊥MN.∴∠AGB为二面角的平面角或其补角.∵AG=BG=64,,AB AG GB=+,设〈AG,GB〉=θ,AB2=AG 2+2AG·GB+GB2,∴1=(64)2+2×64×64cosθ+(64)2.∴cosθ=13,故所求二面角的余弦值为13.方法二以B为坐标原点,BA,BE,BC所在的直线分别为x轴、y轴、z轴建立空间直角坐标系B-xyz则M(12,0,12),N (12,12,0),中点G(12,14,14),A(1,0,0),B(0,0,0),由方法一知∠AGB为二面角的平面角或其补角.∴GA=(12,-14,-14),GB=(12,-14,-14),∴ cos<GA, GB>=GA GBGA GB⋅=11833388-=-⨯,故所求二面角的余弦值为13.方法三 建立如方法二的坐标系,∴110,0,AM n AN n ⎧⋅=⎪⎨⋅=⎪⎩ 即110,22110,22x z x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩取n 1=(1,1,1).同理可求得平面BMN 的法向量n 2=(1,-1,-1). ∴cos 〈n 1,n 2〉=1212n n n n ⋅1333==-⨯,故所求二面角的余弦值为13知识点五 用向量方法求空间的距离已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.解如图所示,以C 为原点,CB 、CD 、CG 所在直线分别为x 、y 、z 轴建立空间直角坐标系C -xyz.由题意知C(0,0,0),A(4,4,0), B(4,0,0),D(0,4,0),E(4,2,0), F(2,4,0),G(0,0,2).BE =(0,2,0),BF =(-2,4,0),设向量BM ⊥平面GEF ,垂足为M ,则M 、G 、E 、F 四点共面,故存在实数x ,y ,z ,使BM = x BE + y BF + z BG ,即BM = x (0,2,0)+y (-2,4,0)+z (-4,0,2) =(-2y -4z ,2x+4y ,2z ).由BM ⊥平面GEF ,得BM ⊥GE ,BM ⊥EF ,于是BM ·GE =0,BM ·EF =0, 即(24,24,2)(4,2,2)0,(24,24,2)(2,2,0)0,y x x y z y z x y z --+⋅-=⎧⎨--+⋅-=⎩即50,320,1,x zx y zx y z-=⎧⎪+++⎨⎪++=⎩,解得15,117,113,11xyz⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴BM=(-2y-4z,2x+4y,2z)=226,,111111⎛⎫⎪⎭⎝∴|BM|=222226()()()111111++21111=即点B到平面GEF的距离为21111.考题赏析(安徽高考)如图所示,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=4π,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求异面直线AB与MD所成角的大小;(2)求点B到平面OCD的距离.解作AP⊥CD于点P.如图,分别以AB、AP、AO所在直线为x、y、z轴建立平面直角坐标系.A(0,0,0),B(1,0,0),P (0,22,0),D (-22,22,0),O(0,0,2),M(0,0,1).(1)设AB与MD所成角为θ,∵AB=(1,0,0),MD=(-22,22,-1),∴cosθ =12AB MDAG MD⋅=⋅.∴θ=3π.∴AB与MD所成角的大小为3π.(2)∵OP=(0,22,2-),OD=(-22,22,2-),∴设平面OCD的法向量为n = ( x, y , z ),则n·OP=0,n·OD= 0.得220,22220,22y zx y z⎧-=⎪⎪⎨⎪-+-=⎪⎩取z=2,解得n = (0,4,2).设点B到平面OCD的距离为d,则d为OB在向量n上的投影的绝对值.∵OB=(1,0,-2),∴d=OB nn⋅23=,∴点B到平面OCD的距离为23,1.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是( ) A.(33,33,-33) B.(33,-33,33)C.(-33,33,33) D.(-33,-33,-33)答案 DAB=(-1,1,0),是平面OAC的一个法向量.AC=(-1,0,1),BC=(0,-1,1)设平面ABC的一个法向量为n=(x,y,z)∴0,0,x yx z-+=⎧⎨-+=⎩令x=1,则y=1,z=1 ∴n=(1,1,1)单位法向量为:nn±=± (33,33,33).2.已知正方体ABCD—A1B1C1D1,E、F分别是正方形A1B1C1D1和ADD1A1的中心,则EF和CD所成的角是( )A.60°B.45°C.30°D.90°答案 B3.设l1的方向向量a=(1,2,-2),l2的方向向量b=(-2,3,m),若l1⊥l2,则m=( )A.1 B.2 C.12D.3答案 B解析因l1⊥l2,所以a·b=0,则有1×(-2)+2×3+(-2)×m=0,∴2m=6-2=4,即m=2.4.若两个不同平面α,β的法向量分别为u=(1,2,-1),v=(-3,-6,3),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确答案 A解析因v=-3u,∴v∥u.故α∥β.5.已知a、b是异面直线,A、B∈a,C、D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的角是( )A.30°B.45°C.60°D.90°答案 C解析设〈AB,CD〉=θ,AB·CD=(AC+CD+DB·CD= |CD|2= 1,cosθ=12AB CDAB CD⋅=,所以θ=60°6.若异面直线l1、l2的方向向量分别是a=(0,-2,-1),b=(2,0,4),则异面直线l1与l2的夹角的余弦值等于( )A.25-B.25C.-255D.55答案 B解析设异面直线l1与l2的夹角为θ,则cosθ=a ba b⋅⋅(1)44255416-⨯==⨯⋅+7.已知向量n=(6,3,4)和直线l垂直,点A(2,0,2)在直线l上,则点P(-4,0,2)到直线l 的距离为________.答案366161, 解析PA =(6,0,0),因为点A 在直线l 上, n 与l 垂直,所以点P 到直线l 的距离为2223636616161634PA n⋅==++ 8.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________.答案3π或23π,解析 设n 1=(1,0,-1),n 2=(0,-1,1) 则cos 〈n 1,n 2〉=100(1)(1)11222⨯+⨯-+-⨯=-⋅〈n 1,n 2〉=23π.因平面α与平面β所成的角与〈n 1,n 2〉相等或互补,所以α与β所成的角为3π或23π.9.已知四面体顶点A(2,3,1)、B(4,1,-2)、C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC 的距离为________.答案 11解析 设平面ABC 的一个法向量为n =(x,y,z )则0,0,n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩ ()()x,y,z (2,2,3)0,x,y,z (4,0,6)0,⋅--=⎧⎪⎨⋅=⎪⎩ 2230,460,x y z x z --=⎧⎨+=⎩2,2,3y x z x =⎧⎪⇒⎨=-⎪⎩令x=1, 则n = (1,2, 23-),AD =(-7,-7,7)故所求距离为14714377311374149AD nn---⋅==⨯=++,10.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥平面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于F.(1)证明:PA ∥平面BDE ; (2)证明:PB ⊥平面DEF.证明 (1)如图建立空间直角坐标系,设DC =a ,AC ∩BD =G ,连结EG ,则A(a,0,0),P(0,0,a),C(0,a,0),E (0,2a ,2a ),G (2a ,2a,0). 于是PA =(a ,0, -a ),EG =(2a ,0,2a-),∴PA = 2EG ,∴PA ∥EG .又EG ⊂平面DEB.PA ⊄平面DEB.∴PA ∥平面DEB.(2)由B(a,a,0),得PB =(a, a, -a), 又DE =(0, 2a ,2a),∵PB ·DE =22a 20,2a -= ∴PB ⊥DE.又EF ⊥PB ,EF ∩DE=E ,∴PB ⊥平面EFD.11.如图所示,已知点P 在正方体ABCD —A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小. 解如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D —xyz. 则DA =(1,0,0),'CC = (0,0,1).连结BD,B ′D ′. 在平面BB ′D ′D 中,延长DP 交B ′D ′于H. 设DH = (m,m,1) (m>0),由已知〈DH ,DA 〉= 60°, 由DA ·DH = |DA ||DH |cos 〈DH ,DA 〉,可得2m =221m + 解得m =22,所以DH =(22,22,1), (1) 因为cos 〈DH ,'CC 〉= 220011222212⨯+⨯+⨯=⨯ (2) 所以〈DH ,'CC 〉= 45°, 即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC = (0,1,0).因为cos 〈DH ,DC 〉= 220011222212⨯+⨯+⨯=⨯ 所以〈DH ,DC 〉= 60°,可得DP 与平面AA ′D ′D 所成的角为30°.12. 如图,四边形ABCD 是菱形,PA ⊥平面ABCD ,PA=AD=2,∠BAD=60°.平面PBD ⊥平面PAC ,(1)求点A 到平面PBD 的距离;(2)求异面直线AB 与PC 的距离.(1)解 以AC 、BD 的交点为坐标原点,以AC 、BD 所在直线为x 轴、y 轴建立如图所示的空间直角坐标系,则A (3,0,0),B (0,1,0),C (3-,0,0),D (0, -1,0),P (3,0,2).设平面PBD 的一个法向量为n 1=(1,y 1,z 1).由n 1⊥OB , n 1⊥OP ,可得n 1=(1,0,32-).(1)OA =(3,0,0),点A 到平面PBD 的距离,11OA n d n ⋅=2217=, 13.如图所示,直三棱柱ABC —A 1B 1C 1中,底面是以∠ABC 为直角的等腰直角三角形,AC = 2a ,BB 1 = 3a ,D 为A 1C 1的中点,在线段AA 1上是否存在点F ,使CF ⊥平面B 1DF ?若存在,求出|AF |;若不存在,请说明理由.解 以B 为坐标原点,建立如图所示的空间直角坐标系B-xyz.假设存在点F ,使CF ⊥平面B 1DF ,并设AF =λ1AA =λ(0,0,3a )=(0,0,3λa )(0<λ<1), ∵D 为A 1C 1的中点,∴D(22a ,22a ,3a) 1B D = (22a ,22a ,3a)-(0,0,3a)= (22a ,22a , 0), 1B F 1B B BA AF =++=(0,0,3)(2,0,0)(0,0,3)a a a λ-++ ∵CF ⊥平面B 1DF ,∴CF ⊥1B D , CF ⊥1B F ,110,0,CF B D CF B F ⎧⋅=⎪⎨⋅=⎪⎩ 即2300,9920,a λλλ⨯=⎧⎨-+=⎩ 解得λ=23或λ=13 ∴存在点F 使CF ⊥面B 1DF ,且 当λ=13时,|AF |=13,|1AA | = a 当λ=23,|AF | =23,|1AA | = 2a. 14.如图(1)所示,已知四边形ABCD 是上、下底边长分别为2和6,高为eq \r(3)的等腰梯形.将它沿对称轴OO 1折成直二面角,如图(2).(1)证明:AC ⊥BO 1;(2)求二面角O —AC —O 1的余弦值.(1)证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB. 故以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则相关各点的坐标是A(3,0,0)、B(0,3,0)、C(0,1, 3)、O 1(0,0, 3).AC ·1BO =-3+3·3=0.所以AC ⊥BO 1.(2)解 因为1BO ·OC =3-+ 3·3=0.所以BO 1⊥OC.由(1)AC ⊥BO 1,所以BO 1⊥平面OAC, 1BO 是平面OAC 的一个法向量.设n=(x ,y ,z )是平面O 1AC 的一个法向量,由10,0,n AC n O C ⎧⋅=⎪⎨⋅=⎪⎩330,0,x y z y ⎧-++=⎪⇒⎨=⎪⎩ 取z= 3,得n=(1,0,3).设二面角O-AC-O 1的大小为θ,由n 、1BO 的方向可知θ=〈n,1BO 〉, 所以cos θ= cos 〈n ,1BO 〉=113n BO n BO ⋅= 即二面角O —AC —O 13。

人教A版高中数学选修2-1课件3.2.1立体几何中的向量方法1()

人教A版高中数学选修2-1课件3.2.1立体几何中的向量方法1()
平面 , 的法向量分别为 u, v ,则
(2) l / / ① a u a u 0 ;
u
a
② a∥AC
α
③ a x AB y AD
3、平行关系:
设直线 l,m 的方向向量分别为 a, b ,
平面 , 的法向量分别为 u, v ,则
(3) / / ① u / /v u v.
即( A, B,C ) ( x x0 , y y0 , z z0 ) 0 化简得:A( x x0 ) B( y y0 ) C(z z0 ) 0
练习3:已知AB (2, 2,1), AC (4,5,3),求平面ABC的
单位法向量。
由两个三元一次方程
高中数学课件
灿若寒星整理制作
第三章空间向量与立体几何 3.2立体几何中的向量方法(一)
1、直线的方向向量
如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。
换句话说,直线上的非零向量叫做直线的 方向向量
l
A
P
a
AP ta
直线l的向量式方程 OP OA ta
2、平面的法向量
换句话说,与平面垂直的非零向量叫做平面
的法向量
l
平面α的向量式方程
a
a AP 0

P
A
练习1:如图所示,正方体的棱长为1
(1)直线OA的一个方向向量坐标为___(_1_,0__,0_)___
(2)平面OABC的一个法向量坐标为___(_0_,0__,1_)___ (3)平面AB1C的一个法向量坐标为___(_-_1_,-_1_,_1_) _
1 2

第3章3.2 立体几何中的向量方法(一)平行关系

第3章3.2 立体几何中的向量方法(一)平行关系
【思路分析】 解答本题可先建立空间直角坐标系,写出每 个平面内两个不共线向量的坐标,再利用待定系数法求出平面的 法向量.
第11页
高考调研 ·新课标 ·数学选修2-1
【解析】 ∵AD,AB,AS 是三条两两垂直 的线段,∴以 A 为原点,以A→D,A→B,A→S的方向 为 x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则 A(0,0,0),D(12,0,0),C(1,1,0),S(0, 0,1),A→D=(12,0,0)是平面 SAB 的法向量,
2.用向量方法证明空间中的平行关系
线线 平行
设直线 l1,l2 的方向向量分别是 a,b,则要证明 l1∥l2,只需证 明 a∥b,即 a=kb(k∈R)
①设直线 l 的方向向量是 a,平面 α 的法向量是 u,则要证明
l∥α,只要证明 a⊥u,即 a·u=0
②根据线面平行判定定理在平面内找一个向量与已知直线的 线面平行
高考调研 ·新课标 ·数学选修2-1
【思路分析】 直线的方向向量与平面的法向量的关系和直 线与平面位置关系之间的内在联系是 l∥α⇔a⊥u,l⊥α⇔a∥u.
第22页
高考调研 ·新课标 ·数学选修2-1
【解析】 ①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0,∴u⊥a. ∴直线 l 和平面 α 的位置关系是 l⊂α或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12), ∴u=-14a,∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0), ∴u 和 a 既不共线,也不垂直. ∴l 与 α 斜交.
第2页
高考调研 ·新课标 ·数学选修2-1
要点 3 空间平行关系的向量表示 (1)线线平行. 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2),则 l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R). (2)线面平行. 设直线 l 的方向向量为 a=(a1,b1,c1),平面 α 的法向量为 u =(a2,b2,c2),则 l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.

人教新课标版数学高二选修2-1课件3.2立体几何中的向量方法(一)

人教新课标版数学高二选修2-1课件3.2立体几何中的向量方法(一)

l∥m⇔_a_∥__b_⇔a=kb (k∈R) l∥α⇔a⊥μ⇔_a_·_μ__=0
α∥β⇔μ∥v⇔_μ_=__k_v_(_k_∈__R_)_ l⊥m⇔a⊥b⇔_a_·_b_=__0_
l⊥α⇔a∥μ⇔_a_=__k_μ_(_k∈__R__) α⊥β⇔μ⊥v⇔_μ_·_v_=__0__
答案
知识点二 利用空间向量处理平行问题 利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,
用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向 量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转 化成相应的立体几何问题,从而得出结论.
返回
合作探究
问题1 怎样用向量来表示点、直线、平面在空间中的位置?
答案
问题2 (1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直 线l1∥l2,则向量v1,v2应满足什么关系. 答案 由直线方向向量的定义知若直线l1∥l2,则直线l1,l2的方向向量共 线,即l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).
探究点3 利用空间向量证明平行关系 例3 已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是BB1、DD1的中 点,求证: (1)FC1∥平面ADE;
解析答案
(证2)明平面因AD为E∥C―1→平B1=面(B21,C0,10F).,
设 n2=(x2,y2,z2)是平面 B1C1F 的一个法向量.
立体几何问题
向量 渐渐成为重要工具
(研究的基本对象是点、直线、平面
以及由它们组成的空间图形)
从今天开始,我们将进一步来体会向量这一工具在立体几
何中的应用.
引入2、复习 共线向量定理:

高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析

高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析

绝密★启用前人教版选修2-1 课时3.2立体几何中的向量方法一、选择题1.【题文】已知三条直线l 1,l 2,l 3的一个方向向量分别为a =(4,-1,0),b =(1,4,5),c =(-3,12,-9),则 ( )A .l 1⊥l 2,但l 1与l 3不垂直B .l 1⊥l 3,但l 1与l 2不垂直C .l 2⊥l 3,但l 2与l 1不垂直D .l 1,l 2,l 3两两互相垂直2.【题文】已知直线l 1的方向向量为a =(2,4,x ),直线l 2的方向向量为b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( ) A .-3或1 B .3或-1 C .-3 D .13.【题文】已知(2,2,5)u =-,(6,4,4)v =-,u ,分别是平面α,β的法向量,则平面α,β的位置关系式( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.【题文】在空间直角坐标系中,点B 是()1,2,3A 在yOz 坐标平面内的射影,O 为坐标原点,则OB 等于( )A .14B .13C .23D .115.【题文】长方体1111ABCD A BC D -中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为 ( ) A. 1010B.3010 C. 21510D.310106.【题文】在棱长为的正方体1111ABCD A B C D -中,平面1AB C 与平面11A C D 间的 距离为( )A .63B .33 C .332 D .237.【题文】如图,在四面体OABC 中,G 是底面△ABC 的重心,则OG 等于()GCABOA.OC OB OA ++B.111222OA OB OC ++C.111236OA OB OC ++ D.111333OA OB OC ++8.【题文】在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值 ()A .32 B .37C .23D .73二、填空题9.【题文】如图,在直三棱柱111ABC A B C -中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.10.【题文】已知正四棱锥P ABCD -的侧棱与底面所成角为60°,M 为PA 的中点,连接DM ,则DM 与平面PAC 所成角的大小是________.11.【题文】如图所示,正方体1111ABCD A BC D -的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是______.三、解答题12.【题文】如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上异于A 、B 的点.(1)求证:平面PAC ⊥平面PBC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A --的余弦值.13.【题文】如图,直三棱柱111ABC A B C -中,△ABC 是等边三角形,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)若AB =BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.14.【题文】直四棱柱1111ABCD A BC D -中,底面A B C D为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.人教版选修2-1 课时3.2立体几何中的向量方法参考答案与解析一、选择题 1. 【答案】A【解析】∵a ·b =(4,-1,0)·(1,4,5)=4-4+0=0,a ·c =(4,-1,0)·( -3,12,-9)=-12-12+0=-24≠0.b ·c =(1,4,5)·(-3,12,-9)=-3+48-45=0,∴a ⊥b ,a 与c 不垂直,b ⊥c . ∴l 1⊥l 2,l 2⊥l 3,但l 1不垂直于l 3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 2. 【答案】A【解析】|a |=2222+4+6x =,∴x =±4,又∵a ⊥b ,∴a ·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 3. 【答案】B【解析】由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,又u ,分别是平面α,β的法向量,所以αβ⊥,故选B. 考点:空间向量在解决空间垂直中的应用. 【题型】选择题【难度】较易 4. 【答案】B【解析】因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,22202313∴=++=OB .故选B . 考点:空间中两点间的距离. 【题型】选择题 【难度】较易 5. 【答案】B【解析】建立坐标系如图所示,则A (1, 0, 0),E (0, 2, 1),B (1, 2, 0),C 1(0, 2, 2),则1BC =(-1, 0, 2),AE =(-1,2, 1).cos 〈1BC ,AE 〉=11AE BC AE BC ⋅⋅=3010. 所以异面直线BC 1与AE所成角的余弦值为3010.故选B.考点:异面直线所成角的向量求法. 【题型】选择题 【难度】较易 6.【答案】B【解析】建立如图所示的直角坐标系,设平面11A C D 的法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即()()()(),,11,0,10,,,10,1,10x y x y ⋅-=⎧⎪⎨⋅-=⎪⎩()1,1,1,1,1,x n y =⎧⇒∴=⎨=⎩又(1,0,0)AD =-,∴平面1AB C 与平面11A C D 间的距离()()2221,0,01,1,133111AD n d n⋅-⋅===++,故选B.考点:面与面间的距离的向量求法. 【题型】选择题 【难度】一般 7. 【答案】D【解析】由题意知,()()11=+=+=33OG OA AG OA AC AB OA OC OA OB OA ++-+- =111333OA OB OC ++,故选D. 考点:空间向量的运算. 【题型】选择题 【难度】一般 8. 【答案】B【解析】以C 为坐标原点,CA 所在直线为轴,CB 所在直线为y 轴,1CC 所在直线为轴,建立直角坐标系,设a CB CA ==,则(),0,0A a ,()0,,0B a ,)(2,0,1a A ,)(1,0,0D ,则)(1,2,2a a E ,)(31,3,3a a G ,则)(32,6,6a a GE =,)(1,,0a BD -=, ∵点E 在平面ABD 上的射影是ABD ∆的重心G , ∴⊥GE 平面ABD ,∴0=⋅BD GE ,解得2=a .∴)(32,31,31=GE ,)(2,2,21-=BA , ∵⊥GE 平面ABD ,∴GE 为平面ABD 的一个法向量.32323634||||,cos 111=⋅=⋅⋅>=<BA GE BA GE BA GE , ∴B A 1与平面ABD 所成的角的余弦值为37,故选B.考点:线面角的空间向量求法. 【题型】选择题 【难度】较难二、填空题 9. 【答案】66【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(1, 0, 2),B (0, 1, 0),A (1, 0, 0),C (0, 0, 0),则1A B =(-1, 1,-2),AC =(-1, 0, 0),cos 〈1A B ,AC 〉=11A B AC A B AC⋅⋅=1114++=66. 考点:异面直线夹角的向量求法. 【题型】填空题 【难度】较易 10. 【答案】45°【解析】设底面正方形的边长为a ,由已知可得正四棱锥的高为62a ,建立如图所示的空间直角坐标系,则平面PAC 的一个法向量为n =(1,0,0),D 2,0,02a ⎛⎫- ⎪ ⎪⎝⎭,P 60,0,2a ⎛⎫ ⎪ ⎪⎝⎭,M 260,,44a a ⎛⎫- ⎪ ⎪⎝⎭,则DM =226,,244a a a ⎛⎫- ⎪ ⎪⎝⎭,所以cos 〈DM ,n 〉=n DM n DM⋅⋅=22,所以DM 与平面PAC 所成的角为45°.考点:线面角的空间向量求法. 【题型】填空题 【难度】一般 11. 【答案】平行【解析】分别以C 1B 1、C 1D 1、C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系, 如图所示.∵A 1M =AN =23a ,∴M 2(,,)33a a a ,N 22(,,)33a a a ,∴MN =2(,0,)33a a .又C 1(0,0,0),D 1(0,a,0),∴11C D =(0,a,0),∴MN ·11C D =0,∴MN ⊥11C D .∵11C D 是平面BB 1C 1C 的一个法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .考点:向量法求线面关系. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1)见解析(2)64【解析】(1)证明:由AB 是圆的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .又BC ⊂平面PBC ,所以平面PBC ⊥平面PAC . (2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC =3.又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1),故CB =(3,0,0),CP =(0,1,1),设平面BCP 的法向量为1n =(x 1,y 1,z 1),则110,0,n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩所以111300x y z ⎧⎪⎨⎪⎩=,+=,令y 1=1,则1n =(0,1,-1).AP =(0,0,1),AB =(3,-1,0),设平面ABP 的法向量为2n =(x 2,y 2,z 2),则220,0,n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩所以222300x y z ⎧⎪⎨⎪⎩-=,=,令x 2=1,则2n =(1,3,0).于是cos 〈1n ,2n 〉=322=64.由题意可知二面角C PB A --的余弦值为64. 考点:空间二面角的向量求法. 【题型】解答题 【难度】一般 13.【答案】(1)见解析(2)23535【解析】(1)证明:因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形.连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点,又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B ,因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1,所以A 1B ∥平面ADC 1. (2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC .以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A (3,0, 0),A 1(3,0, 2),C 1(0,-1, 2),则DA =(3,0, 0),1DC =(0,-1,2),设平面AC 1D 的法向量为=(x ,y ,z ),则10,0,n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩即30,20,x y z ⎧=⎪⎨-+=⎪⎩取z =1,则x =0,y =2,∴=(0,2,1), 又1DA =(3,0,2),∴cos 〈1DA ,〉=257⋅=23535,设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈1DA ,〉|=23535, 故A 1D 与平面ADC 1所成角的正弦值为23535.考点:线面角的向量求法. 【题型】解答题 【难度】一般 14.【答案】(1)45︒(2)存在点P 使1//A P 面,EAC 此时1:3:2D P PE = 【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,则1(3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,1,2),A B C D D --- (0,1,2),E h +则11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥平面1D AC ,111,D E AC D E D A ∴⊥⊥,220,1,h h ∴-=∴=即(0,1,3)E .1(0,2,1),(3,1,3)D E AE ∴==-,设平面EAC 的法向量为(,,)m x y z =, 则,,m CA m AE ⎧⊥⎪⎨⊥⎪⎩即230,330,x x y z ⎧=⎪⎨-++=⎪⎩令1z =-,则0,3x y ==,()0,3,1m ∴=-. 又平面1D AC 的一个法向量为()10,2,1D E =,1112cos ,==2m D E m D E m D E⋅∴⋅, ∴二面角1E AC D --大小为45.(2)设111(),D P PE D E D P λλ==-得112(0,,),111D P D E λλλλλλ==+++ 111121(3,1,0)(0,,)(3,,)1111A P A D D P λλλλλλλλ-∴=+==--+=-++++,1//A P 面113,,303(1)0,,112EAC A P m λλλλλ-∴⊥∴-⨯+⨯+-⨯=∴=++ ∴存在点P 使1//A P 面,EAC 此时1:3:2D P PE =考点:空间向量法求二面角. 【题型】解答题 【难度】一般。

选修2-1课件3.2.2_立体几何中的向量方法(全面)

选修2-1课件3.2.2_立体几何中的向量方法(全面)
化为向量问题
D1 C1
B1
依据向量的加法法则, AC1 AB AD AA1
进行向量运算
A1 D A 图1
B
C
AC1 ( AB AD AA1 ) 2
2 2 2
2
AB AD AA1 2( AB AD AB AA1 AD AA1 )
1 1 1 2(cos60 cos60 cos60) 6 所以 | AC1 | 6
空间“距离”问题(1)
一、复习引入
用空间向量解决立体几何问题的“三步曲”。 (1)建立立体图形与空间向量的联系,用空间向
量表示问题中涉及的点、直线、平面,把立体几
何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题; (进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意 义。 (回到图形)
P
n

A
O
这个结论说明,平面外一点到平面的距离为:连结此点与平面 上的任一点(常选择一个特殊点)的向量与该平面的法向量数量积的 绝对值与该法向量模长的商.
练习(用向量法求距离): 1.如图, ABCD 是矩形, PD 平面 ABCD , PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
z
G
C

1 1 n ( , ,1) ,BE (2,0,0) A 3 3 | n BE| 2 11 d . 11 n
E
y
B
2 11 答:点 B 到平面 EFG 的距离为 . 11
空间“距离”问题(2)

2018年高中数学人教A版选修2-1: 3.2 立体几何中的向量方法 (16张)

2018年高中数学人教A版选修2-1: 3.2 立体几何中的向量方法 (16张)
z
AB n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
x
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
10
业文档
二、求异面直线的距离
A a M
n

N Bb
AB n d
n
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
11
业文档
方法指导:①作直线a、b的方向向量a、b,求a、 b的法向量n,即此异面直线a、b的公垂线的方 向向量;②在直线a、b上各取一点A、B,作向
3
业文档
一、求点到平面的距离
如何利用空间向量求点到平面的距离:
如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ 于 O,连结 OA.
P
则 d=| PO |= | PA | cos APO.
z
解:如图,建立空间直角坐标系 C-xyz.
G
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).
EF (2, 2, 0), EG (2, 4, 2),
设平面 EFG 的一个法向量为 n ( x, y, z)x
z
C1
A1
B1
2019年4月29日
C
A
B
xE
y
眼皮蹦跳跳专业文档眼皮蹦跳跳专
13
业文档
例2
. 已 知 直 三 棱 柱 ABC ─A1B1C1 的 侧 棱 AA1 4 , 底 面

2018年高中数学人教A版选修2-1: 3.2 立体几何中的向量方法 (21张)

2018年高中数学人教A版选修2-1: 3.2 立体几何中的向量方法 (21张)
a
l
u
α
l//αa⊥u a·u=0
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
12
业文档
(1)、l//m,l//α,α//β的充要条 件分别是什么?
v
β u
α
α//βu//v u=kv
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
13
业文档
(2)l⊥m,l⊥α,α⊥β的充要条件分别 是什么?
a P
A
AP ta
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
7
业文档
3、过空间不同两点A、B的直线如何用向 量式表示?
PB
A
AP t AB
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
8
业文档
4、设过点O的两条相交直线确定的平面 为α ,如何用向量形式表示平面α 内的 点P的位置?
业文档
问题提出
t
p


1 2

5730
1.立体几何研究的主要问题有共点,
共线,共面,平行,垂直,夹角,距离
等,这些问题都与空间向量有着密切的
内在联系,从而可以用向量方法解决立
体几何问题.
2.立体几何研究的基本对象是点、直
线、平面以及由它们组成的空间图形.为
了用空间向量解决立体几何问题,首先
业文档
2019年4月29日
眼皮蹦跳跳专业文档眼皮蹦跳跳专
5
业文档
探究(一):空间点、线、面的向量表示
1、在空间中,取定点O作为基点,可以
用什么方法表示空间任意一点P与点O的
相对的位置?
P

高中数学选修2-1课时作业2:3.2 立体几何中的向量方法(二)

高中数学选修2-1课时作业2:3.2 立体几何中的向量方法(二)

第2课时空间向量与垂直关系一、基础达标1.若直线l1、l2的方向向量分别为a=(1,2,-2),b=(-2,3,2),则() A.l1∥l2B.l1⊥l2C.l1、l2相交但不垂直D.不能确定[答案] B[解析]∵a·b=1×(-2)+2×3+(-2)×2=0,∴a⊥b,∴l1⊥l2.2.若a=(2,-1,0),b=(3,-4,7),且(λa+b)⊥a,则λ的值是() A.0 B.1 C.-2 D.2[答案] C[解析]λa+b=λ(2,-1,0)+(3,-4,7)=(3+2λ,-4-λ,7).∵(λa+b)⊥a,∴2(3+2λ)+4+λ=0,即λ=-2.3.若平面α,β平行,则下列可以是这两个平面的法向量的是()A .n 1=(1,2,3),n 2=(-3,2,1)B .n 1=(1,2,2),n 2=(-2,2,1)C .n 1=(1,1,1),n 2=(-2,2,1)D .n 1=(1,1,1),n 2=(-2,-2,-2) [答案] D[解析] 两个平面平行时,其法向量也平行,检验知正确选项为D.4.已知直线l 1的方向向量a =(2,4,x ),直线l 2的方向向量b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值是( )A .-3或1B .3或-1C .-3D .1[答案] A [解析] |a |=22+42+x 2=6,∴x =±4, 又∵a ⊥b ,∴a·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3, 当x =-4时,y =1,∴x +y =1或-3.5.已知平面α上的两个向量a =(2,3,1),b =(5,6,4),则平面α的一个法向量为( )A .(1,-1,1)B .(2,-1,1)C .(-2,1,1)D .(-1,1,-1)[答案] C[解析] 显然a 与b 不平行,设平面α的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧a ·n =0,b ·n =0,∴⎩⎪⎨⎪⎧2x +3y +z =0,5x +6y +4z =0.令z =1,得x =-2,y =1, ∴n =(-2,1,1).6.下列命题中:①若u,v分别是平面α,β的法向量,则α⊥β⇔u·v=0;②若u是平面α的法向量且向量a与α共面,则u·a=0;③若两个平面的法向量不垂直,则这两个平面一定不垂直.正确的命题序号是________.[答案]①②③[解析]两平面垂直则它们的法向量垂直,反之亦然.7.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.证明如图,以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系.∵AP=AB=2,BC=AD=22,四边形ABCD是矩形,∴A,B,C,D,P的坐标分别为A(0,0,0),B(2,0,0),C(2,22,0),D(0,22,0),P(0,0,2).又E,F分别是AD,PC的中点,∴E(0,2,0),F(1,2,1).∴PC→=(2,22,-2),BF→=(-1,2,1),EF→=(1,0,1).∴PC→·BF→=-2+4-2=0,PC→·EF→=2+0-2=0.∴PC→⊥BF→,PC→⊥EF→.∴PC⊥BF,PC⊥EF.又BF∩EF=F,∴PC⊥平面BEF.二、能力提升8.已知A (1,0,0)、B (0,1,0)、C (0,0,1),则平面ABC 的一个单位法向量是( )A .(33,33,-33) B .(33,-33,33) C .(-33,33,33)D .(-33,-33,-33)[答案] D[解析] AB→=(-1,1,0),AC →=(-1,0,1).设平面ABC 的一个法向量为n =(x ,y ,z ). ∵⎩⎨⎧AB →·n =0,AC→·n =0,∴⎩⎪⎨⎪⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1), 单位法向量为±n|n |=±(33,33,33).9.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB→=(2,-1,-4),AD→=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP→是平面ABCD 的法向量;④AP →∥BD →. 其中正确的是________(填序号). [答案] ①②③[解析] AP →·AB →=(-1,2,-1)·(2,-1,-4) =-1×2+2×(-1)+(-1)×(-4)=0, ∴AP ⊥AB ,即①正确.AP →·AD →=(-1,2,-1)·(4,2,0) =-1×4+2×2+(-1)×0=0.∴AP ⊥AD ,即②正确.又∵AB ∩AD =A ,∴AP ⊥平面ABCD ,即AP→是平面ABCD 的一个法向量,③正确.④不正确. 10.如图等边三角形ABC 与正方形ABDE 有一个公共边AB ,二面角C -AB -D 的余弦值为33,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于________. [答案] 16[解析] 设AB =2,过点C 作CO ⊥平面ABDE ,OH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C -AB -D 的平面角.∵CH =3,OH =CH ·cos ∠CHO =1,结合等边△ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN =EM =CH =3,AN →=12(AC →+AB →),EM →=12AC →-AE →,AN →·EM →=12(AB →+AC →)·(12AC →-AE →)=12,故EM 、AN 所成角的余弦值为AN →·EM→|AN→|·|EM →|=16.11.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点. (1)求证:P A ∥平面EDB ;(2)求EB 与底面ABCD 所成的角的正切值.(1)证明 如图,建立空间直角坐标系D -xyz ,设DC =a .连接AC ,AC 交BD 于G ,连接EG . 由题意,得A (a ,0,0),P (0,0,a ), E ⎝ ⎛⎭⎪⎫0,a 2,a 2. ∵底面ABCD 是正方形,∴G 是此正方形的中心,故点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,∴P A →=(a ,0,-a ),EG→=⎝ ⎛⎭⎪⎫a 2,0,-a 2, ∴P A →=2EG →,这表明 P A ∥EG .而EG ⊂平面EDB ,且P A ⊄平面EDB , ∴P A ∥平面EDB .(2)解 由题意,得B (a ,a ,0),C (0,a ,0). 取DC 的中点F ⎝ ⎛⎭⎪⎫0,a 2,0,连接EF ,BF .∵FE →=⎝ ⎛⎭⎪⎫0,0,a 2,FB →=⎝ ⎛⎭⎪⎫a ,a 2,0,DC →=(0,a ,0),∴FE→·FB →=0,FE →·DC →=0, ∴FE ⊥FB ,FE ⊥DC .又FB ∩DC =F ,∴EF ⊥底面ABCD ,BF 为BE 在底面ABCD 内的射影, 故∠EBF 为直线EB 与底面ABCD 所成的角.在Rt △EFB 中,|FE→|=a 2,|FB →|=a 2+⎝ ⎛⎭⎪⎫a 22=52a ,∴tan ∠EBF =|FE→||FB →|=a 252a=55,∴EB 与底面ABCD 所成的角的正切值为55.12. 如图所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点.求证:平面DEA ⊥平面ECA .证明 建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2,则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设面CEA 与面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎨⎧n 1·EA →=0,n 1·CE →=0,即⎩⎪⎨⎪⎧3x 1+y 1-2z 1=0,2z 1=0. 解得⎩⎪⎨⎪⎧y 1=-3x 1,z 1=0.⎩⎨⎧n 2·EA→=0,n 2·ED →=0,即⎩⎪⎨⎪⎧3x 2+y 2-2z 2=0,2y 2-z 2=0.解得⎩⎪⎨⎪⎧x 2=3y 2,z 2=2y 2. 不妨取n 1=(1,-3,0),n 2=(3,1,2), 因为n 1·n 2=0,所以两个法向量相互垂直. 所以平面DEA ⊥平面ECA . 三、探究与创新13.已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点. (1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置. 解 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)A 1E →=(-a ,a ,e -a ), BD→=(-a ,-a ,0), A 1E →·BD →=a 2-a 2+(e -a )·0=0, ∴A 1E →⊥BD →,即A 1E ⊥BD .(2)设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ), ∴n 1·DB →=0,n 1·DA 1→=0,n 2·DB →=0,n 2·DE →=0. ∴⎩⎪⎨⎪⎧ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ax 2+ay 2=0,ay 2+ez 2=0.取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,ae ). 由平面A 1BD ⊥平面EBD 得n 1⊥n 2. ∴2-a e =0,即e =a 2.∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。

高中数学选修2-1课时作业3:3.2 立体几何中的向量方法(二)

高中数学选修2-1课时作业3:3.2 立体几何中的向量方法(二)

3.2立体几何中的向量方法(二)——空间向量与垂直关系1.若直线l 的方向向量a =(1,0,2),平面α的法向量为u =(-2,0,-4),则( ).A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交[解析] ∴u =-2a ,∴a ∥u ,∴l ⊥α.[答案] B2.若a =(2,-1,0),b =(3,-4,7),且(λa +b )⊥a ,则λ的值是( ).A .0B .1C .-2D .2[解析] λa +b =λ(2,-1,0)+(3,-4,7)=(3+2λ,-4-λ,7)∵(λa +b )⊥a ∴2(3+2λ)+4+λ=0,即λ=-2.[答案] C3.若平面α、β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( ).A .10B .-10 C.12 D .-12[解析] 因为α⊥β,则它们的法向量也互相垂直,所以a·b =(-1,2,4)·(x ,-1,-2)=0,解得x =-10.[答案] B4.若l 的方向向量为(2,1,m ),平面α的法向量为(1,12,2),且l ⊥α,则m =________. [解析] 由l ⊥α得,21=112=m 2,即m =4. [答案] 45.设A 是空间任一点,n 为空间内任一非零向量,则适合条件AM →·n =0的点M 的轨迹是________.[解析] ∵AM →·n =0,∴AM →⊥n ,或AM →=0,∴M 点在过A 且与n 垂直的平面上.[答案] 过A 且以n 为法向量的平面6.在正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,O 为底面ABCD 的中心,求证:OB 1⊥平面P AC .证明 如下图,建立空间直角坐标系,不妨设正方体棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0).于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),由于OB 1→·AC →=-2+2+0=0及OB 1→·AP →=-2+0+2=0.∴OB 1→⊥AC →,OB 1→⊥AP →,∴OB 1⊥AC ,OB 1⊥AP .又AC ∩AP =A ,∴OB 1⊥平面P AC .7.两平面α、β的法向量分别为u =(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( ).A .-3B .6C .-6D .-12[解析] α⊥β⇒u ·v =0⇒-6+y +z =0,即y +z =6.[答案] B8.在正方体ABCD —A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ).A .ACB .BDC .A 1D D .A 1A[解析] 建立如图所示的空间直角坐标系.设正方体的棱长为1.则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E (12,12,1), ∴CE →=(-12,12,1),AC →=(1,-1,0),BD →=(-1,-1,0),A 1D →=(0,-1,-1), A 1A →=(0,0,-1)∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD [答案] B9.向量a =(-1,2,-4),b =(2,-2,3)是平面α内的两个不共线的向量,直线l 的一个方向向量m =(2,3,1),则l 与α是否垂直?______(填“是”或“否”).[解析] m·a =(2,3,1)·(-1,2,-4)=-2+6-4=0,m ·b =(2,3,1)·(2,-2,3)=4-6+3=1≠0.∴l 与α不垂直.[答案] 否10.已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,1),(2,1,1),点P 的坐标为(x ,0,z ),若P A →⊥AB →,P A →⊥AC →,则点P 的坐标为________.[解析] 因为AB →=(-1,-1,1),AC →=(2,0,1),P A →=(-x ,1,-z ),由P A →·AB →=0,P A →·AC→=0,得⎩⎪⎨⎪⎧x -1-z =0,-2x -z =0,则x =13,z =-23,所以P (13,0,-23). [答案] (13,0,-23) 11.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.证明 法一 如图,建立空间直角坐标系.则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3),∵D 为BC 的中点,∴D 点坐标为(1,1,0),∴BC →=(-2,2,0),AD →=(1,1,0),AA 1→=(0,0,3),∵BC →·AD →=-2+2+0=0,BC →·AA 1→=0+0+0=0,∴BC →⊥AD →,BC →⊥AA 1→,∴BC ⊥AD ,BC ⊥AA 1,又AD ∩AA 1=A ,∴BC ⊥平面ADA 1,而BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1.法二 同法一,得AA 1→=(0,0,3),AD →=(1,1,0),BC →=(-2,2,0),CC 1→=(0,-1,3),平面A 1AD 的法向量n 1=(x 1,y 1,z 1),平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AD →=0,得⎩⎨⎧3z 1=0,x 1+y 1=0. 令y 1=-1得x 1=1,z 1=0,∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1→=0,得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0.令y 2=1,得x 2=1,z 2=33,∴n 2=(1,1,33).∴n 1·n 2=1-1+0=0,∴n 1⊥n 2.∴平面A 1AD ⊥平面BCC 1B 1.12.如图所示,矩形ABCD 的边AB =a ,BC =2,P A ⊥平面ABCD ,P A =2,现有数据:a =32;a =1;a =2;a =3;a =4.若在BC 边上存在点Q ,使PQ ⊥QD ,则a 可以取所给数据中的哪些值?并说明理由.解 建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,2),D (0,2,0).设Q (a ,x ,0)(BQ =x ,0≤x ≤2),于是PQ →=(a ,x ,-2),QD →=(-a ,2-x ,0).由PQ ⊥QD 得PQ →·QD →=-a 2+x (2-x )-2×0=0,即x 2-2x +a 2=0,此方程有解,Δ≥0,∴0<a ≤1.当a =32时,方程的解为x =32或x =12,满足0≤x ≤2. 当a =1时,方程的解为x =1,满足0≤x ≤2.因此满足条件的a 的取值为a =32或a =1.。

高中数学(选修2-1)同步导学案(216)立体几何中的向量方法(理)含答案

高中数学(选修2-1)同步导学案(216)立体几何中的向量方法(理)含答案

1 / 35高中数学(选修2-1)同步导学案3.1空间向量及其运算【基础知识梳理】1.理解空间向量的有关概念:空间向量、向量的模、零向量、单位向量、相反向量、相等向量,共线向量(平行向量)、直线的方向向量、共面向量、向量的夹角、基向量。

2.向量的有关运算:(1)向量的加法:满足三角形法则、平行四边形法则。

满足交换率和结合率。

(2)向量的数乘运算:R ∈λ,λ仍然是一个向量,称为向量的数乘运算。

(3)向量的数量积:已知非零向量b ,a ,则><⋅=∙b ,a c o s |b ||a |b a 叫做b a 与的数量积。

3.有关定理及重要结论:(1)向量共线基本定理:b a ,)0(||λλ=∈∃⇔≠使R b b a ,(2)空间向量基本定理:如果三个向量,,,不共面,那么对空间任一向量p ,存在唯一的有序实数对{x ,y ,z},使得z y x ++=。

不共面的三个向量,, 都叫做基向量,},,{叫做空间的一个基底。

(3)两向量夹角的求法:|b ||a |,cos ⋅>=<,立体几何中有关夹角的问题,一般用此式解决。

(4) 向量垂直的条件:a ⊥b ⇔0b a =∙; (6)2=∙==4.向量的坐标表示:已知两点A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 向量的坐标是: )z z ,y y ,x x (121212---=, 线段AB 的中点M 的坐标是 ⎪⎭⎫ ⎝⎛+++2z z ,2y y ,2x x 212121, A ,B 两点间的距离是 212212212)z z ()y y ()x x (||-+-+-=。

5.若向量)z ,y ,x (),z ,y ,x (222111==,则2 / 35(1) )z z ,y y ,x x (212121+++=+; (2))z z ,y y ,x x (212121---=-; (3) 212121z z y y x x ++=∙; (4))z ,y ,x (111λλλλ=;212121z y x ++== ; (6) ,)(||λλ=∈∃⇔≠使R 212121,,z z y y x x λλλ===⇔;(7)⊥⇔0=∙⇔0z z y y x x 212121=++;(8)|b ||a |,cos ⋅>=<=212121212121212121z y x z y x z z y y x x ++⋅++++【典型例题分析】例1.如图,点A ,B 分别是二面角βα--CD 上的两个半平面上,点AC ⊥CD 于C ,BD ⊥CD 于D 。

高中数学选修2-1课时作业5:3.2 立体几何中的向量方法(二)

高中数学选修2-1课时作业5:3.2 立体几何中的向量方法(二)

3.2立体几何中的向量方法(二)——空间向量与垂直关系1.直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1),则l 与α的位置关系是( )A .l ⊥αB .l ∥αC .l 与α相交但不垂直D .l ∥α或l ⊂α[解析]选D.∵a ·u =-3+4-1=0,∴a ⊥u ,∴l ∥α或l ⊂α.2.若两个不同平面α,β的法向量分别为u =(2,1,-1),v =(3,2,8),则( )A .α∥βB .α⊥βC .α,β相交不垂直D .以上均不正确[解析]选B.∵u ·v =6+2-8=0,∴u ⊥v .故α⊥β.3.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( )A .2B .-4C .4D .-2[解析]选C.因为α∥β,所以它们的法向量必共线,即1-2=2-4=-2k,∴k =4,故选C. 4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .AA 1[解析]选B.建立如图所示的空间直角坐标系,设正方体棱长为1,则CE →=⎝⎛⎭⎫12,-12,1, BD →=(-1,-1,0).∵CE →·BD →=0,∴CE →⊥BD →,从而CE ⊥BD .5.已知直线l 1的方向向量a =(2,4,x ),直线l 2的方向向量b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( )A .-3或1B .3或-1C .-3D .1[解析]选A.|a |=22+42+x 2=6,∴x =±4,又∵a ⊥b ,∴a·b =2×2+4y +2x =0,∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 6.平面α,β的法向量分别为m =(1,2,-2),n =(-2,-4,k ),若α⊥β,则k 等于________.[解析]由α⊥β知,m·n =0.∴-2-8-2k =0,解得k =-5.[答案]-57.已知A (1,0,1),B (0,1,1),C (1,1,0),则平面ABC 的一个法向量为__________.[解析]设平面ABC 的一个法向量n =(x ,y ,z ),由题意可得:AB →=(-1,1,0),BC →=(1,0,-1).由⎩⎪⎨⎪⎧ n ·AB →=0,n ·BC →=0,得⎩⎪⎨⎪⎧-x +y =0,x -z =0.令x =1,得y =z =1.∴n =(1,1,1). [答案](1,1,1)([答案]不唯一)8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.[解析]由于AP →·AB →=-1×2+(-1)×2+(-4)×(-1)=0,AP →·AD →=4×(-1)+2×2+0×(-1)=0,所以①②③正确.[答案]①②③9.如下图,已知P A ⊥矩形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点.(1)指出直线MN 的一个以A 为起点的方向向量,(2)若∠PDA =45°,求证MN →为平面PCD 的一个法向量.解:(1)取PD 的中点E ,连接NE 、AE ,∵N 是PC 的中点,∴NE 12DC .又DC AB , AM =12AB ,∴AM 12CD ,∴NE AM ,∴四边形AMNE 是平行四边形,∴MN ∥AE . ∴AE →为直线MN 的一个以A 为起点的方向向量.(2)在Rt △P AD 中,∠PDA =45°,∴AP =AD ,∴AE ⊥PD ,又MN ∥AE ,∴MN ⊥PD . ∵P A ⊥平面ABCD ,∴P A ⊥CD ,又CD ⊥AD ,∴CD ⊥平面P AD ,∵AE ⊂平面P AD ,∴CD ⊥AE ,又MN ∥AE ,∴CD ⊥MN ,又∵CD ∩PD 于D ,∴MN ⊥平面PCD .∴MN →为平面PCD 的一个法向量.10.已知正方体ABCD -A 1B 1C 1D 1中,求证:(1)AD 1∥平面BDC 1;(2)A 1C ⊥平面BDC 1.证明:以D 为坐标原点,建立如下图所示的空间直角坐标系Dxyz .设正方体的棱长为1,则有D (0,0,0),A (1,0,0),D 1(0,0,1),A 1(1,0,1),C (0,1,0),B (1,1,0),C 1(0,1,1),∴AD 1→=(-1,0,1),A 1C →=(-1,1,-1).设n =(x ,y ,z )为平面BDC 1的法向量,则n ⊥DB →,n ⊥DC 1→.∴⎩⎪⎨⎪⎧ x ,y ,z ·1,1,0=0,x ,y ,z ·0,1,1=0,∴⎩⎪⎨⎪⎧x +y =0,y +z =0. 令x =1,则n =(1,-1,1).(1)n ·AD 1→=(1,-1,1)·(-1,0,1)=0,知n ⊥AD 1→.又AD 1⊄平面BDC 1,∴AD 1∥平面BDC 1.(2)∵n =(1,-1,1),A 1C →=(-1,1,-1),知A 1C →=-n ,即n ∥A 1C →.∴A 1C ⊥平面BDC 1.能力提升1.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1A[解析]选B.建立如图所示的空间直角坐标系.设正方体的棱长为1.则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫12,-12,1,AC →=(-1,1,0),BD →=(-1,-1,0), A 1D →=(-1,0,-1),A 1A →=(0,0,-1).∵CE →·BD →=0,∴CE ⊥BD .2.若A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内三点,设平面α的法向量为a =(x ,y ,z ),则x ∶y ∶z =________.[解析]由已知得,AB →=(1,-3,-74),AC →=(-2,-1,-74), 由于a 是平面α的一个法向量,∴a ·AB →=0,a ·AC →=0,即⎩⎨⎧ x -3y -74z =0-2x -y -74z =0,解得⎩⎨⎧ x =23y z =-43y ,∴x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). [答案]2∶3∶(-4)3.如下图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .证明:取BE 的中点O ,连接OC ,又AB ⊥平面BCE ,∴以O 为原点建立空间直角坐标系Oxyz .如下图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2).设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3,∴n =(0,1,-3),又AB ⊥平面BCE ,OC ⊂平面BCE ∴AB ⊥OC ,∵BE ⊥OC ,AB ∩BE 于点B ,∴OC ⊥平面ABE ,∴平面ABE 的法向量可取为m =(1,0,0).∵n·m =(0,1,-3)·(1,0,0)=0,∴n ⊥m ,∴平面ADE ⊥平面ABE .4.已知四棱锥P -ABCD 的底面是直角梯形,AB ∥DC ,∠DAB =90°,PD ⊥底面ABCD ,且PD =DA =CD =2AB =2,M 点为PC 的中点.(1)求证:BM ∥平面P AD ;(2)在平面P AD 内找一点N ,使MN ⊥平面PBD .解:(1)证明:∵PD ⊥底面ABCD ,CD ∥AB ,CD ⊥AD .∴以D 为坐标原点,建立空间直角坐标系Dxyz (如图所示).由于PD =CD =DA =2AB =2,所以D (0,0,0),A (2,0,0),B (2,1,0),C (0,2,0),P (0,0,2),M (0,1,1), ∴BM →=(-2,0,1),DC →=(0,2,0),∵DC →⊥平面P AD ,∴DC →是平面P AD 的法向量,又∵DC →·BM →=0,∴BM →∥平面P AD .∴BM ∥平面P AD .(2)设N (x,0,z )是平面P AD 内一点,则MN →=(x ,-1,z -1),DP →=(0,0,2),DB →=(2,1,0),若MN ⊥平面PBD ,则⎩⎪⎨⎪⎧ MN →·DP →=0MN →·DB →=0,∴⎩⎪⎨⎪⎧ 2z -1=02x -1=0,即⎩⎪⎨⎪⎧x =12z =1. ∴在平面P AD 内存在点N ⎝⎛⎭⎫12,0,1,使MN ⊥平面PBD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2 立体几何中的向量方法(一)
A 级 基础巩固
一、选择题
1.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1、l 2的方向向量.若l 1∥l 2,则( ) A .x =6,y =15 B .x =3,y =15
2
C .x =3,y =15
D .x =6,y =15
2
2.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3)
D .(3,2,1)
3.若平面α与β的法向量分别是a =(1,0,-2),b =(-1,0,2),则平面α与β的位置关系是 ( ) A.平行
B.垂直
C.相交不垂直
D.无法判断
4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直
D .不能确定
5.若向量a =(1,-2,1),b =(1,0,2),则下列向量可作为向量a ,b 所在平面的一个法向量的是( ) A .(4,-1,2) B .(-4,-1,2) C .(-4,1,2)
D .(4,-1,-2)
二、填空题
6.若平面α的一个法向量为u 1=(-3,y ,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.
7.已知直线l 的方向向量v =( 2,-1,3),且过A (0,y ,3)和B (-1,2,z )两点,则y =________,z =________.
8.已知空间直角坐标系Oxyz 中的点A (1,1,1),平面α过点A 并且与直线OA 垂直,动点P (x ,y ,z )是平面α内的任一点,则点P 的坐标满足的条件为________. 三、解答题
9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .
10.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π
4,P A ⊥底面ABCD ,
P A =2,点M 为P A 的中点,点N 为BC 的中点.AF ⊥CD 于F ,如图建立空间直角坐标系. 求证:MN ∥平面PCD .
B 级 能力提升
1.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点中在平面α内的是( ) A .(1,-1,1) B.⎝
⎛⎭⎫1,3,3
2 C.⎝
⎛⎭⎫1,-3,3
2
D.⎝
⎛⎭⎫-1,3,-32 2.若AB →=λCD →+μCE →
(λ,μ∈R ),则直线AB 与平面CDE 的位置关系是________. 3.如图,四棱柱P -ABCD 中,P A ⊥平面ABCD ,PB 与底面成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =1
2AD =1,问在棱PD 上是否存在一点E ,使CE ∥
平面P AB ?若存在,求出E 点的位置;若
不存在,说明理由.
——★参考答案★——
A级基础巩固
一、选择题
1.[答案]D
[解析]因为l 1∥l 2,所以a ∥b ,所以32=x 4=y 5⇒x =6,y =15
2.
2.[答案]A
[解析]AB →
=(2,4,6)=2(1,2,3). 3.[答案] A
[解析]因为a =(1,0,-2)=-(-1,0,2)=-b , 所以a ∥b ,所以α∥β. 4.[答案]C
[解析]因为(1,2,0)·(2,-1,0)=0,所以两法向量垂直,从而两平面也垂直. 5.[答案]B 二、填空题 6.[答案]-3
[解析]因为α∥β,所以u 1∥u 2.所以-36=y -2=2z .
所以y =1,z =-4.所以y +z =-3. 7.[答案]32 3
2
[解析]因为AB →=(-1,2-y ,z -3),AB →
∥v , 故-12=2-y -1=z -33,故y =32,z =32. 8.[答案] x +y +z =3
[解析]由题意知,OA ⊥α,直线OA 的方向向量OA →=(1,1,1),因为P ∈α,所以OA →⊥AP →,所以(1,1,1)·(x -1,y -1,z -1)=0,所以x +y +z =3. 三、解答题
9.证明:法一:如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫1
2,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=⎝⎛⎭⎫12,0,12,DA 1→=(1,0,1),
DB →
=(1,1,0),
设平面A 1BD 的法向量是n =(x ,y ,z ), 则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.
取x =1,得y =-1,z =-1,所以n =(1,-1,-1). 又MN →·n =⎝⎛⎭⎫12,0,1
2·(1,-1,-1)=0, 所以MN →
⊥n .又MN ⊄平面A 1BD , 所以MN ∥平面A 1BD .
法二:因为MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→

所以MN →∥DA 1→
,而MN ⊄平面A 1BD ,DA 1⊂平面A 1BD , 所以MN ∥平面A 1BD .
10.证明:由题设知:在Rt △AFD 中,AF =FD =22
, A (0,0,0),B (1,0, 0),F ⎝
⎛⎭⎫0,
22,0,D ⎝⎛⎭⎫-22,22,0, P (0,0,2),M (0,0,1),N ⎝
⎛⎭
⎫1-
24,24,0. MN →
=⎝⎛⎭
⎫1-24,24,-1,
PF →=⎝⎛⎭⎫0,22,-2,PD →
=⎝⎛⎭⎫-22,22,-2.
设平面PCD 的一个法向量为n =(x ,y ,z ),
则⎩⎪⎨⎪⎧n ·PF →=0,n ·PD →=0⇒⎩
⎨⎧2
2y -2z =0,-22x +22
y -2z =0,
令z =2,得n =(0,4,2).
因为MN →
·n =⎝⎛⎭⎫1-24,24,-1·(0,4,2)=0,
又MN ⊄平面PCD ,所以MN ∥平面PCD .
B 级 能力提升
1.[答案]B
2.[答案]AB ∥平面CDE 或AB ⊂平面CDE
[解析]因为AB →=λCD →+μCE →(λ,μ∈R ),所以AB →与CD →,CE →
共面. 所以AB ∥平面CDE 或AB ⊂平面CDE .
3.解:分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系, 所以P (0,0,1),C (1,1,0),D (0,2,0),
设E (0,y ,z ),则PE →=(0,y ,z -1),PD →
=(0,2,-1), 因为PE →∥PD →,
所以y (-1)-2(z -1)=0,①
因为AD →
=(0,2,0)是平面P AB 的法向量, 又CE →
=(-1,y -1,z ) 由CE ∥面P AB ,
所以CE →⊥AD →
,所以(-1,y -1,z )·(0,2,0)=0. 所以y =1,代入①得z =1
2,所以E 是PD 的中点,
所以存在E 点为PD 中点时,CE ∥平面P AB .。

相关文档
最新文档