最新高中数学常用公式及结论(立体几何总结)
高二数学立体几何基本知识及定理
1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间点、直线、平面的位置关系(1)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
高中数学公式大全立体几何与空间向量
高中数学公式大全立体几何与空间向量高中数学公式大全:立体几何与空间向量一、立体几何立体几何是数学中研究三维空间中的几何图形及其性质的分支,对于高中生来说,常见的立体几何包括了体积、表面积等方面的内容。
下面是一些常用的立体几何公式:1. 立方体体积公式立方体是一种边长相等的六个正方形围成的立体。
其体积公式为:V = 边长³。
2. 正方体体积公式正方体是一种六个面都是正方形的立体。
其体积公式为:V = 底面积 ×高。
3. 长方体体积公式长方体是一种六个面都是矩形的立体。
其体积公式为:V = 长 ×宽×高。
4. 圆柱体积公式圆柱体是一种底面为圆形的立体。
其体积公式为:V = π × 半径² ×高。
5. 圆锥体积公式圆锥体是一种底面为圆形,顶点和底面中心连线垂直于底面的立体。
其体积公式为:V = 1/3 × π × 半径² ×高。
6. 球体积公式球体是一种所有点到球心的距离都相等的立体。
其体积公式为:V= 4/3 × π × 半径³。
7. 棱柱表面积公式棱柱是一种顶面和底面是平行的多边形,侧面是平行四边形的立体。
其表面积公式为:S = 底面积 + 侧面积。
8. 棱锥表面积公式棱锥是一种底面为多边形,侧面是由底面上的点和顶点连线形成的三角形的立体。
其表面积公式为:S = 底面积 + 侧面积。
二、空间向量空间向量是指具有大小和方向的箭头,可以表示空间中的位移、速度、加速度等物理量。
在高中数学中,空间向量常用于解决线性相关、平面垂直、平面平行等问题。
下面是一些常用的空间向量公式:1. 两点之间的距离公式设空间中的两点为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),则两点之间的距离公式为:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)。
2023年高考数学必背知识手册:立体几何初步(公式、定理、结论图表)
第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x 轴和z 轴的线段在直观图中保持原长度不变;平行于y 轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l三者关系S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:4.正四面体的表面积与体积5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法典例1:下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥ABCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE = 2 2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2= 42 2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥SABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥DABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E,C,D1,F四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.22B.32 C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).典例12:如图,在四棱锥PABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.[证明](1)连接EC,因为AD∥BC,BC=12AD,E为AD中点,所以BC AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO∥AP,因为FO⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,因为FH⊄平面PAD,PD⊂平面PAD,所以FH∥平面PAD.又因为O是BE的中点,H是CD的中点,所以OH∥AD,因为OH⊄平面PAD,AD⊂平面PAD.所以OH∥平面PAD.又FH∩OH=H,所以平面OHF∥平面PAD.又因为GH⊂平面OHF,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥AECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC,又M,N分别为BD,DC中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC,又MN∩EN=N,∴平面EMN∥平面ABC.(2)连接DH,取CH中点G,连接NG,则NG∥DH,由(1)知EN∥平面ABC,所以点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC,∴DH=3,又N为CD中点,∴NG=3 2,又AC=AB=3,BC=2,∴S△ABC=12·|BC|·|AH|=22,∴V EABC=V NABC=13·S△ABC·|NG|=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABCA1B1C1中,底面ABC是边长为2的正三角形,M为棱BC的中点,BB1=3,AB1=10,∠CBB1=60°.(1)求证:AM⊥平面BCC1B1;(2)求斜三棱柱ABCA1B1C1的体积.[解](1)证明:如图,连接B1M,因为底面ABC是边长为2的正三角形,且M为棱BC的中点,所以AM⊥BC,且AM=3,因为BB1=3,∠CBB1=60°,BM=1,所以B1M2=12+32-2×1×3×cos60°=7,所以B1M=7.又因为AB1=10,所以AM2+B1M2=10=AB21,所以AM⊥B1M.又因为B1M∩BC=M,所以AM⊥平面BCC1B1.(2)设斜三棱柱ABCA1B1C1的体积为V,则V=3VB1ABC=3VAB1BC=3×13S△B1BC·|AM|=12×2×3×sin60°×3=9 2 .所以斜三棱柱ABCA1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥PABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,PA,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面PAE⊥平面STRQ;②若AB=1,求三棱锥QBCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE∩AE=E,所以RQ⊥平面PAE.所以平面PAE⊥平面STRQ.②由①可知,PE⊥平面ABCD,又T是PB的中点,∴点T到平面BCQ的距离为12PE=32,易知S△BCQ=12S梯形ABCD=12×12×(1+2)×3=334.故三棱锥QBCT的体积V=13×334×32=38.(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC 的距离均为3,那么P到平面ABC的距离为.2[如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2= 3 2-12= 2.](2)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP⊥CH,OP⊂平面POM,OM⊂平面POM,OP∩OM=O,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°,所以OM=253,CH=OC·MC·sin∠ACBOM=455.所以点C到平面POM的距离为45 5.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCDA1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角,∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中,AC 1=2sin 30°=4.在Rt △ACC 1中,CC 1=AC 21-AC 2=42- 22+22 =22,∴V 长方体=AB ×BC ×CC 1=2×2×22=82.](2)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.①求证:AD ⊥BC ;②求异面直线BC 与MD 所成角的余弦值;③求直线CD 与平面ABD 所成角的正弦值.[解]①证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM.因为△ABC为等边三角形,M为边AB的中点,所以CM⊥AB,CM= 3.又因为平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,而CM⊂平面ABC,故CM⊥平面ABD,所以∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=AC2+AD2=4.在Rt△CMD中,sin∠CDM=CMCD=34.所以,直线CD与平面ABD所成角的正弦值为3 4 .十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥PABCD中,△PAD是等腰直角三角形,且∠APD=90°,∠ABC =90°,AB∥CD,AB=2CD2=8,平面PAD⊥平面ABCD,M是PC的三等分点(靠近C 点处).(1)求证:平面MBD⊥平面PAD;(2)求三棱锥DMAB的体积.[解](1)证明:由题易得BD=AD=42,∴AB2=AD2+BD2,∴BD⊥AD.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面PAD.又∵BD⊂平面MBD,∴平面MBD⊥平面PAD.(2)过点P作PO⊥AD交AD于点O(图略),∵平面PAD⊥平面DAB,平面PAD∩平面DAB =AD,∴PO⊥平面DAB,∴点P到平面DAB的距离为PO=2 2.∴V DMAB=V MDAB=13S△DAB·13PO=13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.。
高中数学立体几何知识点总结
高中数学立体几何知识点总结立体几何是数学中的一个分支,研究与三维空间中的几何图形相关的性质和关系。
高中数学中的立体几何部分主要涉及到体积、表面积、平面截面和立体图形的性质等内容。
下面将对高中数学立体几何的知识点进行总结。
一、体积和表面积的计算方法在立体几何中,体积和表面积是重要的衡量参数。
体积用于表示一个立体图形所占据的空间大小,而表面积则表示该立体图形的外表面积。
1.1 直体的体积和表面积计算方法直体包括长方体、正方体和圆柱体等。
长方体的体积等于底面积乘以高,表面积等于长方体的六个面的面积之和。
正方体的体积等于边长的立方,表面积等于六个面的面积之和。
圆柱体的体积等于底面积乘以高,表面积等于上下底面积之和再加上侧面积。
1.2 斜体的体积和表面积计算方法斜体包括棱柱、棱锥、棱台和四面体等。
棱柱的体积等于底面积乘以高,表面积等于底面积加上侧面积。
棱锥的体积等于底面积乘以高除以3,表面积等于底面积加上底面与顶点相连的面积。
棱台的体积等于上底面积加下底面积再乘以高除以2,表面积等于上底面积加下底面积再加上四个侧面的面积。
四面体的体积等于底面积乘以高除以3,表面积等于四个面的面积之和。
1.3 球体的体积和表面积计算方法球体的体积等于4/3乘以π乘以半径的立方,表面积等于4乘以π乘以半径的平方。
二、平面截面的性质和计算方法在立体几何中,平面截面是指一个平面与一个立体图形相交后所形成的截面。
平面截面的性质和计算方法与不同的立体图形有关。
2.1 长方体的平面截面性质和计算方法长方体的平面截面可以是矩形、正方形或平行四边形。
截面的面积等于截面的宽度乘以长度。
2.2 圆柱体的平面截面性质和计算方法圆柱体的平面截面可以是圆形、椭圆形或矩形。
截面的面积等于截面的形状对应的公式计算得出。
2.3 球体的平面截面性质和计算方法球体的平面截面可以是圆形或椭圆形。
截面的面积等于截面的形状对应的公式计算得出。
三、立体图形的性质除了体积、表面积和平面截面之外,立体几何还研究了立体图形的性质和关系。
高中数学立体几何知识点总结大全
高中数学几何知识点总结一、空间点、直线、平面之间的位置关系 1.平面的基本性质 1如果一条直线上的两点在同一个平面内,那么这条直线在这个平面内2过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面⇒面,使推论3经过两条平行直线,有且只有一个平面3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,b P =αa ⊂,OA O A OB O B ''''∥∥则或.图(1) 图(2)3.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:(2)从是否共面的角度分类:4.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .5.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类AOB AOB ∠=∠'''180AOB AO B ∠+∠'''=︒⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线π(0,]2①按公共点个数分类:②按是否平行分类:③按直线是否在平面内分类:(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线.(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行. ②过直线外一点有且只有一个平面与已知直线垂直. ③过平面外一点有且只有一个平面与已知平面平行. ④过平面外一点有且只有一条直线与已知平面垂直. (2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 二、直线、平面平行的判定及其性质 1.直线与平面平行的判定定理⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行2.直线与平面平行的性质定理3.平面与平面平行的判定定理,b β=⇒b P =4.平面与平面平行的性质定理证明线线平行三、直线、平面垂直的判定及其性质,a b a γβγ==⇒∥1.直线与平面垂直的定义如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直.记作:l ⊥α.图形表示如下:定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语. 2.直线与平面垂直的判定定理⇒判断直线与平面垂直在应用该定理判断一条直线和一个平面垂直时,一定要注意是这条直线和平面内的两条相交直线垂直,3.直线与平面垂直的性质定理b P4.平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作.图形表示如下:5.平面与平面垂直的判定定理6.平面与平面垂直的性质定理αβ⊥7.直线与平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角..,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于;一条直线和平面平行,或在平面内,我们说它们所成的角等于.因此,直线与平面所成的角.........α.的范围是.....8.二面角(1)二面角的定义:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角....这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做这个二面角的平面角.(3)二面角的范围:.1.垂直问题的转化关系=llβα⎪⎪⇒⎬⊂⎪⎪⊥⎭90π[0,]2[0,π]2.常用结论(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线.(3)过空间任一点有且只有一条直线与已知平面垂直.(4)过空间任一点有且只有一个平面与已知直线垂直.(5)两平面垂直的性质定理是把面面垂直转化为线面垂直.(6)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.(7)如果两个平面互相垂直,那么过第一个平面内的一点且垂直于第二个平面的直线在第一个平面内.四、空间向量与立体几何1.空间直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系,如图所示.2.空间一点M 的坐标(1)空间一点M 的坐标可以用有序实数组来表示,记作,其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.(2)建立了空间直角坐标系后,空间中的点M 与有序实数组可建立一一对应的关系. 3.空间两点间的距离公式、中点公式 (1)距离公式①设点,为空间两点,则两点间的距离. ②设点,则点与坐标原点O 之间的距离为.(2)中点公式设点为,的中点,则. 4.共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 牢记两个推论:(1)对空间任意一点O ,点P 在直线AB 上的充要条件是存在实数t ,使或(其中).(2)如果l 为经过已知点A 且平行于已知非零向量的直线,那么对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使,其中向量叫做直线l 的方向向量,该式称为直线方程的向量表示式. 5.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使.牢记推论:空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y ),使;(,,)x y z (),,M x y z (,,)x y z 111(,,)A x y z 222(,,)B x y z ,AB ||AB =(),,P x y z (),,P x yz ||OP =(),,P x y z 1111,),(P x y z 2222,),(P x y z 121212222x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩(1)OP t OA tOB =-+OP xOA yOB =+1x y +=a OP OA t =+a a x y =+p a b AP xAB y AC =+或对空间任意一点O ,有.6.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中,{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.(1)空间任意三个不共面的向量都可构成基底.(2)基底选定后,空间的所有向量均可由基底唯一表示.(3)不能作为基向量.7.空间向量的运算(1)空间向量的加法、减法、数乘及数量积运算都可类比平面向量.(2)空间向量的坐标运算设,则,,,OP OA x AB y AC =++0123123(,,),(,,)a a a b b b ==a b 112233(,,)a b a b a b ±=±±±a b 123(,,)()a a a λλλλλ=∈R a 112233a b a b a b ⋅=++a b,,. 8.直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为.在平面内找出(或求出)两个不共线的向量,根据定义建立方程组,得到,通过赋值,取其中一组解,得到平面的法向量.9.利用空间向量表示空间线面平行、垂直设直线的方向向量分别为,平面的法向量分别为.(1)线线平行:若,则;线面平行:若,则;面面平行:若,则.(2)线线垂直:若,则;线面垂直:若,则;面面垂直:若,则.10.利用空间向量求空间角设直线的方向向量分别为,平面的法向量分别为.(1)直线所成的角为,则,计算方法:; 112233,,()b a b a b a λλλλλ⇔=⇔===∈R a b b a 1122330a b a b a b ⊥⇔⋅=++=a b a b ==a cos ,⋅==a b a b a b l l α⊥l α(,,)x y z =α123123(,,),(,,)a a a b b b ==a b 00⋅=⎧⎨⋅=⎩a b αα,l m ,l m ,αβ,αβ//l m ()λλ⇔=∈R l m l m //l α0⊥⇔⋅=l l αα//αβ()λλ⇔=∈R αβαβl m ⊥0⊥⇔⋅=l m l m l α⊥()λλ⇔=∈R l l αααβ⊥0⊥⇔⋅=αβαβ,l m ,l m ,αβ12,n n ,l m θπ02θ≤≤cos θ⋅=l m l m(2)直线与平面所成的角为,则,计算方法:; (3)平面所成的二面角为,则,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=.如图②③,分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 11.利用空间向量求距离(1)两点间的距离设点,为空间两点,则两点间的距离.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为.l αθπ02θ≤≤11sin θ⋅=l n l n ,αβθ0πθ≤≤,〈〉ABCD 12,n n 1212⋅n n n n 111(,,)A x y z 222(,,)B x y z ,A B ||||(AB AB x ==||||||AB BO ⋅=n n。
新高考数学知识点公式汇总
新高考数学知识点公式汇总数学是一门既有逻辑性又有创造性的学科,在新高考中扮演着重要的角色。
掌握数学知识点和公式是学生取得好成绩的关键之一。
本文将对新高考数学中的一些重要知识点和公式进行系统的汇总,帮助学生更好地备考。
一. 几何1. 直角三角形直角三角形的边长关系:勾股定理a² + b² = c²2. 距离公式两点之间的距离:已知坐标(x₁,y₁)和(x₂,y₂)d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 向量向量的模:已知向量(x,y)|v| = √(x² + y²)4. 平行四边形相邻两边相等:已知边长a和高hA = a × h5. 圆周长公式:已知半径rC = 2πr面积公式:已知半径rA = πr²二. 代数1. 一元二次方程解一元二次方程:已知方程ax² + bx + c = 0 x = (-b ± √(b² - 4ac)) / 2a2. 指数与对数指数的性质:aⁿ × aᵐ = a^(n+m)(aⁿ)ᵐ= a^(n×m)a⁰ = 1aⁿ / aᵐ = a^(n-m)对数的性质:logₐ(xy) = logₐx + logₐylogₐ(x/y) = logₐx - logₐylogₐ(x^m) = mlogₐxlogₐ₁₀x = logₐx / logₐ₁₀3. 等比数列通项公式:已知首项a₁和公比raₙ = a₁ × r^(n-1)求和公式:Sₙ = a₁(1 - rⁿ) / (1 - r)4. 复数复数的运算:加法:(a + bi) + (c + di) = (a + c) + (b + d)i 减法:(a + bi) - (c + di) = (a - c) + (b - d)i乘法:(a + bi) × (c + di) = (ac - bd) + (ad + bc)i除法:(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)i/(c² + d²)三. 概率与统计1. 随机事件随机事件发生的几率:已知样本空间S和随机事件EP(E) = E的可能性数 / S的可能性数2. 概率的计算加法原理:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)乘法原理:P(A ∩ B) = P(A) × P(B|A)3. 排列与组合排列公式:从n个不同的元素中取出m个元素A(n,m) = n! / (n-m)!组合公式:从n个不同的元素中取出m个元素,不考虑顺序C(n,m) = n! / (m!(n-m)!)四. 数列与数集1. 等差数列通项公式:已知首项a₁和公差daₙ = a₁ + (n-1)d求和公式:Sₙ = (a₁ + aₙ) × n / 22. 集合并集:A ∪ B 表示A和B中的元素组成的集合交集:A ∩ B 表示A和B共有的元素组成的集合差集:A - B 表示在A中但不在B中的元素组成的集合以上仅是新高考数学中的一部分重要知识点和公式汇总,希望能对广大学生备考有所帮助。
高中数学必修常用公式及结论
高中数学必修2常用公式及结论第一局部立体几何1.三视图与直观图:⑴画三视图要求:正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等。
⑵斜二测画法画水平放置几何体的直观图的要领。
2.表〔侧〕面积与体积公式:⑶台体:②侧面积:3.四个公理:①如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
②过不在一条直线上的三点,有且仅有一个平面。
③如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
④平行于同一直线的两条直线平行。
4.等角定理:空间中如果两个角的两边对应平行,那么这两个角相等或互补。
5、平行位置关系:⎪⎩⎪⎨⎧⎩⎨⎧异面直线 相交平行共面直线不同在任何一个平面内的两直线称为异面直线。
6、直线与平面平行:定义一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
判定平面外一条直线与此平面内的一直线平行,那么该直线与此平面平行。
性质一条直线与一个平面平行,那么过这条直线的任一平面与此平面的交线与该直线平行。
7、平面与平面平行:定义两个平面没有公共点,那么这两平面平行。
判定假设一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。
性质①如果两个平面平行,那么其中一个面内的任一直线与另一个平面平行。
②如果两个平行平面同时与第三个平面相交,那么它们交线平行。
8、直线与平面垂直:定义如果一条直线与一个平面内的任一直线都垂直,那么这条直线与这个平面垂直。
判定一条直线与一个平面内的两相交直线垂直,那么这条直线与这个平面垂直。
性质①垂直于同一平面的两条直线平行。
②两平行直线中的一条与一个平面垂直,那么另一条也与这个平面垂直。
9、平面与平面垂直:定义两个平行相交,如果它们所成的二面角是直二面角,那么这两个平面垂直。
判定一个平面过另一个平面的垂线,那么这两个平面垂直。
性质两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直。
10.三角形四“心〞〔1〕O为ABC∆的外心〔各边垂直平分线的交点〕.〔2〕O 为ABC ∆的重心〔各边中线的交点〕. 〔3〕O 为ABC ∆的垂心〔各边高的交点〕.〔4〕O 为ABC ∆的内心〔各内角平分线的交点〕.11.位置关系的证明〔主要方法〕:⑴直线与直线平行:①公理4:②线面平行的性质定理;③面面平行的性质定理。
高一必修二第八章立体几何初步公式总结
高一必修二第八章立体几何初步公式总结高一必修二第八章立体几何初步公式总结如下:1.三角形的面积公式:A = 1/2 *底边长*高。
2.三棱柱的体积公式:V =底面积*高。
3.三棱锥的体积公式:V = 1/3 *底面积*高。
4.直方体(长方体)的体积公式:V =长*宽*高。
5.圆柱的体积公式:V =底面积*高。
6.圆锥的体积公式:V = 1/3 *底面积*高。
7.球体的体积公式:V = 4/3 * π *半径³。
8.三角形的角平分线定理:设三角形ABC的内角平分线AD,以角带底的形式在三角形ABC中有以下等式:AB/BD = AC/CD。
9.任意三角形的角平分线公式:设三角形ABC的内角平分线AD,以角带底的形式在三角形ABC中有以下等式:BD/DC = AB/AC。
10.三视图制图:通过俯视图、正视图和左视图的投影来描述一个几何物体的形状和大小。
拓展:1.正方体的体积公式:V =边长³。
2.圆锥的侧面积公式:A = π *半径*母线。
3.球体的表面积公式:A = 4 * π *半径²。
4.锥台的体积公式:V = 1/3 * (上底面积+下底面积+ √(上底面积*下底面积)) *高。
5.二面角余弦定理:设二面角的两个面的法线为a和b,夹角为θ,那么二面角的余弦为cosθ= (a·b) / (|a| |b|)。
6.球冠的体积公式:V = 1/3 * π *高* (3r² + h²)。
7.二面角的计算公式:θ = arccos((a·b) / (|a| |b|))。
8.正多面体的数量关系公式:F + V = E + 2,其中F代表面的数量,V代表顶点的数量,E代表边的数量。
立体几何知识 公式整理表格归纳(详细)
l1 β
l1 ⊥α
⑴ 2, , 线‖面 ⑴ 3, , 面‖面
a‖α a‖b 线‖线 线‖面
a α b α
a α
a‖β
a α b α a∩b = A
a‖α b‖β
面‖面 线‖面 ⑵
a⊥ α
α‖β
a⊥ β
α‖β
线‖面 面‖面
同垂直于一直线 面‖面
二,有关垂直的证明
⑴ 1, , 线⊥线
a⊥ α b α
⑵ 三垂线定理
⊥射影 ⊥斜线 平面内直线
a⊥b
(线⊥面 线⊥线) ⑴ ⑵
2, , 线⊥面
3, , 面⊥面
a α b α a‖b α‖β a ∩ b = A l⊥ α b⊥ α l⊥ β l⊥a a⊥ α l⊥ α l⊥b (线⊥线 线⊥面) a⊥ α α⊥β aβ (线⊥面 面⊥面)
逆定理 ⊥斜线 ⊥射影 (线⊥线 线⊥线) ⑶ ⑷
α⊥β a α
α∩β =l
a⊥l
a⊥ β
三,有关角的计算
⑴定义: (默写) ⑵范围: 0° , 90° ] (
1, , 异面直线 所成角
⑶求法:作平行线,将异面 → 相交; ⑷(C92)棱长为 1 的正方体,M,N 分别为中点,求 AM,CN 成角的余弦; ⑸(C95)直三棱柱中, ∠BCA = 90° ,D1,F1 分别为中点,BC=CA=CC1,求 BD1 与 AF1 所成角的余: [0° , 90°] ⑶求法:作垂线,找射影; ⑷(C95)圆柱的轴截面为正方形,E 为底面圆周上一点,AF⊥DE 于 F; (Ⅰ)证 AF⊥DB (Ⅱ)如圆柱与三棱锥 D—ABE 体积比为 3π ,求直线 DE 与平面 ABCD 所成角; ⑸(C98)斜三棱柱侧面 A1ACC1⊥底面 ABC, ∠ABC = 90° ,BC=2,AC= 2 3 , AA1⊥A1C,AA1=A1C (Ⅰ)求 AA1 与底 ABC 所成角大小; (Ⅱ)求侧面 A1ABB1 与底 ABC 成二面角大小.
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
高中数学知识点总结及公式大全立体几何中的平行与垂直问题
高中数学知识点总结及公式大全立体几何中的平行与垂直问题高中数学知识点总结及公式大全:立体几何中的平行与垂直问题在高中数学中,几何是一个重要的分支,而立体几何更是其中的重要内容之一。
在立体几何中,平行和垂直是我们经常遇到的问题。
本文将对高中数学中的立体几何知识点进行总结,并提供一些常用的公式。
一、平行与垂直的概念在几何中,平行和垂直是两个基本的关系。
平行指的是两条直线永远不会相交的情况,可以想象成两条铁轨永远平行。
垂直则指的是两条直线相互成直角,可以想象成两根彼此垂直的木棍。
二、平行与垂直的判定方法1. 平行关系的判定方法:(1) 同位角相等定理:如果两条直线被一组相交线段所切割,且这些相交线段的对应角相等,则这两条直线是平行的。
(2) 平行线的性质定理:如果一条直线上的两个点分别与另一条直线上的两个点相连,且相连的线段互相平行,则这两条直线是平行的。
(3) 平行线的判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行的。
2. 垂直关系的判定方法:(1) 两条直线相交且相交角为90度,则这两条直线是垂直的。
(2) 垂直线的性质定理:如果一条直线与另一条直线相互垂直,且这两条直线各自还与第三条直线相交,则第三条直线与这两条直线也是垂直的。
(3) 垂直线的判定定理:如果两条直线的斜率互为负倒数,则这两条直线是垂直的。
三、常用公式在立体几何中,我们经常使用一些公式来求解问题。
下面是一些常用的公式:1. 立方体的表面积公式:立方体的表面积等于6倍的边长平方。
2. 立方体的体积公式:立方体的体积等于边长的立方。
3. 正方体的表面积公式:正方体的表面积等于6倍的边长平方。
4. 正方体的体积公式:正方体的体积等于边长的立方。
5. 圆柱体的表面积公式:圆柱体的表面积等于2πr² + 2πrh,其中r为底面半径,h为高。
6. 圆柱体的体积公式:圆柱体的体积等于πr²h,其中r为底面半径,h为高。
高中数学_立体几何全知识点与结论梳理
第一节 空间几何体的结构特征、三视图和直观图
[基础知识]
1.简单几何体 1多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面 侧棱 侧面形状
互相平行且相等
多边形
互相平行且相似
相交于一点,但不
互相平行且相等
延长线交于一点
一定相等
平行四边形
三角形
梯形
①特殊的四棱柱
底面为 平行 侧棱垂直 直平行 底面为 四棱柱 平―行―四――边→形 六面体 ―于―底――面→ 六面体 ―矩―形→
柱体(棱柱和 S 表面积=S 侧+2S
圆柱)
底
锥体(棱锥和 S 表面积=S 侧+S 底
圆锥)
体积 V=Sh V=13Sh
台体(棱台和 圆台)
S 表面积=S 侧+S 上 +S 下
V=1(S 3
上+S
下+
S 上 S 下)h
球
S=4πR2
V=4πR3 3
[常用结论]
几个与球有关的切、接常用结论 (1)正方体的棱长为 a,球的半径为 R, ①若球为正方体的外接球,则 2R= 3a; ②若球为正方体的内切球,则 2R=a; ③若球与正方体的各棱相切,则 2R= 2a. (2)若长方体的同一顶点的三条棱长分别为 a,b,c,外接球的半径为 R,则 2R= a2+b2+c2. (3)正四面体的外接球与内切球的半径之比为 3∶1.
第四节 直线、平面平行的判定与性质
[基础知识]
1.直线与平面平行的判定定理和性质定理
文字语言
图形语言 符号语言
平面外一条直线与此平面内
判定定理 的一条直线平行,则该直线与
❶
此平面平行(线线平行⇒线面
高中数学知识点总结及公式大全立体几何中的平行与相交线问题
高中数学知识点总结及公式大全立体几何中的平行与相交线问题高中数学知识点总结及公式大全——立体几何中的平行与相交线问题在高中数学的学习过程中,立体几何是一个重要的知识点。
而平行与相交线问题是立体几何中的一个关键概念。
本文将从知识点总结和公式大全两个方面进行讲解,帮助读者更好地理解和应用立体几何中与平行和相交线有关的知识。
一、知识点总结立体几何中的平行与相交线问题主要涉及平面与直线的关系以及平行线与相交线的特性。
以下是一些常见的知识点:1. 平行线的判定平行线的判定有三种形式:- 直角三线平行判定定理:设两条直线分别与一条直线交于两点,并且两条直线上的线段分别与交于这两点的两线段相等,则这两条直线平行。
- 对顶角平行判定定理:设两条直线分别与一条直线交于两点,并且这两条直线上的对顶角相等,则这两条直线平行。
- 曲线与直线平行判定定理:设曲线和直线相交于两点,并且曲线上的线段与直线上的线段相等,则曲线与直线平行。
2. 相交线的性质相交线具有以下性质:- 异面直线相交定理:三维空间内,通过不同平面的两直线相交。
- 直线间的角关系:当两直线相交时,它们的对应角、内错角、同旁内角、同旁外角等角关系。
- 相交线的垂线性质:若两条相交的直线上有两个等面直线,则这两个等面直线的垂线相交于同一点。
- 直线的平行射影定理:若两条直线相交,则这两条直线上的任一点到另一条直线的距离相等的射影点为同一点。
二、公式大全在立体几何中,有一些常用的公式与平行与相交线问题密切相关。
以下是一些常见公式:1. 平行线相关公式- 平行线延长线分割定理:若两条平行线A’B’和CD,交于点O,过点O作平行于A’B’的直线,分别与CD交于EF,则OE = OF。
- 平行线截割线分割定理:若两条平行线A’B’和CD,分别与一条直线EF相交于点O和G,则OE/OF = GO/GD。
2. 相交线相关公式- 交点到两条直线的距离:设一条直线l与平面α相交于点A,与平面β相交于点B,过点A作平面β的垂线,交于点C,则AC为直线l到平面β的距离。
高中数学常用公式及结论(立体几何总结)
最新高中数学常用公式及结论(立体几何总结)-线线平行的判断:①如果一条直线和f平面平行,经过这条直线的平面和这个平相交,那么这条直线和交线平行。
直线和交线平行图②如果两个平行平同时和第三个平相交,那么它们的交线平行。
A交线平行图直线平行图二,线线垂直的判断:在平面内的一条直线,如果和这个平面的一条斜线的射①影垂直,那么它也和这条斜线垂直。
在平面内的一条直线,如果和这个平面的一条斜线垂直,②那么它和这条斜线的射影垂直。
线线垂直图③若一直线垂直m,这条直线垂直于平内所有直平线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平彳亍线中的另一条。
三.线面平行的判断:如果平面外的一条直线和平面内的一条直线平行,那么①这条直线和这个平面平行。
②两个平面平行,其中一个平面内的直线必平行于另一个平,面面平行的判断:①一个平面内的两条相交直线分别平行于另一个平面内两相交直线,这两个平面平行。
②垂直于同一条直线的两个平面平行。
五,线面垂直的判断:①如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
③一直线垂直于两个平行平面中的一个平面,它也垂直于另f平面。
④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面。
六,面面垂直的判断:f平面经过另一个平面的垂线,这两个平面互相垂直。
七,空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)①异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。
异面直线所成角的范围:0。
V a< 90。
;注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。
有的还可以通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一底面是正方形的长方体。
②线面所成的角:斜线与平面所成的角:斜线与它在平面内的射影所成的角。
高中数学空间几何体知识点总结
高中数学空间几何体知识点总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
- 斜棱柱:侧棱不垂直于底面的棱柱。
- 正棱柱:底面是正多边形的直棱柱。
- 性质:- 棱柱的侧棱都相等,侧面都是平行四边形。
- 直棱柱的侧面都是矩形,正棱柱的侧面都是全等的矩形。
- 棱柱的两个底面与平行于底面的截面是全等的多边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数可分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面中心的棱锥。
- 棱锥的侧棱交于一点(顶点)。
- 正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,等腰三角形底边上的高叫做正棱锥的斜高。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:- 按底面多边形的边数可分为三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。
- 性质:- 圆柱的轴截面是全等的矩形。
- 圆柱的侧面展开图是矩形,矩形的长等于底面圆的周长,宽等于圆柱的高。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
- 圆锥的轴截面是等腰三角形。
- 圆锥的侧面展开图是扇形,扇形的弧长等于底面圆的周长,半径等于圆锥的母线长。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
- 性质:- 圆台的轴截面是等腰梯形。
立体几何公式定理大全
立体几何公式定理大全立体几何是研究空间中各种图形的性质和关系的分支学科,其主要研究对象是立体图形的特征、构造和性质。
在立体几何的学习过程中,我们需要掌握一些重要的公式和定理,以便解决与立体图形相关的问题。
下面是一些常用的立体几何公式和定理的详细介绍:1.体积公式:-直角三棱柱的体积公式:体积=底面积×高-正方体的体积公式:体积=边长^3-直角三角柱的体积公式:体积=面积×高-圆柱的体积公式:体积=底面积×高-锥体的体积公式:体积=1/3×底面积×高-球体的体积公式:体积=4/3×π×半径^32.表面积公式:-正方体的表面积公式:表面积=6×边长^2-正方体的棱长公式:棱长=根号下(表面积/6)-正方体的对角线长度:对角线长度=边长×根号下(3)-直角三角柱的表面积公式:表面积=(底面积+两倍底面积的开方)+2×底面积-圆柱的表面积公式:表面积=2×π×半径×高+2×π×半径^2-锥体的表面积公式:表面积=π×半径×斜高+π×半径^2-球体的表面积公式:表面积=4×π×半径^23.空间几何定理:-平行线截立体的定理:如果两组平行线截取同一直线的长度成比例,那么这两组平行线截取的其他直线的长度也成比例。
-空间角平分线的定理:空间中的角可由角平分线平分为两个等角。
-立体的等分线定理:平面将一个立体分为两个等体积的立体时,它将该立体的底面分为两个等面积的底面,并且过底面上的任意一点,以该点为顶点作平行于底面的面将该立体分为两个等体积的立体。
-线与面的关系定理:一条不等于底面的直线与底面所围的锥交于一点,但与底面围成的锥不是等体积的。
-垂直平分面定理:垂直与一条直线的平面把这条直线平分为两段,它把这条直线的平面所围的任一立体分为两个等体积的立体。
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
高中数学立体几何知识要点
高中数学立体几何知识要点一、立体几何中的基本概念11 空间几何体棱柱棱锥棱台圆柱圆锥圆台球12 空间几何体的三视图正视图侧视图俯视图13 空间几何体的直观图斜二测画法二、表面积与体积21 棱柱、棱锥、棱台的表面积与体积棱柱的表面积与体积公式棱锥的表面积与体积公式棱台的表面积与体积公式22 圆柱、圆锥、圆台的表面积与体积圆柱的表面积与体积公式圆锥的表面积与体积公式圆台的表面积与体积公式23 球的表面积与体积球的表面积公式球的体积公式三、点、直线、平面之间的位置关系31 平面的基本性质公理 1公理 2公理 332 空间中直线与直线的位置关系平行直线相交直线异面直线33 空间中直线与平面的位置关系直线在平面内直线与平面平行直线与平面相交34 空间中平面与平面的位置关系平行平面相交平面四、直线与平面平行的判定与性质41 直线与平面平行的判定定理42 直线与平面平行的性质定理五、平面与平面平行的判定与性质51 平面与平面平行的判定定理52 平面与平面平行的性质定理六、直线与平面垂直的判定与性质61 直线与平面垂直的定义62 直线与平面垂直的判定定理63 直线与平面垂直的性质定理七、平面与平面垂直的判定与性质71 平面与平面垂直的定义72 平面与平面垂直的判定定理73 平面与平面垂直的性质定理八、空间向量在立体几何中的应用81 空间向量的概念82 空间向量的运算83 空间向量的坐标表示84 空间向量在证明线线、线面、面面平行与垂直中的应用85 空间向量在求空间角(异面直线所成角、线面角、二面角)中的应用86 空间向量在求空间距离(点到直线的距离、点到平面的距离、异面直线的距离)中的应用九、常见立体几何问题的解题策略91 证明空间几何体中的线线、线面、面面平行与垂直的问题综合法向量法92 求空间几何体的表面积与体积的问题直接利用公式求解割补法求解93 求空间角与空间距离的问题定义法向量法在学习高中数学立体几何知识时,需要熟练掌握以上要点,并通过大量的练习来加深对知识的理解和运用,从而提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新高中数学常用公式及结论(立体
几何总结)
一、线线平行的判断:
①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
直线和交线平行图
②如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
交线平行图
③垂直于同一平面的两条直线平行。
直线平行图
二、线线垂直的判断:
①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
线线垂直图
③若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
三、线面平行的判断:
①如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
②两个平面平行,其中一个平面内的直线必平行于另一个平面。
四、面面平行的判断:
①一个平面内的两条相交直线分别平行于另一个平面内两相交直线,这两个平面平行。
②垂直于同一条直线的两个平面平行。
五、线面垂直的判断:
①如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
④如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
六、面面垂直的判断:
一个平面经过另一个平面的垂线,这两个平面互相垂直。
七、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)
①异面直线所成的角:
通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。
异面直线所成角的范围:0°< α≤90°;
注意:
若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。
有的还可以通过补形,
如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。
②线面所成的角:
斜线与平面所成的角:斜线与它在平面内的射影所成的角。
范围 0°< α< 90°
③二面角:
二面角图
关键是找出二面角的平面角。
方法有:①定义法;②三垂线定理法;③垂面法;
定义法:
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线民主两条射线所成的叫叫做二面角的平面角。
还可以用射影法:
cosθ= S'/S ;其中θ为二面角α- l - β的大小。
S 为α内的一个封闭几何图形的面积;S' 为α内的一个封闭几何图形在β内射影图形的面积。
八、夹角公式:
空间直角坐标系
夹角公式图
线线夹角公式图
线面夹角公式图
面面夹角公式图
九、求点到面的距离的方法:
①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上);
②转移法:转化为另一点到该平面的距离(利用线面平行的性质);
③体积法:利用三棱锥体积公式。
④向量法:
向量法中:点到面的距离公式图
十、空间向量的坐标运算
空间向量的坐标运算图
十一、球
①球的半径是R,则其
球图(1)
②球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长。
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长;
正方体的棱切球的直径是正方体的面对角线长;
正方体的外接球的直径是正方体的体对角线长。
(3)球与正四面体的组合体:
棱长为a 的正四面体的内切球的半径为(√6 /12) a
球图(2)
十二、多面体:
(1)棱柱:两底面互相平行,侧面都是平行四边形,侧棱平行且相等。
棱柱图
(2)正棱锥:底面是正多边形,侧面是等腰三角形,顶点在底面内的射影是底面中心
性质:
Ⅰ、平行于底面的截面和底面相似;
截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比;
它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;
截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;
Ⅱ、各侧面都是全等的等腰三角形;通过四个直角三角形
正棱锥图(1)
实现边,高,斜高间的换算。
正棱锥图(2)
(3)正四面体:
正四面体图(1)
对于棱长为a 正四面体的问题可将它补成一个边长为√2/2 a 的正方体问题。
对棱间的距离为√2/2 a (正方体的边长)
正四面体的高√6/3 a (= 2/3 ×L正方体体对角线)正四面体的体积为
正四面体图(2)
正四面体的中心到底面与顶点的距离之比为1 :3
正四面体图(3)。