锐角三角函数的图文解析
锐角三角函数课件

45度角的余弦值
$cos 45^circ = frac{sqrt{2}}{2}$
30度角的余弦值
$cos 30^circ = frac{sqrt{3}}{2}$
60度角的正弦值
$sin 60^circ = frac{sqrt{3}}{2}$
45度角的正弦值
在工程学中的应用
结构设计
在建筑和机械设计中,锐角三角 函数用于计算结构件的角度和长
度。
控制系统
在控制系统的设计中,锐角三角函 数用于描述系统的传递函数和稳定 性。
信号处理
在信号处理中,锐角三角函数用于 频谱分析和滤波器的设计。
05
特殊角度的三角函数值
30度、45度、60度的三角函数值
30度角的正弦值
正切函数的图像在每 一个开区间(π/2+kπ, π/2+kπ), k∈Z内都是递增的。
04
锐角三角函数的应用
在几何学中的应用
01
02
03
计算角度
锐角三角函数可以帮助我 们计算出特定角度的三角 形的角度,例如直角三角 形中的锐角。
计算边长
通过已知的角度和边长, 我们可以使用锐角三角函 数来计算其他边的长度。
04
90度角的余弦值
$cos 90^circ = 0$
06
习题与解答
习题
题目1
已知直角三角形中,一个锐角为 30°,邻边长为3,求对边长。
题目2
在直角三角形中,已知一个锐角 为45°,斜边长为5,求邻边长。
题目3
已知直角三角形中,一个锐角为 60°,对边长为6,求斜边长。
答案与解析
01
第24讲 锐角三角函数

考点三
三角函数之间的关系
1.同角三角函数之间的关系
sin2α+cos2α=
1
;tan
α=csions
α α.
2.互余两角的三角函数之间的关系
若∠A+∠B=90°,则 sin A=cos B,
sin B=cos A,
tan A·tan B=1.
3.锐角三角函数的增减性 当 α 为锐角时,0<sin α<1,0<cos α<1,且 sin α,tan α 的值都随 α 的增大而 增大 ;cos α 的值随 α 的增大而 减小 . 温馨提示: 这些关系式都是恒等式,正反均可运用,同时还 要注意它们的变形公式.
Rt△ABD 中,cos A=AD=2 2=2 5.故选 D.
【答案】D
AB 10 5
3.把△ABC 三边的长度都扩大到原来的 3 倍,则
锐角 A 的正弦值( A )
A.不变
B.缩小为原来的13
C.扩大到原来的 3 倍 D.不能确定
4.在锐角三角形 ABC 中,若sin A- 23+(1-
tan B)2=0,则∠C 的度数是( C )
= 5
5+1.故选 C. 4
【答案】C
5.(2016·福州)如图,以 O 为圆心,半径为 1 的弧 交坐标轴于 A,B 两点,P 是 AB 上一点(不与 A,B 重合),连接 OP,设∠POB=α,则点 P 的坐标是( )
A.(sin α,sin α) B.(cos α,cos α) C.(cos α,sin α) D.(sin α,cos α)
考点三
三 角函数的增减性
例 3 如图,若锐角
△ABC 内接于⊙O,点 D 在
⊙O 外(与点 C 在 AB 同侧),
《锐角三角函数小结》课件

电磁学
在电磁学中,三角函数用于描述电磁 波的传播、辐射和吸收等过程。通过 三角函数,可以计算电磁波的强度、 频率和方向等参数。
三角函数在日常生活中的应用
01
航海与航空
在航海和航空领域,三角函数用于计算航行路线、高度和速度等信息。
例如,通过三角函数可以计算出两点之间的最短航线或最节省时间的航
线。
02
建筑与工程
在建筑和工程领域,三角函数用于计算结构稳定性、支撑力、梁的弯曲
程度等参数。通过三角函数,可以优化设计方案并确保建筑和工程的安
全性。
03
音乐与声学
在音乐和声学领域,三角函数用于描述音高、音强和音色的变化。通过
三角函数,可以分析和合成音乐声音,以及调整音频效果和混响等参数
。
04
锐角三角函数的图像与性质
特殊角的三角函数值的实际应用
物理问题
在物理问题中,经常需要用到特殊角的 三角函数值来计算角度、位移、速度等 物理量。例如,在简谐振动中,振幅、 周期与角频率之间的关系就需要用到特 殊角的三角函数值。
VS
工程问题
在工程设计中,经常需要用到特殊角的三 角函数值来计算角度、长度等参数。例如 ,在桥梁设计中,需要计算不同角度下梁 的受力分布情况,这时就需要用到特殊角 的三角函数值。
三角函数的奇偶性
总结词
三角函数具有奇偶性,即函数图像关于原点对称或关于y轴对称。
详细描述
三角函数的奇偶性是指函数图像是否关于原点对称或关于y轴对称。例如,正弦 函数和余弦函数都是偶函数,因为它们的图像都关于y轴对称;而正切函数是奇 函数,因为它的图像关于原点对称。
03
锐角三角函数的应用
三角函数在几何学中的应用
中考数学锐角三角函数(共56张PPT)

二、填空题
(1)求旋转木马E处到出口B处的距离; (2)求海洋球D处到出口B处的距离.(结果保留整数)
解:(1) ∵AE=80,∠BAE=30°,∠ABE =90°, ∴BE=AEsin30°=80× =40(m). 答:旋转木马E处到出口B处的距离为40 m.
(2) ∵∠CED=∠AEB,∠DCE=∠ABE =90°,
∴∠D=∠BAE=30°.
∵CD=34 m,
∴DE=
=
=
(m).
∴DB=BE+DE=
≈40+
≈79(m).
答:海洋球D处到出口B处的距离为79 m.
二、填空题
11. 小明在某次作业中得到如下结果: sin27°+ sin283°≈0.122+0.992=0.9945; sin222°+ sin268°≈0.372+0932=1.0018; sin229°+ sin261°≈0.482+0.872=0.9873; sin237°+ sin253°≈0.602+0.802=1.0000;
二、填空题
9. (2017北京)计算:4cos30°+
原式=4× +1-
+2
=
+1- +2=3.
-
+
.
10.(2017湘潭)某游乐场部分平面图如图Z2816所示,点C,E,A在同一直线上,点D,E,B在 同一直线上,测得A处与E处的距离为80 m, C处与D处的距离为34 m,∠C=90°,∠ABE =90°,∠BAE=30°. (2≈1.4,3≈1.7)
图Z28-7
A.
m
B.
m
《锐角三角函数》课件

正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数复习课课件

90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。
锐角三角函数

关系式
李善兰三角函数展开式 tanα·cotα=1 希腊三角函数公式 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 锐角三角函数诱导公式 直角三角形中的锐角三角形函数sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
三角函数值
取值范围
特殊角
变化情况
特殊角的三角函数值如下 : 注:非特殊角的三角函数值,请查三角函数表
θ是锐角: 0 0 tanθ>0 cotθ>0
1.锐角三角函数值都是正值。 2.当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大) ; 正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大); 正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。 3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 0≤cosA≤1;当角度在0°0。
锐角三角函数
数学函数
01 相关概念
03 关系式
目录
02 三角函数值
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做 ∠A的锐角函数。
相关概念
图1直角三角形锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割 (csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初 中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则 锐角三角函数可表示如下:
锐角三角函数课件

余弦函数
1
定义和公式
余弦函数描述直角三角形中的比例关系,其定义和公式为cos(x) = 邻边/斜边。
2
图像和性质
余弦函数的图像呈现波浪形状,具有周期性、振幅和相位差等性质。
3
应用举例
余弦函数在几何、物理、工程等领域有广泛的应用,如研究周期性现象和计算机 图形学。
正切函数
定义和公式 图像和性质 应用举例
和差化积公式
三角函数的和差化积公式可 以将两个三角函数的和、差 表达为一个三角函数的乘积。
倍角公式
三角函数的倍角公式用于计 算两倍角的三角函数值。
总结
特点和应用
锐角三角函数具有周期性、对称性和广泛的 应用,为解决实际问题提供了重要的数学工 具。
实际生活中的应用举例
锐角三角函数在摄影、测量、物理仿真等实 际生活中有广泛的应用。
ห้องสมุดไป่ตู้
扩展和推广
锐角三角函数的研究和应用正在不断扩展和 推广,涉及到更多领域和复杂情况。
未来发展和研究方向
锐角三角函数的未来发展将涉及到更多领域 的交叉研究和深入探索。
正切函数用来描述直角三角形中的比例关系, 其定义和公式为tan(x) = 对边/邻边。
正切函数的图像呈现周期性、无界和渐近线等 特点,其图像在某些范围内会无限逼近无穷。
正切函数在物理、工程、电子等领域中常用于 信号处理和电路分析等方面。
三角函数的关系式
基本关系式
正弦、余弦和正切函数之间 有一系列关系式,如sin²θ + cos²θ = 1等。
特点
锐角三角函数的值域在特 定区间内,具有周期性和 对称性等特点。
正弦函数
定义和公式
正弦函数用来描述直角三角形 中的比例关系,其定义和公式 为sin(x) = 对边/斜边。
锐角的三角函数PPT

余弦函数的符号为cos,表示为cos(θ), 其中θ为锐角。
02
余弦函数的图像是一条周期为2π的余弦 曲线,表示在直角三角形中,邻边的长 度与斜边的长度的比值在[-1,1]之间周 期性变化。
04
正切函数的定义
01
正切函数:tan(θ) = sin(θ) / cos(θ)
02
正切函数的定义域:(0, π/2)
余弦函数的值域:[-1, 1]
余弦函数的图像:一个周期为2π的周 期函数,图像关于y轴对称
余弦函数的奇偶性:偶函数,f(x) = f(-x)
余弦函数的单调性:在[0, π/2]上是 增函数,在[π/2, π]上是减函数
余弦函数的导数:f'(x) = -sin(x)
正切函数的性质
01
02
03
04
05
值域:正弦函数的值域是[-1, 1]
奇偶性:正弦函数是奇函数, 即f(x) = -f(-x)
周期性:正弦函数的周期是 2π,即f(x + 2π) = f(x)
最值:正弦函数的最大值是1, 最小值是-1
图像:正弦函数的图像是一 条正弦曲线,关于原点对称
余弦函数的性质
定义:余弦函数是直角三角形中的一 个角与对边和斜边的比值
03
正切函数的值域:(0, ∞)
04
正切函数的图像:在平 面直角坐标系中,正切 函数的图像是一条以原 点为中心的对称曲线, 在y轴右侧的部分为单调 递增,在y轴左侧的部分 为单调递减。
Part Two
锐角三角函数的性 质
正弦函数的性质
定义:正弦函数是直角三角 形中的一个角(锐角)的正 弦值与对边长度的比值
06
正切函数是锐 角三角函数中 的一种,表示 在一个直角三 角形中,对边 (opposite) 的长度与邻边 (adjacent) 的长度之比。
第9讲 锐角三角函数

第9讲锐角三角函数知识点1 锐角三角函数1.如图在△ABC中,∠C是直角,锐角A的正弦(sin),余弦(cos)和正切(tan)叫做角A的锐角三角函数.2.特殊角的三角函数值3.锐角三角函数值的变化规律当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小;当0°<α<90°时,tanα随α的增大而增大.【典例】例1在△ABC 中,∠C =90°,如果AC =8,BC =6,那么∠A 的正弦值为( ) A .35B .45C .34D .43例2在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AC 的长为( ) A .2sin α B .2cos αC .2tan αD .2cot α例3计算:tan 260°−2sin30°4cos 245°+cot30°.【随堂练习】1.已知在Rt △ABC 中,∠C =90°,AB =3,BC =2,那么tan B 的值等于( ) A .23B .√53C .√52D .2.已知在Rt △ABC 中,∠C =90°,∠B =α,AC =2,那么AB 的长等于( ) A .2sinαB .2sin αC .2cosαD .2cos α3.计算:2sin45°+2sin60°﹣tan60°•tan45°.4.计算:tan 245°cot30°−2cos45°−2sin60°.知识点2 解直角三角形1.定义:在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形.2.基础知识在Rt △ABC 中,∠A ∠B ∠C 所对的边分别是a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A ∠+B ∠=C ∠=90(3)边角之间的关系:sin A =a c cos A =b c tan A =ab sin B =bc cos B =ac tan B =ba(4)面积公式:S=12ab=12ch (h 为斜边上的高) 3. 解直角三角形的基本类型及其解法【典例】例1如图,在△ABC 中,BD ⊥AC ,AB =4,AC =3,∠A =30°.(1)求AD 的长. (2)求sin C 的值.例2如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =12∠BAC ,求sin ∠BPC .例3如图,在△ABC 中,cos B =√22,sin C =35,AC =10,求△ABC 的面积.【随堂练习】1.如图,在△ABC 中,tan C =35,点D 在边BC 上,AB =AD ,CD =2BD =4,求sin B 的值.2.在Rt △ABC 中,∠C =90°,BC =12,AC =4√3,解这个直角三角形.3.如图,在△ABC 中,已知∠C =90°,sin A =,点D 为边AC 上一点,若∠BDC =45°,DC =6,求AD 的长.(结果保留根号)知识点3 解直角三角形的应用——坡度、坡角问题1.坡角:坡面与水平面的夹角,用字母α表示.2.坡度(坡比):坡面的铅直高度h 和水平宽度l 的比,用字母i 表示,则i=ℎl =tan α.【典例】例1如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 m 时,才能确保山体不滑坡.(取:i h l=hlαtan50°≈1.2)例2如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB=6米,背水坡CD的坡度i=1:,求背水坡的坡长CD为多少米.例3 如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为6√2米(结果保留根号).【随堂练习】1.如图,某河堤迎水坡AB的坡比i=tan∠CAB=1:√3,堤高BC=5m,则坡面AB的长是()A.5 m B.10m C.5√3m D.8 m2.小明一家去某著名风景区旅游,准备先从山脚A走台阶步行到B,再换乘缆车到山顶C.从A到B的路线可看作是坡角为30°的斜坡AB,长度为1000米;从B到C的缆车路线可看作是线段BC,长度为2400米,其与水平线的夹角为48°,求山顶C到地面AD的距离CE 的长.(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)3.农用温棚的上半部分如图所示,迎阳坡AD 的坡度i =1:1.8,背阳坡AC 坡度i =1:0.5,棚宽CD =11.5米,要铅直竖立两根立柱AB 、EF ,其中BF =AB .求AB 、EF 的长.知识点4 解直角三角形的应用——仰角俯角问题1.仰角和俯角 在进行测量时,从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.【典例】例1如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为50米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)仰角水平线视线视线俯角(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,=1.41, 1.73)例2某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B 处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长.(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]例3如图,永州市德雅、高峰学校老师们联合组织九年级学生外出开展数学活动,路经白石山公园时,发现工人们正在建5G信号柱,于是老师们就带领学生们对信号柱进行测量.已知信号柱直立在地面上,在太阳光的照射下,信号柱影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得信号柱顶端A的仰角为30°,在C处测得信号柱顶端A的仰角为45°,斜坡与地面成60°角,CD=8米,求信号柱AB的长度.(结果保留根号)【随堂练习】1.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】2.某地有一座大桥(图1),某初中数学兴趣小组想测量该大桥的外拱塔的最高点D距离桥面的高度CD,他们在桥面上选取了一个测量点A测得点D的仰角为26.6°,然后他们沿AC方向移动40m到达测量点B(即AB=40m),在B点测得点D的仰角为37°,如图2所示.求外拱塔的最高点D距离桥面的高度CD.【参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50】3.校内数学兴趣小组组织了一次测量探究活动.如图,大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=12米,AE =24米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:,≈1.73,sin53°≈,(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.知识点5 解直角三角形的应用——方向角问题1. 方位角:从某点的指北方向按顺时针转到目标方向的水平角.目标方向线PA,PB,PC的方位角分别是40°,135°,225°.2.方向角:指北或指南方向线与目标方向所成的小于90°的角.如下图所示,目标方向线OA,OB,OC分别表示北偏东60°,南偏东30°,北偏西70°.特别地,若目标方向线与指北或指南的方向线成45°的角,目标方向线OD与正南方向成45°角,通常称为西南方向.【典例】例1如图,灯塔B在灯塔A的正东方向,且AB=75km.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.(1)求∠ACB的度数;(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.例2 某公园中有条东西走向的小河,河宽固定,小河南岸边上有一块石墩A,北岸边上有一棵大树P,小杨利用它们测量小河的宽度,于是,他去了河边,如图.他从河的南岸石墩A处测得大树P在其北偏东30°方向,然后他沿正东方向步行80米到达点B处,此时测得大树P在其北偏西60°方向.请根据以上所测得的数据,计算小河的宽度.(结果保留根号)例3 一艘货船以30海里/小时的速度向正北航行,在A处看见灯塔C在船的北偏东30°,20分钟后货船至B处,看见灯塔C在船的北偏东60°,已知灯塔C周围7.1海里以内有暗礁,问这艘船继续航行是否能绕过暗礁?(提供数据:√2≈1.414,√3≈1.732)【随堂练习】1.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A .100mB .100√2mC .100√3mD .200√33m2.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan70°米C .200sin 70°米D .200sin70°米3.如图,MN 是公园劳动湖边一段东西走向的笔直湖岸,A ,B 是岸边两建筑物,一小艇在点C 处,与MN 的距离CE =60米,小艇向北偏西30°方向行驶100米到达点D ,此时,小艇上的人测量A 在小艇的南偏西60°方向,B 在南偏西30°方向,求A 、B 两建筑物之间的距离.综合运用1.在Rt△ABC中,∠C=90°,BC=5,sin B=1213,则AC的长是()A.25B.12C.5D.13 2.计算:(1)2sin30°一3tan45°•sin45°+4cos60°;(2)sin45°cos30°−tan60°+cos45°•sin60°.3.如图,某建筑AB与山坡CD的剖面在同一平面内,在距此建筑AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度i=1:0.75,山坡坡底C点到坡顶D点的距离CD=50m,在坡顶D点处测得建筑楼顶A点的仰角为30°,求此建筑AB的高度.(结果用无理数表示)4.设Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若b=6,c=10,求sin A、cos A和tan A.5.如图所示,某水库大坝的横断面是四边形ABCD,AD∥BC,坝顶宽AD=2.5米,坝高AE=DF=4米,背水坡AB的坡度是1:1,迎水坡CD的坡度是1:1.5,求坝底宽BC.6.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2,使用时为了散热,她在底板下面垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=36cm,O'C⊥AC于点C,O′C=18cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?7.近日,市委、市政府公布了第七批重庆市爱国主义教育基地名单,重庆市育才中学创办的陶行知纪念馆位列其中,如图,为了测量陶行知纪念馆AB的高度,小李在点C处放置了高度为1.5米的测角仪CD,测得纪念馆顶端A点的仰角∠ADE=51°,然后他沿着坡度i=1:2.4的斜坡CF走了6.5米到达点F,再沿水平方向走4米就到达了纪念馆底端点B.(结果精确到0.1,参考数据:sin51°≈0.78,cos51°≈0.63,tan51°≈1.23)(1)求点D到纪念馆AB的水平距离;(2)求纪念馆AB的高度约为多少米?8.如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°.(1)直接写出:在小岛C看点A俯角大小是;点B在小岛D什么方位?;(2)求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49≈0.66,tan49°≈1.15)。
锐角三角函数(18张PPT)

解:如图(2)在Rt△ABC中,
BC 5 sin A , AB 13
C
(2)
A
AC AB2 BC 2 132 52 12
AC 12 因此sin B AB 13
小试牛刀
1.判断对错:
BC √ ) 1) 如图 (1) sinA= ( AB
BC (2)sinB= (×) AB
B 3
解:如图(1)在Rt△ABC中,
C
B 13
5
A
AB AC BC 4 (1)
4
2 2
2
C 3
2
5
B
(2)
A
13
BC 3 AC 4 因此sin A , sin B AB 5 AB 5
5
C
(2)
A
试一试
例1 如图,在Rt△ABC中,∠C=90°,求 B sinA和sinB的值.
B 10m 6m C
(3)sinA=0.6m (×) (4)SinB=0.8 (√ ) BC 2)如图,sinA= (× ) AB
A
sinA是一个比值(注意比的顺序),无单位;
小试牛刀
2倍,sinA的值( C
A.扩大100倍
)
1 B.缩小 100
B
a
c
C
b
A
独立完成作业的良好习惯,
是成长过程中的良师益友。
结论:在直角三角形中,当锐角A的度数一定时, 不管三角形的大小如何,∠A的对边与斜边的比 也是一个固定值.
直角三角形的一个锐角的对边与斜边 的比值为这个锐角的正弦
如:∠A的正弦 记作:sinA 即 a ∠A的对边 sinA= = 斜边 c
锐角三角函数锐角三角函数

03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。
《锐角三角函数》(解析版)

《锐角三角函数》(解析版)锐角三角函数一、定义三角函数是数学中一类重要的函数,它们与三角关系密切相关。
而锐角三角函数是指在直角三角形中,角度小于90°的三角函数。
1. 正弦函数(sin)正弦函数是指在锐角三角形中,对应的直角边比斜边的比值。
可以用以下公式表示:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是指在锐角三角形中,对应的直角边比斜边的比值。
可以用以下公式表示:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是指在锐角三角形中,对边比邻边的比值。
可以用以下公式表示:tanθ = 对边 / 邻边二、性质1. 值域和定义域正弦函数和余弦函数的值域都在[-1, 1]之间,定义域为锐角三角形中的角度范围。
2. 周期性正弦函数和余弦函数在每个周期内都有相同的波形形状,它们的周期都为360°或2π弧度。
3. 正交性正弦函数和余弦函数之间具有正交性,即它们的乘积积分为0。
4. 切线斜率正切函数的斜率可以表示为tanθ的导数,即:f'(θ) = sec^2(θ)5. 三角恒等式锐角三角函数之间满足一系列的三角恒等式,如:sin^2(θ) + cos^2(θ) = 1三、图像与应用1. 图像正弦函数和余弦函数的图像为周期性的正弦波和余弦波,可以通过函数图像进行可视化。
2. 应用锐角三角函数广泛应用于物理学、工程学和计算机图形学等领域。
例如在电路分析中,可以通过正弦函数来表示交流电压的变化;在计算机图形学中,可以通过正弦函数和余弦函数来生成动画效果。
四、常见问题1. 如何计算锐角三角函数的值?通过查阅三角函数表或使用计算器等数学工具,可以准确地计算出锐角三角函数的值。
2. 如何利用锐角三角函数解决实际问题?在实际问题中,可以通过建立三角函数模型并利用已知条件来解决问题。
例如在测量中,可以利用正弦函数或余弦函数计算出某个角度的值。
3. 锐角三角函数与钝角三角函数有什么区别?锐角三角函数与钝角三角函数在定义上有所不同,钝角三角函数可定义为任意角度,而锐角三角函数仅限于小于90°的角度范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 6 2 3
B. 6 3
C.10 3
D.8 3
【答案】A
【解析】
【分析】
延长 PQ 交直线 AB 于点 E,设 PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用 x
表示出 AE 和 BE,列出方程求得 x 的值,再在直角△BQE 中利用三角函数求得 QE 的长,则
问题求解.
6.如图,在矩形 ABCD 中,BC=2,AE⊥BD,垂足为 E,∠BAE=30°,则 tan∠DEC 的值是 ()
A.1
B. 1
C. 3
D. 3
2
2
3
【答案】C
【解析】
【分析】
先根据题意过点 C 作 CF⊥BD 与点 F 可求得△AEB≌△CFD(AAS),得到 AE=CF=1,EF=
3- 3 = 2 3 ,即可求出答案 33
12. cos60 tan45 的值等于 ( )
A. 3 2
【答案】A 【解析】
B. 2 2
C. 3 2
D.1
【分析】 根据特殊角的三角函数值计算即可.
【详解】
解:原式 1 1 3 . 22
故选 A. 【点睛】 本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.
∵四边形 ABCD 是菱形,∴OD=OB,CD=BC.
∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.
∵∠DOE=120°,∴∠BOE=60°,∴△OBE 是等边三角形,∴∠DBC=60°.
∵∠DEB=90°,∴BD= DE 2 3 . sin60 3
故选 B. 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中 线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
BQ=2× 3 v=2 3 v,
y= 1 AB×BQ= 1 6v×2 3 v=6 3 ,解得:v=1,
2
2
故点 P、Q 的速度分别为:3, 3 ,AB=6v=6=a,
则 AC=12,BC=6 3 ,
如图当点 P 在 AC 的中点时,PC=6, 此时点 P 运动的距离为 AB+AP=12,需要的时间为 12÷3=4,
2
2
在 Rt△ADC 中,DC2=AC2﹣AD2,
∴
a
1 2
c
2
b2
3 4
c2,
即 a2+c2=b2+ac,
∴
a
c b
c
a b
c2 cb a2 ab
a bc b
a2 ac
c2 ab bc ab bc b2
b2 ac ab bc ac ab bc b2
1.
故选 C.
在 Rt△ABC 中,sin∠D= AB = 1 , AD 2
∴∠D=30°,∠A=60°,
∴sinA= 3 ,故 C 正确;cosD= 3 ,故 D 错误,
2
2
故选:D.
【点睛】
本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边
垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.
【点睛】 本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和 等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.
10.如图,已知 AB 是⊙O 的直径,点 C 在⊙O 上,过点 C 的切线与 AB 的延长线交于点 P,连接 AC,若∠A=30°,PC=3,则⊙O 的半径为( )
2
2
可求 DB 1 c, AD 3 c, 把这两个表达式代入到另一个 Rt△ADC 的勾股定理表达式中,
2
2
化简可得即 a2+c2=b2+ac,再把此式代入通分后所求的分式中,可求其值等于 1.
【详解】
解:过 A 点作 AD⊥BC 于 D,在 Rt△BDA 中,由于∠B=60°,
∴ DB 1 c, AD 3 c,
C. 500tan55 m
D. 500 m cos55
在 Rt△BDE 中,cosD= DE , BD
∴DE=BD•cosD=500cos55°. 故选 B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.
3.菱形 ABCD 的周长为 20cm,DE⊥AB,垂足为 E,sinA= 3 ,则下列结论正确的个数有( ) 5
A.100sin35°米 【答案】C
B.100sin55°米
C.100tan35°米
D.100tan55°米
【解析】 【分析】 根据正切函数可求小河宽 PA 的长度. 【详解】 ∵PA⊥PB,PC=100 米,∠PCA=35°, ∴小河宽 PA=PCtan∠PCA=100tan35°米. 故选:C. 【点睛】 此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际 问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).② 根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答 案,再转化得到实际问题的答案.
则 BQ= 3 x=4 3 ,CQ=BC﹣BQ=6 3 ﹣4 3 =2 3 ,
过点 P 作 PH⊥BC 于点 H,
PC=6,则 PH=PCsinC=6× 1 =3,同理 CH=3 3 ,则 HQ=CH﹣CQ=3 3 ﹣2 3 = 2
3,
PQ= PH2 HQ2 = 3 9 =2 3 ,
故选:C. 【点睛】 本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关 系,进而求解.
A.
【答案】C 【解析】 【分析】
B. 2
C. 3
D. ( 3 1)
由三视图可知:该几何体是一个圆锥,其轴截面是一个高为 3 的正三角形.可计算边长
为 2,据此即可得出表面积. 【详解】
解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为 3 的正三角形.
∴正三角形的边长 3 2 . sin 60
【详解】
解:设 AB=a,∠C=30°,则 AC=2a,BC= 3 a,
设 P、Q 同时到达的时间为 T,
则点 P 的速度为 3a ,点 Q 的速度为 3a ,故点 P、Q 的速度比为 3: 3 ,
T
T
故设点 P、Q 的速度分别为:3v、 3 v,
由图 2 知,当 x=2 时,y=6 3 ,此时点 P 到达点 A 的位置,即 AB=2×3v=6v,
在直角△BEQ 中,QE= 3 BE= 3 (3 3 +3)=3+ 3 .
3
3
∴PQ=PE-QE=9+3 3 -(3+ 3 )=6+2 3 .
答:电线杆 PQ 的高度是(6+2 3 )米.
故选:A. 【点睛】
本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题.
8.如图,要测量小河两岸相对的两点 P,A 的距离,可以在小河边取 PA 的垂线 PB 上的一 点 C,测得 PC=100 米,∠PCA=35°,则小河宽 PA 等于( )
①DE=3cm; ②BE=1cm; ③菱形的面积为 15cm2; ④BD=2 10 cm.
A.1 个
B.2 个
C.3 个
根据菱形的性质及已知对各个选项进行分析,从而得到答案
【详解】
∵菱形 ABCD 的周长为 20cm
∴AD=5cm
∵sinA= 3 5
∴DE=3cm(①正确)
【详解】 过点 C 作 CF⊥BD 与点 F. ∵∠BAE=30°, ∴∠DBC=30°,
∵BC=2,
∴CF=1,BF= 3 ,
易证△AEB≌△CFD(AAS) ∴AE=CF=1, ∵∠BAE=∠DBC=30°,
∴BE= 3 AE= 3 ,
3
3
∴EF=BF﹣BE= 3 ﹣ 3 = 2 3 , 33
在 Rt△CFE 中,
1 tan∠DEC= CF 2 3 3 ,
EF 3 2 故选 C.
【点睛】 此题考查了含 30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等
7.如图,从点 A 看一山坡上的电线杆 PQ ,观测点 P 的仰角是 45,向前走 6m 到达 B 点, 测得顶端点 P 和杆底端点 Q 的仰角分别是 60 和 30 ,则该电线杆 PQ 的高度( )
2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在 AC 上找一点 B ,取 ABD 145 , BD 500m , D 55 ,要使 A , C , E 成一直线,那么开挖 点 E 离点 D 的距离是( )
A. 500sin55 m B. 500cos55 m
【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】
A. 3
【答案】A 【解析】 连接 OC,
B.2 3
C. 3 2
D. 2 3 3
∵OA=OC,∠A=30°, ∴∠OCA=∠A=30°, ∴∠COB=∠A+∠ACO=60°, ∵PC 是⊙O 切线, ∴∠PCO=90°,∠P=30°, ∵PC=3,
∴OC=PC•tan30°= 3 ,
故选 A
11.如图 1,在△ABC 中,∠B=90°,∠C=30°,动点 P 从点 B 开始沿边 BA、AC 向点 C 以 恒定的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以恒定的速度移动,两点同时到达点
∴AE=4cm
∵AB=5cm
∴BE=5﹣4=1cm(②正确)
∴菱形的面积=AB×DE=5×3=15cm2(③正确)
∵DE=3cm,BE=1cm
∴BD= 10 cm(④不正确)