七年级下全等三角形经典
七年级(下)数学 第11讲 全等三角形的概念和性质及判定
本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.一、全等形、全等三角形及其相关的概念 (1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边. 如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE . 对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的概念性质和判定内容分析知识结构模块一 全等三角形的概念和性质知识精讲ABCDEF- 2 -二、全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′ ”. 三、全等三角形的性质:(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 四、全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义; (2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; 五、画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素: ①两角及其夹边; ②两边及其夹角; ③三边.【例1】 下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC例题解析21ABCD【例4】 下列各条件中,不能作出唯一的三角形的是 ( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( )A .1个B .2个C .3个D .4个【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边- 4 -【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°【例9】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【例10】 如图,在△ABC 中,∠ A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,使旋转前后的△A′B′C′中的顶点B′在原三角形的边AC 的延长线上,求∠BCA′的度数.【例11】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =105°,∠CAD =10°,∠ADE =25°,求∠DFB 和∠AGB 的度数.α321AB CDEP1ABCDEFABCA′B′A BCD EF G本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.【例12】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【例13】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【例14】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.模块二 全等三角形的判定知识精讲例题解析ABCDEF21AB C DEABCDE- 6 -【例15】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【例16】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【例17】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【例18】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【例19】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形?ABCDABC D EFABCD EFO ABCDEOABCDEF【例20】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【例21】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【例22】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【例23】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状.ABCDMABCDE ABC DEO2121A BCDEQP ABCDEMN PQ- 8 -【例24】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【习题2】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =39°,则AN = 厘米,NM =_________厘米,∠NAB = .随堂检测A BCDMNABCD EF【习题3】 如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据____________; (2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据____________; (3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据_____________; (4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据_______.【习题4】 如图,已知△ABC ≌△ADE , ∠CAD =15°,∠DFB =90°,∠B =25°.求∠E 和∠DGB 的度数.【习题5】 如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB ∥CD ,AB =CD .试说明:BD 平分EF .【习题6】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC .ABCEDFABC D EFG ABCDE FGABCDE FG- 10 -【习题7】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm .【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,则DE =_______,DF =_______,EF = _______.课后作业ABC DEFABCDPOAB CDP OABCD【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC , ∠D -∠E =20°,∠BAC =60°,求∠C 的度数.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、 CE 交于点M 、 N ,有如下结论①△ACE ≌△DCB ;② CM =CN ;③ AC =DN .其中正确的结论是 ,证明正确的结论.【作业8】 如图,AD ⊥AB ,AC ⊥AE ,且AD =AB ,AC =AE .试说明:DC =BE ,DC ⊥BE .ABCDEABCD EM NABC DEGABCDEF。
初中全等三角形知识点
初中全等三角形知识点一、全等三角形的概念。
1. 定义。
- 能够完全重合的两个三角形叫做全等三角形。
- 重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
例如,若ABC与DEF全等,点A与点D、点B与点E、点C与点F是对应顶点;AB 与DE、BC与EF、AC与DF是对应边;∠ A与∠ D、∠ B与∠ E、∠ C与∠ F是对应角。
2. 表示方法。
- 全等用符号“≅”表示,读作“全等于”。
例如ABC≅ DEF。
书写时要注意对应顶点写在对应的位置上。
二、全等三角形的性质。
1. 对应边相等。
- 若ABC≅ DEF,则AB = DE,BC=EF,AC = DF。
2. 对应角相等。
- 若ABC≅ DEF,则∠ A=∠ D,∠ B=∠ E,∠ C=∠ F。
三、全等三角形的判定。
1. SSS(边边边)- 内容:三边对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若AB = DE,BC = EF,AC=DF,则ABC≅DEF。
2. SAS(边角边)- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若AB = DE,∠ B=∠ E,BC = EF,则ABC≅DEF。
这里要注意必须是两边的夹角相等。
3. ASA(角边角)- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若∠ A=∠ D,AB = DE,∠ B=∠ E,则ABC≅DEF。
4. AAS(角角边)- 内容:两角和其中一角的对边对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若∠ A=∠ D,∠ B=∠ E,BC = EF,则ABC≅DEF。
5. HL(斜边、直角边)(只适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。
- 例如:在Rt ABC和Rt DEF中,若AB = DE(斜边),AC = DF(直角边),则Rt ABC≅ Rt DEF。
全等三角形判定经典
11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。
例1. 如图所示,AB =CD ,AC =DB 。
求证:△ABC ≌△DCB 。
A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。
证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。
“ASA ”。
表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。
例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。
ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。
事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。
证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。
全等三角形知识点归纳
全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
全等三角形证明经典30题
全等三角形证明经典30题1. 两角和相等定理证明:设△ABC 和△DEF 是两个三角形,如果∠A = ∠D 且∠B = ∠E,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:通过顶角顶点 C 、 F、和共边 CF 作直线段 CF,延长直线段 CF 至点 X,使得 CX = CE。
步骤二:连接线段 AX。
步骤三:证明∠AXB = ∠EXF:由于∠A = ∠D,所以∠AXB = ∠DXE(共同的角度)。
又由于∠B = ∠E,所以∠DXE = ∠EXF。
因此,∠AXB = ∠EXF。
步骤四:证明∠ABX = ∠EFX:由于∠B = ∠E,所以∠ABX = ∠EXF(共同的角度)。
因此,∠ABX = ∠EFX。
步骤五:证明 AB = EF:由于 CX = CE,且∠ABX = ∠EFX,根据 SSS(边-边-边)全等三角形定理,则可得∆ABX ≌ ∆EFX。
因此,AB = EF。
综上所述,根据两角和相等定理,已经证明了△ABC ≌△DEF。
2. SAS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,∠A = ∠D,且 AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 BC 和 EF。
步骤二:证明∠ABC = ∠DEF:由于 AB = DE,且∠A = ∠D,根据线段角度定理,可得∠ABC = ∠DEF。
步骤三:证明 BC = EF:由于 AC = DF,且∠ABC = ∠DEF,根据 SAS(边-角-边)全等三角形定理,可得△ABC ≌△DEF。
综上所述,根据SAS全等三角形定理,已经证明了△ABC ≌△DEF。
3. SSS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,BC = EF,且AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 AC 和 DF。
步骤二:连接线段 BC 和 EF。
全等三角形经典证明方法归类
全等三角形经典证明方法归类1.SSS法则(边边边):给定两个三角形,如果它们的三条边分别相等,那么这两个三角形全等。
2.SAS法则(边角边):给定两个三角形,如果它们的两条边和夹角分别相等,那么这两个三角形全等。
3.ASA法则(角边角):给定两个三角形,如果它们的两条角和一边分别相等,那么这两个三角形全等。
4.AAS法则(角角边):给定两个三角形,如果它们的两条角和另一条边的对应角分别相等,那么这两个三角形全等。
5.RHS法则(直角边和斜边):给定两个三角形,如果它们的一个角是直角,而且两个直角的边分别相等,那么这两个三角形全等。
6.HL法则(斜边和斜边对应的直角):给定两个直角三角形,如果它们的斜边相等,而且其中一个直角边和另一个直角边分别相等,那么这两个三角形全等。
除了以上六种经典的证明方法外,还存在一些其他的证明方法,如:7.余弦定理:如果在两个三角形中,对应的两边和夹角的余弦值都相等,那么这两个三角形全等。
8.正弦定理:如果在两个三角形中,对应的两边和夹角的正弦值都相等,那么这两个三角形全等。
9.星形相等法则:如果两个三角形的对应边分别相等,而且两组对边之间的夹角相等,那么这两个三角形全等。
10.平移法:如果两个三角形中一对边平行且等长,并且另外两对边也分别平行,则这两个三角形全等。
11.旋转法:如果两个三角形中一对边对应相等,并且另外两个角分别相等,则这两个三角形全等。
12.镜像对称法:如果两个三角形对应边的长度相等,并且一个三角形的两个角和对应的另一个三角形的两个角之和都等于180度,则这两个三角形全等。
这些全等三角形的证明方法在几何学中被广泛应用,并且有着重要的理论和实际意义。
通过这些证明方法,我们可以判断两个三角形是否全等,从而在解决几何问题时提供有效的理论依据。
全等三角形的基础和经典例题含有答案
第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13-3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。
图13-5表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
初中数学-全等三角形判定经典例题
段,向什么方向延长,用“截取”的方法时,要考虑如何截取.
例 08.如图(a),已知:在 ABC 中, AB AC ,AD 是 A 的平分线,P 是 AD 上
任意一点.
求证: AB AC PB PC .
分析:本例涉及四条线段差的不等关系,要使用“三角形任意两边的差小于第三边” 这一定理,为了能够使用这一定理,必须把本题中的四条线段的差转化为三角形中三边关系 的问题. 可用截取的方法,也可用延长的方法. 用截取法,可在 AB 边上取一点 C,使
和)
∴ BDC C . ∴ BD BC BD . ∴ AC AB BC AB BD 说明:要证明线段 AB CD EF ,可用“延长”的方法:延长 AB 到 G,使 BC CD , 然后证明 AG EF . 也可用“截取”的方法:在 EF 上取点 H,使 EH AB ,然后证明 HF CD . 在具体问题中要考虑哪种方法可行. 用“延长”的方法时,要考虑延长哪条线
证明:在 AC 上取点 B ,使 AB AB ,连结 BD ,则在 ABD 和 ABD 中. AB AB(已作) BAD BAD(角平分线定义) AD AD(公共边)
全等三角形的判定方法50道经典题
全等三角形的判定方法50道经典题以下是全等三角形判定的50道经典题:1. 给定两个三角形的三边长,判断它们是否全等。
2. 给定两个三角形的一个角和两个侧边,判断它们是否全等。
3. 给定两个三角形的两个角和一个侧边,判断它们是否全等。
4. 给定两个三角形的一个角和两个高,判断它们是否全等。
5. 给定两个三角形的两个角和一个高,判断它们是否全等。
6. 给定两个三角形的两个角和一个中线,判断它们是否全等。
7. 给定两个三角形的一个角和两个角平分线,判断它们是否全等。
8. 给定两个三角形的两个角和一个外接圆半径,判断它们是否全等。
9. 给定两个三角形的一个角和一个内切圆半径,判断它们是否全等。
10. 给定两个三角形的一个角和一个内心到边的距离,判断它们是否全等。
11. 给定两个三角形的两个角和一个重心到边的距离,判断它们是否全等。
12. 给定两个三角形的两个角和一个垂心到边的距离,判断它们是否全等。
13. 给定两个三角形的一个角和一个外心到边的距离,判断它们是否全等。
14. 给定两个三角形的两个角和一个外心到边的距离,判断它们是否全等。
15. 给定两个三角形的两个角和一个垂足到边的距离,判断它们是否全等。
16. 给定两个三角形的两个角和一个内心到边的角平分线的距离,判断它们是否全等。
17. 给定两个三角形的一个角和一个外心到边的角平分线的距离,判断它们是否全等。
18. 给定两个三角形的两个角和一个内角平分线的夹角,判断它们是否全等。
19. 给定两个三角形的一个角和两个角平分线的夹角,判断它们是否全等。
20. 给定两个三角形的两个角和一个内心到边的角平分线的夹角,判断它们是否全等。
21. 给定两个三角形的两个角和一个内心到边的角平分线的夹角,判断它们是否全等。
22. 给定两个三角形的一个角和两个角平分线的夹角之和,判断它们是否全等。
23. 给定两个三角形的两个角和一个内心到边的角平分线的夹角之和,判断它们是否全等。
北师大版七年级下册数学《全等三角形》全等三角形的判定(1)讲义
12.2全等三角形的判定(1)知识点一:全等三角形的判定1、全等三角形的判定一:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”. 用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌'''A B C ∆(SSS ) 2、这个判定方法告诉我们:当三角形的三边都确定后,其形状、大小都随之确定,这就是三角形的稳定性. 3、全等三角形的判定二:两边和他们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”. 用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌'''A B C ∆(SAS ) 知识点二:全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等,全等三角形的周长、面积相等. 例题一:1、已知:如图,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .2、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .3、如图,AD=CB ,E 、F 是AC 上两动点,且有DE=BF.(1)若E 、F 运动至如图①所示的位置,且有AF=CE ,求证:△ADE ≌△CBF.(2)若E 、F 运动至如图②所示的位置,仍有AF=CE ,那么△ADE ≌△CBF 还成立吗?为什么? (3)若E 、F 不重合,AD 和CB 平行吗?说明理由.A ’C ’B ’C ’ B ’C ’ ∠B ’D FCBAEDFCBA EC 'B 'A 'C BA C 'B 'A 'C B A练习一:1、如图,AB=AC,BD=CD,求证:∠1=∠2.2、如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.证明△ABC≌△FDE.3、如图,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.例题二:4、已知:如图,AB∥CD,AB=CD.求证:AD∥BC.5、如图所示,AD为△ABC的高,且AD=BD,F为AD上一点,连结BF并延长AC于E,CD=FD,求证:BE⊥AC.6、(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结论?并说明理由. FDCBEAABCED(2)如图,∠1=∠2,AB=AD ,AE=AC ,求证BC=DE. 练习二:4、已知:如图,AB =AC ,BE =CD .求证:∠B =∠C .5、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .6、已知:如图,AC ⊥BD ,BC=CE ,AC=DC ,求证:∠B+∠D=90°.第二部分:能力拓展例题:7、如图,在△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,找出图中全等的三角形,并说明理由.8、如图,已知CA=CB ,AD=BD ,M 、N 分别是CA、CB 的中点,求证:DM=DN.跟进练习:7、已知,如图A 、F 、C 、D 四点在一直线上,AF= CD ,AB ∥DE ,且AB= DE ,求证:(1)△ABC ≌△DEF ;(2)CBF=FEC.8、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
全等三角形经典模型总结
全等三角形经典模型总结1.S-A-S(边-角-边)全等法则:当一个三角形的两边和夹角分别等于另一个三角形的两边和夹角时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,∠ABC=∠DEF,并且BC=EF,那么三角形ABC全等于三角形DEF。
2.A-S-A(角-边-角)全等法则:当一个三角形的两角和夹边分别等于另一个三角形的两角和夹边时,两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,BC=EF,并且∠BCA=∠EFD,那么三角形ABC全等于三角形DEF。
3.S-S-S(边-边-边)全等法则:当两个三角形的三边分别对应相等时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且AC=DF,那么三角形ABC全等于三角形DEF。
4.H-L(高-底)全等法则:如果两个三角形的高和底分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果h1是三角形ABC的高,b1是它的底,h2是三角形DEF的高,b2是它的底,如果h1=h2,b1=b2,则三角形ABC全等于三角形DEF。
5.A-A-S’(角-角-边)全等法则:若三角形的两个角和两个边分别与另一三角形的两个相对角和边对应,则两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,∠BCA=∠EFD,并且AC/DF=BC/EF,那么三角形ABC全等于三角形DEF。
6.1-1-1全等法则:如果两个三角形的边长度分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,AC=DF,并且BC=EF,那么三角形ABC全等于三角形DEF。
7.1-1-边(边-边)全等法则:如果两个三角形的两个边和一个夹角分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且∠ABC=∠DEF,那么三角形ABC全等于三角形DEF。
七年级下册数学 4.3.3 三角形全等的判定3经典 课件
6
⑤
4 40° 6 ③
4 ⑥
四、课堂小结
本节课你学习了什么? 发现了什么? 有什么收获? 还存在什么没有解决的问题?
A
D
O
B
C
3. 某工厂接到一批三角形零件的加工
任务,要求尺寸如图。如果你是质检人员,
你至少需要量出几个数据,才能判断产品是
否合格呢? 6
β
4
α
γ
5
二、探究新知
1、当两个三角形只有一组边相等或一组角相 等时,它们全等吗?
2、两个三角形中,
(1)有两组边分别相等,它们全等吗? (2)有两组角分别相等,它们全等吗? (3)有一组边、一组角分别相等,它们全等吗?
活动二
观察下面四个三角形,先猜一猜,再量一量, 哪两个三角形是全等三角形?
A
D
2.5
45º
B
3
①
2.5 60º
3
C E
②
F
H
3
2.5
③
45º N
45º
I
J
④
活动三
观察下面四个三角形,先猜一猜,再量一量, 哪两个三角形是全等三角形?
A
D
2.5
45º
B
3
①
2.5 60º
3
C E
②
F
H
3
2.5
③
N
45º
4.3.3 三角形全等的判定 (三)
教学目标
知识与技能:掌握三角形全等的“AAS”条件. 过程与方法:经历探索三角形全等条件的过程,
体会利用操作、归纳获得数学结论的过程. 情感态度与价值观:学生积极参与三角形全等条
件的探究过程,从中体会合作与成功的快乐,建立学习 好数学的自信心,体会三角形全等条件在现实生活中的 应用价值.
专题01 全等三角形(解析版)
专题01 全等三角形【考点1全等图形的相关概念】【考点2全等三角形的性质】【考点3全等三角形的判定】【考点4直角三角形全等的判定】【考点5全等三角形的判定与性质】【考点6全等三角形的实际应用】知识点1:全等图形全等形:能够完全重合的两个图形叫做全等形。
(一)全等形的形状相同,大小相等,与图形所在的位置无关。
(二)两个全等形的面积一定相等,但面积相等的两个图形不一定是全等形。
(三)一个图形经过平移、翻折、旋转后,形状、大小都没有改变,只是位置发生了变化,即平移、翻折、旋转前后的图形全等。
知识点2:全等多边形(1)定义:能够完全重合的两个多边形叫做全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(2)性质:全等多边形的对应边相等,对应角相等.(3)判定:边、角分别对应相等的两个多边形全等.知识点3:全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.知识点4:全等三角形的判定方法(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.知识点5:全等三角形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.考点剖析【考点1全等图形的相关概念】1.(2023秋•太和县期中)下列各组图形,是全等图形的是( )A.B.C.D.【答案】D【解答】解:A、不是全等图形,不符合题意;B、不是全等图形,不符合题意;C、不是全等图形,不符合题意;D、是全等图形,符合题意;故选:D.2.(2023秋•平原县期中)下列说法错误的是( )A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等【答案】C【解答】解:全等三角形的三条边相等,三个角也相等,A正确;判定两个三角形全等的条件中至少有一个是边,B正确;面积相等的两个图形不一定是全等形,C错误;全等三角形的面积和周长都相等,D正确,故选:C.3.(2023•东丽区一模)两个全等图形中可以不同的是( )A.位置B.长度C.角度D.面积【答案】A【解答】解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选:A.4.(2022秋•东莞市期末)下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形【答案】B【解答】解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选:B.5.(2023秋•淮阳区期中)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A.135°B.125°C.120°D.90°【答案】A【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:A.6.(2022秋•西乡塘区校级期末)下列四个图形中,属于全等图形的是( )A.①和②B.②和③C.①和③D.全部【答案】D【解答】解:根据全等形的定义可知,①,②,③,④都全等.故选:D.7.(2023秋•永泰县期中)如图,四边形ABCD与四边形A'B'C'D'是全等四边形,若∠A'=95°,∠B=75°,∠D'=130°,则∠C= 60° .【答案】60°.【解答】解:∵四边形ABCD与四边形A'B'C'D'是全等四边形,∴∠A=∠A′,∠D=∠D′,∵∠A'=95°,∠D'=130°,∴∠A=95°,∠D=130°,∵∠B=75°,∴∠C=360°﹣(95°+130°+75°)=60°.故答案为:60°.【考点2全等三角形的性质】8.(2023秋•虞城县期中)如图,△ABC≌△CDA,AB=5,BC=8,AC=7,则AD的长是( )A.5B.6C.7D.8【答案】D【解答】解:∵△ABC≌△CDA,BC=8,∴AD=BC=8.故选:D.9.(2023秋•阜平县期中)如图,△ABC≌△ADE,点D在边BC上,下列结论不正确的是( )A.AD=AB B.DE=BD+DC C.∠B=∠E D.∠BAD=∠CAE【答案】C【解答】解:∵△ABC≌△ADE,∴BC=DE,AB=AD,∠BAC=∠DAE,∠C=∠E,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,DE=BD+DC,即∠BAD=∠CAE,∴选项A、选项B、选项D正确,选项C不一定正确,故选:C.10.(2023秋•丹江口市期中)如图,△ABC≌△AED,点D在BC边上.若∠EAD=85°,∠B=30°,则∠ADC的度数是( )A.50°B.55°C.65°D.30°【答案】C【解答】解:∵△ABC≌△AED,∠EAD=85°,∴∠BAC=∠EAD=85°,AC=AD,∵∠B=30°,∴∠ADC=∠C=180°﹣85°﹣30°=65°,故选:C.11.(2023秋•鹤庆县期中)如图,△ABC≌△DEF(点A,B,C的对应点分别为D,E,F),若∠B=25°,∠C=45°,则∠D的度数为( )A.110°B.105°C.100°D.90°【答案】A【解答】解:∵∠B=25°,∠C=45°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣25°﹣45°=110°,∵△ABC≌△DEF(点A,B,C的对应点分别为D,E,F),∴∠D=∠BAC=110°,故选:A.12.(2022秋•长春期末)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为( )A.30B.27C.35D.40【答案】A【解答】解:∵△ABC≌△DEF,∴BC=EF=30,故选:A.12.(2023秋•文成县期中)如图,△ABC≌△DEF,BC=12,EC=7,则CF的长为( )A.5B.6C.7D.8【答案】A【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=12,∴EF=12,∴EC=7,∴CF=EF﹣EC=12﹣7=5,故选:A.13.(2023秋•天长市期中)如图,△ABD≌△ACE,BE=16,DE=10,则BC的长是( )A.24B.20C.21D.22【答案】D【解答】解:∵△ABD≌△ACE,∴BD=EC=BE﹣DE=6,∴BC=BE+EC=16+6=22,故选:D.14.(2022秋•市中区期末)如图,已知△CAD≌△CBE,若∠A=30°,∠C=80°,则∠CEB =( )A.50°B.60°C.70°D.80°【答案】C【解答】解:∵∠A=30°,∠C=80°,∴∠ADC=180°﹣80°﹣30°=70°,∵△CAD≌△CBE,∴∠CEB=∠CDA=70°;故选:C.15.(2022秋•汶上县校级期末)如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为( )A.2B.3C.4D.5【答案】A【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选:A.16.(2023秋•琼中县期中)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD,BE 交于点F,△ADC≌△BDF,若BD=4,CD=2,则△ABC的面积为( )A.24B.18C.12D.8【答案】C【解答】解:∵△ADC≌△BDF,∴AD=BD,∵BD=4,∴AD=4,∵DC=2,∴BC=BD+DC=4+2=6,∴S===12,△ABC故选:C.【考点3全等三角形的判定】17.(2023秋•社旗县期中)如图所示的四个三角形中,全等的三角形是( )A.①③B.①②C.②④D.①③④【答案】B【解答】解:根据SAS可知①和②中的两个三角形全等.故选:B.18.(2023秋•太和县期中)如图,AB∥DE,BC=EF.补充下列一个条件,不能使△ABC≌△DEF的是( )A.AC=DF B.∠A=∠D C.AB=DE D.AC∥DF【答案】A【解答】解:∵AB∥DE,∴∠B=∠DEF,且BC=EF,A、若AC=DF,不能判定△ABC≌△DEF,符合题意;B、若∠A=∠D,可根据“角角边”判定△ABC≌△DEF,不符合题意;C、若AB=DE,可根据“边角边”判定△ABC≌△DEF,不符合题意;D、若AC∥DF,则∠ACB=∠F,可根据“角边角”判定△ABC≌△DEF,不符合题意;故选:A.19.(2023秋•新和县期中)已知:如图,AB=DC,AE=BF,∠A=∠FBD,求证:△AEC ≌△BFD.【答案】见解析.【解答】证明:∵AB=DC,∴AB+BC=DC+BC,∴AC=BD,在△AEC和△BFD中,,∴△AEC≌△BFD(SAS).20.(2023•咸阳一模)已知,如图,AB=AE,AB∥DE,∠ACB=∠D,求证:△ABC≌△EAD.【答案】证明过程见解答.【解答】证明:∵AB∥DE,∴∠E=∠BAC,在△ABC和△EAD中,,∴△ABC≌△EAD(AAS).21.(2023秋•曹县期中)如图,点F,C在BE上,BF=CE,AB=DE,∠B=∠E.求证:△ABC≌△DEF.【答案】见试题解答内容【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).22.(2022秋•祁阳县期末)已知,如图,∠1=∠2,∠C=∠D,BC=BD,求证:△ABD≌△EBC.【答案】见试题解答内容【解答】证明:∵∠1=∠2,∴∠1+∠EBD=∠2+∠EBD,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(ASA).23.(2023秋•建湖县期中)已知,如图,点D、E分别在AB、AC上,AD=AE,BE、CD相交于点O,∠B=∠C,求证:(1)△ABE≌△ACD;(2)△BOD≌△COE.【答案】见试题解答内容【解答】证明:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(AAS);(2)∵△ABE≌△ACD,∴AB=AC,∵AD=AE,∴BD=CE,在△BOD和△COE中,,∴△BOD≌△COE(AAS).24.(2022秋•汉阳区校级期末)如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.【答案】见试题解答内容【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE(ASA).【考点4直角三角形全等的判定】25.(2023春•渭滨区期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是( )A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′【答案】C【解答】解:∵在Rt△ABC和Rt△A′B′C′中,如果AC=A′C′,AB=A′B′,那么Rt△ABC和Rt△A′B′C′一定全等,故选:C.26.(2023秋•疏勒县期中)已知:如图AD为△ABC的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:Rt△BFD≌Rt△ACD.【答案】见解析.【解答】证明:∵AD是△ABC的高,∴∠ADB=∠ADC=90°.在Rt△BFD和Rt△ACD中,∴Rt△BFD≌Rt△ACD(HL).27.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.【答案】见试题解答内容【解答】证明:如图,在Rt△ACE和Rt△CBF中,,∴Rt△ACE≌Rt△CBF(HL),∴∠EAC=∠BCF,∵∠EAC+∠ACE=90°,∴∠ACE+∠BCF=90°,∴∠ACB=180°﹣90°=90°.28.(2023春•垦利区期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.【答案】见试题解答内容【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL).29.(2022春•泾阳县期中)已知:如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【答案】见试题解答内容【解答】证明:∵DE=BF,∴DE+EF=BF+EF;∴DF=BE;在Rt△ADF和Rt△CBE中,∴Rt△ADF≌Rt△CBE(HL),∴AF=CE.【考点5全等三角形的判定与性质】30.(2023秋•礼县期中)如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【解答】解:①∵∠ADC=∠B+∠BAD,∠B=∠ADE=40°,∴∠BAD=∠ADC﹣∠ADE,即∠BAD=∠CDE,∵AB=AC,∴∠B=∠C,∵∠DEC=180°﹣∠CDE﹣∠C,∠BDA=180°﹣∠BAD﹣∠B,∴∠DEC=∠BDA,故①正确;②∵AB=AC,∴∠B=∠C=40°,由①可知∠DEC=∠BDA,∵AD=DE,∴△ABD≌△DCE(ASA),∴BD=CE,故②正确;③∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=90°﹣40°=50°,∵∠C=∠B=40°,∴∠DEC=90°,∴DE⊥AC,故③正确;④∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE或AD=DE,当AE=DE时,∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣40°=60°,故④不正确,综上所述正确的有①②③,故选:C.31.(2023秋•临颍县期中)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为( )A.30°B.56°C.26°D.82°【答案】A【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠1=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠2,∵∠3=∠1+∠ABD,∴∠3=∠1+∠2,∵∠1=26°,∠3=56°,∴∠2=56°﹣26°=30°,故选:A.32.(2023秋•太和县期中)如图,在△ABC中,AB=AC,∠B=∠EDF,若BE=CD=1,BC=3,则CF的长为( )A.1B.2C.3D.4【答案】B【解答】解:∵AB=AC,∴∠B=∠C,∵∠BED=180°﹣∠B﹣∠BDE,∠CDF=180°﹣∠EDF﹣∠BDE,∠B=∠EDF,∴∠BED=∠CDF,∵BE=CD,∴△BED≌△CDF(ASA),∴CF=BD,∵BC=3,CD=1,∴BD=2,∴CF=2,故选:B.33.(2023秋•鹤庆县期中)已知△ABC中AD为中线,且AB=5、AC=7,则AD的取值范围为( )A.2<AD<12B.5<AD<7C.1<AD<6D.2<AD<10【答案】C【解答】解:延长AD至点E,使DE=AD,连接EC,在△ADB和△EDC中∴△ADB≌△EDC(SAS),∴CE=AB,∵AB=5,AC=7,∴CE=5,设AD=x,则AE=2x,∴7﹣5<2x<7+5,∴1<x<6,故选:C.34.(2023秋•辉县市期中)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,BD=6,CD=4,则线段AF的长度为( )A.1B.2C.4D.6【答案】B【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠ABC=45°,∴∠ABD=∠DAB,∴BD=AD=6,∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD,∴∠AFE=∠C,∵∠AFE=∠BFD∴∠C=∠BFD在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=DF=4,∴AF=AD﹣DF=6﹣4=2.故选:B.35.(2023秋•应城市期中)如图,在△ABC和△CDE中,点B,C,E在同一条直线上,∠B =∠E=∠ACD,AC=CD,若AB=1,BE=4,则DE的长为( )A.1B.2C.3D.4【答案】C【解答】解:∵∠B+∠ACB+∠BAC=180°,∠B=∠E=∠ACD,∴∠ACD+∠ACB+∠BAC=180°,∵∠ACD+∠ACB+∠DCE=180°,∴∠BAC=∠DCE,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴BC=DE,AB=CE,∵AB=1,BE=4,∴DE=BC=BE﹣CE=BE﹣AB=4﹣1=3,故选:C.36.(2022秋•阿荣旗期末)如图,在△ABC中,∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC,连接AD,若BC=8,则BD+DE等于( )A.6B.7C.8D.9【答案】C【解答】解:∵DE⊥AB,∴∠DEB=90°,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴CD=DE,∴BD+DE=BD+CD=BC,∵BC=8,∴BD+DE=BC=8.故选:C.37.(2022秋•和平区校级期末)如图所示,BC、AE是锐角△ABF的高,相交于点D,若AD =BF,AF=7,CF=2,则BD的长为( )A.2B.3C.4D.5【答案】B【解答】解:∵BC、AE是锐角△ABF的高,∴∠BCF=∠ACD=∠AEF=90°,∴∠F+∠CAD=∠F+∠CBF=90°,∴∠CBF=∠CAD,在△BCF和△ACD中,,∴△BCF≌△ACD(AAS),∴CD=CF=2,BC=AC=AF﹣CF=5,∴BD=BC﹣CD=5﹣2=3.故选:B38.(2023秋•京口区期中)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长.【答案】(1)见解析;(2)FC=4cm.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF(ASA).(2)解:∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10cm,BF=3cm,∴FC=10﹣3﹣3=4cm.39.(2023秋•连山区期中)如图,点D在AC边上,∠A=∠B,AE=BE,∠1=∠2.(1)求证:△AEC≌△BED;(2)若∠1=45°,求∠BDE的度数.【答案】(1)见解析;(2)67.5°.【解答】(1)证明:∵∠2+∠BDE=∠ADE=∠1+∠C,∠1=∠2∴∠C=∠BDE,在△AEC和△BED中,,∴△AEC≌△BED(AAS),(2)解:∵△AEC≌△BED,∴EC=ED,∴∠EDC=∠C,∵∠1=45°∴∴∠BDE=67.5°40.(2023秋•科尔沁区期中)如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.【答案】见试题解答内容【解答】(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.41.(2023秋•合江县期中)如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.【答案】见试题解答内容【解答】(1)证明:过点M作ME⊥AD于E,∵∠B=∠C=90°,∴MB⊥AB,MC⊥CD,∵DM平分∠ADC,ME⊥AD,MC⊥CD,∴ME=MC,∵M是BC的中点,∴MC=MB,∴MB=ME,又∴MB⊥AB,ME⊥AD,∴AM平分∠DAB.(2)∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中,,∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.【考点6全等三角形的实际应用】42.(2023秋•镇平县期中)一名工作人员不慎将一块三角形模具打碎成了如图所示的四块,他需要去商店再配一块与原来大小和形状完全相同的模具.现只能拿能两块去配,其中可以配出符合要求的模具的是( )A.①③B.②④C.①④D.②③【答案】B【解答】解:根据题意得:拿①②或②④可以根据“角边角”得到原三角形全等的三角形.故选:B.43.(2023秋•昭阳区期中)如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB=40°,然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是( )A.SAS B.AAA C.SSS D.ASA【答案】D【解答】解:在△MBC,△ABC中,,∴△MBC≌△ABC(ASA).故选:D.44.(2023春•龙岗区校级期末)如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是( )A.ASA B.AAS C.SSS D.HL【答案】C【解答】解:∵AB=AC,点D,E分别是AB,AC的中点,∴AD=AE,在△ADM和△AEM中,.∴△ADM≌△AEM(SSS),故选:C.45.(2023•怀化三模)如图所示,工人赵师傅用10块高度都是1.5m的相同长方体新型建筑材料,垒了两堵与地面垂直的墙ABCD和EFGH,点P在BE上,已知AP=PF,∠APF=90°.(1)求证:△ABP≌△PEF;(2)求BE的长.【答案】(1)证明见解答;(2)15m.【解答】(1)证明:∵∠ABP=∠FEP=90°,∠APF=90°,∴∠APB=∠PFE(同角的余角相等).在△ABP与△PEF中,,∴△ABP≌△PEF(AAS);(2)由题意知,AB=1.5×3=4.5(m),EF=7×1.5=10.5(m).由(1)知,△ABP≌△PEF,∴BP=EF=10.5m,AB=PE=4.5m,∴BE=BP+PE=15m.46.(2023秋•云梦县期中)在测量一个小口圆形容器的壁厚时(容器壁厚度均匀),小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,只需测得AB=a,EF=b,就可以知道圆形容器的壁厚了.(1)请你利用所学习的数学知识说明AB=CD;(2)若a=58.6mm,b=61.2mm,求出圆形容器的壁厚.【答案】(1)见解析;(2)圆形容器的壁厚为1.3mm.【解答】解:(1)在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD;(2)∵EF=b=61.2mm,AB=CD=a=58.6mm,∴圆形容器的壁厚为.47.(2023春•渠县校级期末)生活中的数学:(1)启迪中学计划为现初一学生暑期军训配备如图1所示的折叠凳,这样设计的折叠凳坐着舒适、稳定,这种设计所运用的数学原理是 三角形具有稳定性 .(2)图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD 的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,请说明AD=CB的理由.【答案】(1)三角形具有稳定性;(2)见解答.【解答】(1)解:这种设计所运用的数学原理是三角形具有稳定性,故答案为:三角形具有稳定性;(2)证明:∵O是AB和CD的中点,∴AO=BO,CO=DO,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC.过关检测一.选择题(共10小题)1.(2023秋•巴东县期中)下列汽车标志中,是由多个全等图形组成的有( )个.A.1B.2C.3D.4【答案】C【解答】解:组成第1个图形的各部分不全等,不符合题意;组成第2个图形的两个图形全等,符合题意;组成第3个图形的三个图形全等,符合题意;组成第4个图形是四个圆形全等,符合题意.故选:C.2.(2023秋•沂南县期中)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数为( )A.30°B.31°C.32°D.33°【答案】D【解答】解:由三角形内角和定理得,∠2=180°﹣117°﹣30°=33°,∵两个三角形全等,∴∠1=∠2=33°,3.(2022秋•海淀区校级期末)如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为( )A.34°B.56°C.62°D.68°【答案】C【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,AB=AE,∴∠BAE=∠1=56°,∴∠B=∠AEB=(180°﹣56°)=62°,∴∠AED=∠B=62°,故选:C.4.(2023秋•广陵区校级月考)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【答案】D【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;5.(2023秋•张北县期中)如图,要测量池塘A,B两端的距离,作线段AC与BD相交于点O.若AC=BD=8m,AO=DO,△COD的周长为14m,则A,B两点间的距离为( )A.6m B.8m C.10m D.12m【答案】A【解答】解:∵AC=BD,AO=DO,∴AC﹣AO=BD﹣DO,即OC=OB,∵OC=OB,∠COD=∠BOA,OD=OA,∴△COD≌△BOA(SAS),∴AB=CD,∵△COD的周长为14m,∴OC+OD+CD=14m,即AC+CD=14m,∴CD=6m,∴AB=6m,故选:A.6.(2023秋•崆峒区校级期中)装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片( )A.①B.②C.③D.④【答案】A【解答】解:②、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第①块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:A.7.(2023秋•青秀区校级期中)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB'的中点.只要量出A′B′的长度.就可以知道该零件内径AB的长度.依据的数学基本事实是( )A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短【答案】B【解答】解:∵点O为AA'、BB'的中点,∴OA=OA',OB=OB',由对顶角相等得∠AOB=∠A'OB',在△AOB和△A'OB'中,,∴△AOB≌△A'OB'(SAS),∴AB=A'B',即只要量出A'B'的长度,就可以知道该零件内径AB的长度,故选:B.8.(2022秋•正定县期末)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是( )A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E【答案】B【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,A、加上条件AB=AE可利用SAS定理证明△ABC≌△AED;B、加上BC=ED不能证明△ABC≌△AED;C、加上∠C=∠D可利用ASA证明△ABC≌△AED;D、加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:B.9.(2023秋•丹阳市期中)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是( )A.3个B.4个C.5个D.6个【答案】B【解答】解:如图,观察图象可知满足条件的三角形有4个.故选:B.10.(2022秋•灵宝市校级期末)现有一块如图所示的四边形草地ABCD,经测量,∠B=∠C,AB=10m,BC=8m,CD=12m,点E是AB边的中点.小狗汪汪从点B出发以2m/s的速度沿BC向点C跑,同时小狗妞妞从点C出发沿CD向点D跑,若能够在某一时刻使△BEP与△CPQ全等,则妞妞的运动速度为( )A.B.C.2m/s或D.2m/s或【答案】D【解答】解:∵AB=10m,E是AB边的中点,∴BE=5m,∵∠B=∠C,且△BEP与△CPQ全等,∴BP=CQ,BE=CP或CP=BP,BE=CQ,当BP=CQ,BE=CP时,∵BE=5m,BC=8m,设运动时间为t,8﹣2t=5,解得,∴,此时妞妞的运动速度为:m/s,当CP=BP,BE=CQ时,,t=2,此时CQ=5,妞妞的运动速度为:,故选:D.二.填空题(共5小题)11.(2023秋•武都区期中)如图,点A,D,C,E在一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为 4 .【答案】4.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=7,又∵AE=10,∴AC+DE﹣CD=10,∴CD=14﹣10=4;故答案为:4.12.(2023秋•招远市期中)如图,已知BD=CE,∠ADB=∠AEC,若AC=9,AE=2,则线段DC的长为 7 .【答案】7.【解答】解:在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴AD=AE=2,∵AC=9,∴DC=AC﹣AD=7,故答案为:7.13.(2023秋•湖北期中)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别截取OM,ON,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C连OC.可知△OMC≌△ONC,OC便是∠AOB 的平分线.则△OMC≌△ONC的理由是 SSS .【答案】SSS.【解答】证明:由题意知;CM=CN,在△OMC和ONC中,,∴△OMC≌ONC(SSS),∴△OMC≌△ONC的理由是SSS.故答案为:SSS.14.(2023秋•宁江区期中)如图,在△ABC中,CD平分∠ACB,过点B作BE⊥CD于点D,交AC于点E.已知∠ABE=∠A,AC=10,BC=6.则BD的长为 2 .【答案】2.【解答】解:∵CD平分∠ACB,∴∠BCD=∠DCE,∵BE⊥CD,∴∠BDC=∠EDC=90°,在△CDB≌△CDE中,,∴△CDB≌△CDE(ASA),∴BD=DE,CE=BC=6,即△BCE为等腰三角形,∴AE=AC﹣CE=4,又∵∠A=∠ABE,∴BE=AE,∴BD=DE=BE=2,故答案为:2.15.(2023春•文登区期中)如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ=AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP= 5cm或10cm 时,△ABC和△QPA全等.【答案】5cm或10cm.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.故答案为:5cm或10cm.三.解答题(共3小题)16.(2023•工业园区校级模拟)如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF、DF,求证CF=DE.【答案】证明见解答过程.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥BF,∴∠A=∠B,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴DE=CF,即CF=DE.17.(2023秋•南川区期中)如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若BD=8,DC=5,求ED的长.【答案】(1)证明见解析;(2)3.【解答】(1)证明:∵∠BAC=∠EAD,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵△ABE≌△ACD,∴BE=CD,∵BD=8,DC=5,∴ED=BD﹣BE=BD﹣CD=8﹣5=3.18.(2023春•周村区期末)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】见试题解答内容【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
七年级下全等三角形练习题经典综合拔高题
1. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC于D , BC=DF .求证:AC=EF .4. 如图,在ΔABC 中,AC=AB ,AD 是BC 边上的中线,则AD ⊥BC ,请说明理由。
5. 如图,已知AB=DE ,BC=EF ,AF=DC ,则∠EFD=∠BCA ,请说明理由。
FGEDCBAA BC D E F A B C DF E DCBA6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
7. 如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。
(1)∠DBH=∠DAC ;(2)ΔBDH ≌ΔADC 。
8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.9,已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
A B C DE A BCDE H10.如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE =DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。
11已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.12如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.13如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。
全等三角形证明经典10题((含答案)
全等三角形证明经典10题(含答案)1 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .2.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
3.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=24.已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBCA BCDE1.证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边) ∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
5.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG ∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CGBACDF21EABC DEF21EDC B A F又 EF =CG ∴EF =AC6.已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C7.如图所示,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE, 垂足为F,过B 作BD ⊥BC 交CF 的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD 的长.8.如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C 在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 试说明: BD=DE+CE9已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证明:在AC上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC – AB =AC-AD=CD=BD在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD∵BE⊥AE∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD∴点E也是BD的中点∴BD=2BE∵BD=CD=AC-AB∴AC-AB=2BE22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.。
全等三角形的判定方法50道经典题
全等三角形的判定方法50道经典题全等三角形的判定方法是初中数学中重要的一部分,主要包括以下50道经典题目。
1. 如何通过边长判断两个三角形是否全等?答:如果两个三角形的三条边对应相等,则它们全等。
2. 如果通过角度判断两个三角形是否全等?答:如果两个三角形的三个角度对应相等,则它们全等。
3. 如何通过边角判断两个三角形是否全等?答:如果两个三角形中有一个角相等,并且两边对应相等,则它们全等。
4. 如果两个三角形的底边相等,底边上的高相等,判断它们是否全等。
答:根据边角对应的原理,如果底边和高都相等,则这两个三角形全等。
5. 给定两个相等的边和它们之间的夹角,判断它们所在的两个三角形是否全等。
答:根据边角对应的原理,如果两个相等的边和它们之间的夹角都相等,则这两个三角形全等。
6. 如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,判断它们是否全等。
答:根据边角边的原理,如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,则这两个三角形全等。
7. 如何通过勾股定理判断两个三角形是否全等?答:如果两个三角形的两条边的平方和相等,则它们全等。
8. 如果两个三角形的一个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角边角的原理,如果两个三角形的一个角相等,并且两边的比例相等,则这两个三角形全等。
9. 如果两个三角形的两个角相等,并且两边的比例相等,判断它们是否全等。
答:根据角角边的原理,如果两个三角形的两个角相等,并且两边的比例相等,则这两个三角形全等。
10. 给定两个相等的边和它们夹角的正弦值,判断它们所在的两个三角形是否全等。
答:根据正弦定理,如果两个相等的边和它们夹角的正弦值都相等,则这两个三角形全等。
11. 给定两个相等的边和它们夹角的余弦值,判断它们所在的两个三角形是否全等。
答:根据余弦定理,如果两个相等的边和它们夹角的余弦值都相等,则这两个三角形全等。
全等三角形经典30道(有解析)
A
【例5】 如图, AB AE , ABC AED , BC ED ,点 F 是 CD 的中点.
⑴ 求证: AF CD ;
B
E
⑵ 在连接 BE 后还能得出哪些结论?试说明你的结论. 【解析】⑴ 连接 AC、AD
∵ AB AE , ABC AED , BC ED ,
∵ BP AC , CQ AB , ∴ △ABP ≌△QCA ,
∴ AP AQ , APB QAC . ∵ BP AC ,∴ ADP 90 , ∴ APB DAP 90 , ∴ CAQ DAP 90 ,即 PAQ 90 ,
∴ AP AQ .
G E C A B E ,A ∴ △BDF ≌△CEG , ∴ BD CE .
A
D
FE
O
B
C
A
GD
E
O
B
C
A
FD
O B
GE C
【例4】 已知:如图,在 △ABC 中,H 是高 AD 、CE 的交点,且 AD CD .求证:AB HC .
【解析】∵ AD 、 CE 是 △ABC 的高,
∴ FBC FBE EBC A ACB DBC
在 △FBC 和 △DBDB FBC DBC ,∴ △FBC ≌△DBC BC BC
∴ CD CF 2CE .
【例7】 如图,△ABC 中, AB 4 , AC 7 ,M 是 BC 的中点, AD 平分 BAC ,过 M 作 FM ∥ AD 交 AC 于 F ,求 FC 的长.
∴ ADC BEC 90 ,
A
∴ B BCE BCE CHD 90 ,
∴ B CHD . 在 △ABD 和 △CHD 中,
全等三角形的经典模型(一)
全等三角形的经典模型(一)全等三角形的经典模型(一)在研究三角形的时候,全等三角形是一个非常重要的概念。
这里介绍一些经典的模型,帮助大家更好地理解和应用全等三角形。
三角形7级:倍长中线与截长补短倍长中线与截长补短是一个非常经典的全等三角形模型。
当三角形的中线等于另一条边的一半时,可以证明三角形全等。
此外,如果一条边被截成两段,其中一段的长度等于另一条边的长度减去另一段的长度,那么这两个三角形也是全等的。
三角形8级:全等三角形的经典模型(一)这是一个非常基础的全等三角形模型,利用的是三边对应相等的原理。
如果两个三角形的三条边分别相等,那么这两个三角形是全等的。
三角形9级:全等三角形的经典模型(二)这个模型利用的是两边一角相等的原理。
如果两个三角形的两条边和夹角分别相等,那么这两个三角形是全等的。
题型一:等腰直角三角形模型等腰直角三角形是一个非常特殊的三角形,可以利用其特殊的性质来解决问题。
常见的辅助线包括作高和补全为正方形等。
思路导航如果要解决一个等腰直角三角形的问题,可以尝试以下思路:1.利用特殊边特殊角证题,如AC=BC或90°,45,45。
2.常见辅助线为作高,利用三线合一的性质解决问题。
3.补全为正方形。
等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC或90°,45,45).如图1;⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2;⑶补全为正方形.如图3,4.典题精练例1】已知:如图所示,Rt△ABC中,AB=AC,BAC90°,O为BC的中点。
B⑴写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△XXX的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.解析】⑴OA=OB=OC⑴连接OA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合练习题知识点睛1、三角形全等的条件〔1〕边边边公理:如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为SSS 〔2〕边角边公理:如果两个三角形的两边与其夹角分别对应相等,那么这两个三角形全等,简记为SAS〔3〕角边角公理:如果两个三角形的两个角与其夹边分别对应相等,那么这两个三角形全等,简记为ASA〔4〕角角边公理:有两个角和其中一角的对边对应相等的两个三角形全等,简记为AAS2、直角三角形全等的特殊条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成"斜边、直角边"或"HL"3、选择证明三角形全等的方法〔"题目中找,图形中看"〕〔1〕已知两边对应相等①证第三边相等,再用SSS证全等②证已知边的夹角相等,再用SAS证全等③找直角,再用HL证全等〔2〕已知一角与其邻边相等①证已知角的另一邻边相等,再用SAS证全等②证已知边的另一邻角相等,再用ASA证全等③证已知边的对角相等,再用AAS证全等〔3〕已知一角与其对边相等证另一角相等,再用AAS证全等<4>已知两角对应相等①证其夹边相等,再用ASA证全等②证一已知角的对边相等,再用AAS证全等4、全等三角形中的基本图形的构造与运用〔1〕出现角平分线时,常在角的两边截取相等的线段,构造全等三角形〔2〕出现线段的中点〔或三角形的中线〕时,可利用中点构造全等三角形〔常用加倍延长中线〕 〔3〕利用加长〔或截取〕的方法解决线段的和、倍问题〔转移线段〕1. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .4. 如图,在ΔABC 中,AC=AB,AD 是BC 边上的中线,则AD ⊥BC,请说明理由.5. 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由.6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC,在AB 上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC 的长.经典例题FGEDCBAA BC D E F A B C DF EDCBA7. 如图,ΔABC 的两条高AD 、BE 相交于H,且AD=BD,试说明下列结论成立的理由. 〔1〕∠DBH=∠DAC ; 〔2〕ΔBDH ≌ΔADC.8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小.10. 如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G,DE ⊥AG 于E,且DE =DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.A B C DE A BCDE H11. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC,点P 在BD 上,PM ⊥AD于M,•PN ⊥CD 于N,判断PM 与PN 的关系.12. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C,•∠OAP+∠OBP=180°,若OC=4cm,求AO+BO的值.13. 如图,∠ABC=90°,AB=BC,BP 为一条射线,AD ⊥BP,CE ⊥PB,若AD=4,EC=2.求DE 的长.i.14. 如图所示,A,E,F,C 在一条直线上,AE=CF,过E,F 分别作DE•⊥AC,BF ⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC 的边EC 沿AC 方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.15. 如图,OE=OF,OC=OD,CF 与DE 交于点A,求证: AC=AD.16. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC.P D A C BM N P D AC B O GD FA CB E G DF A CBE F ED C AO(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长.17.如图∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2、5cm,DE=1.7cm,求BE的长18.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:<1> △ABC≌△AED;<2> OB=OE .19.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.20.已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.EDC BA21. 如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .22. 如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.23. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1) 求证:MB =MD ,ME =MF (2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.24. 如图,已知在△ABC 中,∠BAC 为直角,AB=AC,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC,求证CE=错误!BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由.25、〔7分〕在△ABC 中,,AB=AC, 在AB 边上取点D,在AC 延长线上了取点E ,使CE=BD , 连接DE 交BC 于点F,求证DF=EF .B DC FAEF E D C B AE DCBADA F26、〔8分〕如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F,交AC 的平行线BG 于G 点, DE ⊥DF,交AB 于点E,连结EG 、EF.(1) 求证:EG=EF;(2) 请你判断BE+CF 与EF 的大小关系,并说明理由.27、 如图△ABC ≌△A `B`C,∠ACB=90°,∠A=25°,点B 在A `B`上,求∠ACA `的度数.28、 如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE .29、 如图所示,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE, 垂足为F,过B 作BD ⊥BC 交CF 的延长线于D.BA`B B C E F E DC B A Gi.求证:<1>AE=CD;<2>若AC=12cm,求BD 的长.30、 在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.i. 求证:CE=CF.ii. 在图中,若G 点在AD 上,且∠GCE=45° ,则GE=BE+GD 成立吗?为什么?31、 如图<1>, 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 试说明: BD=DE+CE.若直线AE 绕A 点旋转到图<2>位置时<BD<CE>, 其余条件不变, 问BD 与DE 、CE 的关系如何? 为什么?若直线AE 绕A 点旋转到图<3>位置时<BD>CE>, 其余条件不变, 问BD 与DE 、CE 的关系如何? 请直接写出结果, 不需说明.归纳前二个问得出BD 、DE 、CE 关系.用简洁的语言加以说明.DCEGE D C B A M F32、 如图所示,已知D 是等腰△ABC 底边BC 上的一点,它到两腰AB 、AC 的距离分别为DE 、DF,CM⊥AB,垂足为M,请你探索一下线段DE 、DF 、CM 三者之间的数量关系, 并给予证明.33、 在Rt △ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点.写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系,并说明理由.若点M 、N 分别是AB 、AC 上的点,且BM=AN,试判断△OMN 形状,并证明你的结论. 34、 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF=BF+EF .35、如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:〔1〕FC =AD ;〔2〕AB =BC +AD .36、如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠<点E 、F 分别在边AB 、CD 上>,使点B 落在DC BA EFGAD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.<1>如图②,若M为AD边的中点,①,△AEM的周长=_____cm;②求证:EP=AE+DP;<2>随着落点M在AD边上取遍所有的位置<点M不与A、D重合>,△PDM的周长是否发生变化?请说明理由.。