总线的区别与存储器
微型计算机系统原理及应用 第4章 半导体存储器
17
4.3 半导体只读存储器(ROM)
4.3.1 掩膜式只读存储器ROM ROM制造厂家按用户提供的数据,在芯片制造时
写定。用户无法修改。
18
4.3.2 可编程的只读存储器PROM 只能写入一次。
19
4.3.3 可编程、可擦除的只读存储器EPROM
1. 紫外线擦除的EPROM 进行照射10~20min,擦除原存信息,成为全1状态。
8
2.静态RAM的结构 将多个存储单元按一定方式排列起来,就组成了一个静 态RAM存储器。
9
典型的SRAM 6116:2KB,A0~A10,D0~D7形成 128*16*8(每8列组成看作一个整体操作)的阵列
片选CS# 输出允许 OE#
读写控制 WE#
10
典型的SRAM芯片6264 (8KB)
29
存储器芯片的选用
RAM、ROM区别:
–ROM:ROM用来存放程序,为调试方便,多采用EPROM
–RAM:存储器容量不大,功耗较小时,可采用静态RAM;
系统较大,存储器容量很大,功能和价格成为主要矛盾, 要选择动态RAM,这时要考虑刷新问题。
组成存储器模块时,需要考虑的因素主要有:容
量、速度、负载等:
14
2. 双端口RAM举例
CY7C130/131/140/141 1K*8bit高速双端口SRAM A0~A9:地址线 I/O0~I/O7:数据线 CE#:片选 OE#:输出允许线 R/W#:读写控制 BUSY#: INT#:
15
存储器的基本组成 半导体存储器的内部结构为例
译码电路: 重合译码方式 存储体:核心。一个 基本存储电路可存入 一个二进制数码
A12 A7 A6 A5 A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 Vcc WE CS 2 A8 A9 A 11 OE A 10 CS 1 D7 D6 D5 D4 D3
计算机存储器——内存和外存
计算机存储器——内存和外存引言:存储器是计算机的第二个子系统。
它有一个重要的特性——无限可复制性,即其存放的数据被取出后,原来存放的数据依然存在,所以可以被反复利用。
本报告将从存储器的原理、分类、功能和发展状况等方面进行探究分析。
摘要:在计算机的组成结构中,有一个很重要的部分,就是存储器。
存储器的主要功能是存储程序和各种数据,并能在计算机运行过程中高速、自动地完成程序或数据的存取。
其是具有“记忆”功能的设备,是计算机智能化的重要保证。
存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。
计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。
它根据控制器指定的位置存入和取出信息。
有了存储器,计算机才有记忆功能,才能保证正常工作。
那么现有存储器的种类有哪些、它们又有哪些各自不同的性能及它们是如何在计算机中发挥存储作用的呢?为了理清楚以上问题,我做了有关于计算机内存与外存的相关研究。
关键词:存储器内存 RAM ROM 外存正文:存储器,英文名称为Memory,顾名思义,是一种用于存储信息的仪器,常用于计算机中的数据储存,计算机工作所需的所有数据都被存储在存储器中,包含原始数据、计算过程中所产生数据、计算所需程序、计算最终结果数据等等。
存储器的存在才使得计算机有了超强的记忆能力。
由此可见存储器对于计算机之重要性。
在介绍存储器原理之前,先解释一些重要名词。
存储位:存放一个二进制数位的存储单元,是存储器最小的存储单位,或称记忆单元存储字:一个数(n位二进制位)作为一个整体存入或取出时,称存储字存储单元:存放一个存储字的若干个记忆单元组成一个存储单元存储体:大量存储单元的集合组成存储体存储单元地址:存储单元的编号字编址:对存储单元按字编址字节编址:对存储单元按字节编址寻址:由地址寻找数据,从对应地址的存储单元中访存数据。
存储器采用具有两种稳定状态的物理器件来存储信息。
什么是计算机总线 总线和接口的区别
什么是计算机总线总线和接口的区别什么是计算机总线这个和计算机主机的构造有关系,首先,我们都知道计算机的cpu由两个部分组成,一个是控制单元,另一个是算术逻辑单元,cpu的控制单元负责计算机各个组件的协调与沟通,什么是沟通?就是数据传输,比如输入设备将信息传输到主存储器中,主存储器将数据传输到cpu中,cpu计算结果输出到输出设备等等。
而cpu 的算术逻辑主要是进行逻辑上的运作,判断等,比如加减乘除运算。
cpu只负责运算和协调控制各个组件,那么它所需要的数据从哪里来呢?答案是从主存储器那里来,输入设备会将用户输入的数给cpu(这是Intel的构架,AMD直接将主存储器和cpu连接而不通过北桥),北桥通往cpu的总线,因为需要连接主存储器和显示适配器等,因此需要极高的速度,我们把这条总线称之为系统总线,总线一次能传输的数据一般是32bit和64bit两种,而这些连接北桥通往cpu的设备,又有一个用来衡量传输能力的标准,叫做外频,举个例子,如果外频是333MHz的话,就意味著这些连接北桥的设备,每秒进行3.33*10 次传输,计算机中还有一个被固定死的倍频,cpu的主频(及每秒运作多少次)=外频*倍频,据说这个概念是为了协调高速cpu与低速外部设备而设计的==。
外部设备的每秒数据传输量=每秒传输多少次*总线宽度即可得之。
下面来说一下南桥,南桥和北桥一样,也是用来连接计算机设备的,主要是连接低速的网卡,USB设备,音频,硬盘等设备,连接这些设备也是由一条总线牵连,我们叫做I/O总线,至于PCI,PCI-Express是啥?我们就拿PCI-Express说事吧,PCI-Express就是总线接口,从主板表面上看,就是主存储器,显示适配器的插槽嘛,PCI-Express是新一代的总线接口,用来取代老式的PCI,AGP等,别小看这个东东,他影响着数据的传输速度哦,现在很多硬件都是往匹配PCI-Express方向发展,SATA是啥?和IDE插槽一样,是用来连接硬盘设备的,最后附上一张图:总线和接口的区别CPU与外设设备、存储器的连接和数据交换都需要通过接口设备来实现,前者被称为I/O接口,后者称为储存器接口。
专升本——计算机基础知识点
专升本-《计算机基础》第一课1、计算机概述(1)冯.诺依曼思想(体系)“程序存储”思想:程序:计算机能按照程序设计的步骤执行,(程序控制)。
(人工干预、人机交互)存储:信息能保存。
(2)传统意义上的计算机发展四代。
理解的是标志性电子设备。
第五代:人工智能计算机、神经网络方向、分布式方向(3)微型计算机发展标志:微处理器、中央处理器、中央处理单元、CPU。
4 位、8 位、16 位、(32 位64 位128 位)字长:一次能处理二进制数据的位数。
(字长,16 位机的字长就是16,一次能处理二进制数据16 位。
)。
1101100=(0110 0100)2计算机是机械记忆-(人的大脑是有机记忆)2、计算机的应用3、计算机系统组成(重点、难点)计算机系统由计算机硬件系统和计算机软件系统组成。
(1)计算机硬件组成五大部件:运算器、控制器、存储器、输入设备、输出设备。
运算器ALU,其中还有寄存器。
(2)CPU运算器+控制器。
微处理器、中央处理器、中央处理单元、CPU。
参数:字长(***位=几个字节*8)1 字节=8 位。
32 位机一次能处理(4)个字节。
频率32 位前提下还有速度的区别:频率。
1 秒钟运算的次数,单位为赫兹(Hz)。
主流的频率:2.5GHz。
(K M G T)例如:CPU 的描述:P4/2.4 G (奔腾4 代)Intel 公司:CPU 的主要市场。
238、386、486、586(奔腾),…、P4等。
AMD 公司:速龙系列。
第二次课一、存储器分类:内存储器和外存储器1、容量的描述(大小的描述)单位(存储):字节(B,byte),(1B=8b bit,二进制位)大小的描述:量级的描述10 0 6 101K=1024=2(2的0 =1,2的6 =64,2的10=1024)201M=1024K=2301G=1024M=2401T=1024G=2例如:内存的大小位:2GB 2*230=231 字节2、内存储器简称内存,也称为主存分类:随机存储器RAM 和只读存储器ROM提示:通常所说的内存指随机存储器RAM。
计算机中存储单元的硬件结构
计算机中存储单元的硬件结构
计算机中存储单元的硬件结构通常由存储器模块、存储器控制器和存储器总线组成。
1. 存储器模块:存储器模块是存储数据的物理部分,包括主存储器(RAM)和辅助存储器(硬盘、SSD等)。
主存储器用
于临时存储正在执行的程序和数据,而辅助存储器则用于永久存储数据和程序,以便在断电后不丢失。
2. 存储器控制器:存储器控制器是负责管理存储器模块的硬件组件,将CPU发送的读写指令转化为存储器操作。
它负责选
择特定的存储单元,并控制存储器进行数据的读取和写入操作。
3. 存储器总线:存储器总线是连接存储器模块和存储器控制器的物理通道,用于传输控制信号和数据。
存储器总线的宽度决定了一次能读写的位数,通常以字节为单位。
总之,存储单元的硬件结构包括存储器模块、存储器控制器和存储器总线,它们协同工作来实现计算机对数据的存储和读写操作。
微型计算机原理作业第二章习题与思考题
第二章第二章 习题与思考题习题与思考题一、填空题:1.1. 8086 CPU 内部数据总线宽度为内部数据总线宽度为__________________位,外部数据总线宽度为位,外部数据总线宽度为位,外部数据总线宽度为__________________位。
位。
位。
2.2. 8088 CPU 内部数据总线宽度为内部数据总线宽度为__________________位,外部数据总线宽度为位,外部数据总线宽度为位,外部数据总线宽度为__________________位。
位。
位。
3.3. 8086 CPU 地址总有地址总有____________位,寻址范围是位,寻址范围是位,寻址范围是__________________________________________。
4.4. 8086 CPU 的编程结构一般为的编程结构一般为________ ____________ ____和______ ______两部分两部分. .5.5. SP 常称为常称为____________________________________,其位数为,其位数为,其位数为_________位,作用是位,作用是位,作用是____ ___________________ _______________。
6.6. CS 常称为常称为____________________________________,其位数为,其位数为,其位数为_________位,作用是位,作用是位,作用是________ ___________________ ___________。
7.7. IP 常称为常称为____________________________________,其位数为,其位数为,其位数为_________位,作用是位,作用是位,作用是___ ___________________ ________________。
8.8. FLAGS 常称常称____________________________________,其位数为,其位数为,其位数为_________位,作用是位,作用是位,作用是_______ __________ _______ __________。
微机原理的三种总线和CPU的寻址方式完美版
高8位
低8位
CPU 奇存储体
A0~A18
A0~A18
1
0
偶存储体
8、8086与奇偶存储体连接图
低8位数据
高8位数据
① CPU的A1~A19与奇偶存储体的A0~A18对应 相连,同时选通某字对应的高、低字节存储单元;
②A0低电位选中偶存储体,输入/出该字的低8位数据; ③BHE低电位选中奇存储体输入/出该字的高8位数据。
2.3 试说明段寄存器的作用。 答:8086微处理器中的16位寄存器,用来存放对应的存储段的 段基值—段起始地址的高16位。通过段寄存器值和指令中给出 的16位段内偏移量,可得出存储器操作数的物理地址(20位)。
2.4 试说明8086的引脚信号中M/IO、DT/R、RD、WR、ALE和BHE 的作用。 答:8086的引脚信号中 M/IO*的作用是,存储器/I/O选择信号(输出)。用于区分当前 操作是访问存储器还是访问I/O端口。若该引脚输出高电平,表示 访问存储器;若输出低电平,表示访问I/O端口。 DT/R*的作用是,数据发送/接收信号(输出)用于指示数据 传送的方向,高电平表示CPU发送数据,低电平表示CPU接收数据。 该信号常用于数据缓冲器的方向控制。(T) RD*的作用是,读控制信号(三态输出),低电平有效时, 表示CPU正从存储器或I/O端口读取信息。 WR*的作用是,写控制信号(三态、输出),低电平有效。有 效时表示CPU正将信息写入存储器或I/O端口。 ALE的作用是,地址锁存允许,高电平有效。有效时表示地址 线上的地址信息有效。 BHE*的作用是,数据总线高8位输出允许 / 状态S7信号。在 总线周期的T1时刻,为数据总线高8位允许信号BHE,低电平有效, 有效时允许高8位数据在D15—D8总线上传送。
计算机总线技术
计算机总线技术本文主要讨论总线的分类及其结构,并介绍几种常用的内部总线和外部总线。
总线的基本概念一、总线的分类按照总线在系统机构中的层次位置上,一般可以分为:片内总线、内部总线和外部总线。
按照总线的数据传输方式,总线又可以分为串行总线和并行总线。
根据总线的传输方向又可以分为单向总线和双向总线。
1. 内部总线和外部总线(1)片内总线片内总线是在集成电路的内部,用来连接各功能单元的信息通路。
(2)内部总线内部总线又称为系统总线或板级总线,用于计算机系统内部的模板和模板之间进行通信的总线。
系统总线是微机系统中最重要的总线,人们平常所说的微机总线就是指系统总线,如STD 总线、PC 总线、ISA 总线、PCI 总线等。
尽管各种内部总线数目不同,但按功能仍可分为数据总线DB 、地址总线AB 、控制总线CB 、和电源总线PB 四部分,如图1.2所示。
①数据总线DB 用于传送数据信息。
②地址总线AB 是专门用来传送地址的。
地址总线位数决定了CPU 可直接寻址的内存空间大小。
③控制总线CB 控制总线包括控制、时序和中断信号线,用于传递各种控制信息,如有读/写信号,片选信号、中断响应信号等由CPU 发出的信号,以及中断请求信号、复位信号、总线请求信号等发给CPU 的信号。
④电源总线PB 用于向系统提供电源。
(3)外部总线计算机系统系统之间或计算机系统与外设之间的信息通路,称为外部总线。
如RS-232-C 总线,IEEE-488总线等。
2. 并行总线和串行总线计算机的内部总线一般都是并行总线,而计算机的外部总线通常分为并行总线和串行总线两种。
比如IEEE-488总线为并行总线,RS-232-C总线为串行总线。
并行总线的优点是信号线各自独立,信号传输快,接口简单;缺点是电缆数多。
串行总线的优点是电缆线数少,便于远距离传送;缺点是信号传输慢,接口复杂。
二、总线的模板化结构为了提高计算机系统的通用性、灵活性和教育改革扩展性,计算机的各部件采用模板化结构,再通过总线把各模板起来,称之为总线的模板化结构。
计算机上的总线知识
计算机上的总线知识计算机上的总线知识一、什么是总线总体上来说,总线是PC机的一种内部结构,它是CPU、内存、输入、输出设备传递信息的公用通道。
总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。
通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。
1、计算机工作原理大家可能都知道,我们现在使用的计算机是基于提出的"存储程序计算机(Stored Program Computer)",又称冯·诺依曼结构。
冯·诺依曼结构具有两个特点:1.使用二进制;2.全部指令和数据存放在存储器中,数据处理单元到存储器中读取指令并顺序执行。
冯·诺依曼结构的核心思想就是"存储程序",其最大的优点在于结构比较简单,便于控制。
基于这种结构,1949年制造出了电子计算机EDIAC(而非1946年制造的ENIAC),宣告人类历史上的电子计算机时代开始了。
尽管经过了近60年的发展,计算机经历了4代的变迁,发展到了我们今天所使用的微型计算机时代,但是计算机的基本结构没有太大的变化,基本延续了冯·诺依曼当初的设计思想:如上图所示的计算机工作原理,计算机核心部件是运算器和控制器,我们想要处理的信息指令通过输入设备进入存储器,再由存储器进入运算器,运算结果从输出设备反馈给我们,当然这一切都是在控制器的指挥下完成的。
在实际应用中,控制器和运算器构成了我们通常所说的CPU,存储器就是内存、硬盘、光盘、U盘,当然还有一些老掉牙的设备(软盘、磁带、磁鼓…);输入设备就是鼠标键盘,当然还有一些不常用的如扫描仪、光笔等等;输出设备则是显示器、打印机等等。
那么CPU和这些设备之间的信息交换是如何完成的呢?有的读者可能说:是通过主板完成的!这个答案可以算对,但是不太精确,其实CPU和外部设备之间的信息指令通讯是通过总线完成的。
2、总线的概念正如我们上面所说的,PC机的各个部件都要通过总线相连接,外部设备通过相应的接口电路再于总线相连接,从而形成了计算机硬件系统。
内存_百度百科
●2.什么是扩展内存?
我们知道,286有24位地址线,它可寻址16MB的地址空间,而386有32位地址线,它可寻址高达4GB的地址空间,为了区别起见,我们把1MB以上的地址空间称为扩展内存XMS(eXtend
memory)。
在386以上档次的微机中,有两种存储器工作方式,一种称为实地址方式或实方式,另一种称为保护方式。在实方式下,物理地址仍使用20位,所以最大寻址空间为1MB,以便与8086兼容。保护方式采用32位物理地址,寻址范围可达4GB。DOS系统在实方式下工作,它管理的内存空间仍为1MB,因此它不能直接使用扩展存储器。为此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下扩展内存的使用标准,即扩展内存规范XMS。我们常在Config.sys文件中看到的Himem.sys就是管理扩展内存的驱动程序。
目录[隐藏]
【内存简介】
【内存概述】
【内存概念】
【内存频率】
【内存发展】
【内存区别】
【内存品牌】
【内存容量】 【内存辨别】源自存故障判断过程 【内存简介】
【内存概述】
【内存概念】
【内存频率】
【内存发展】
【内存区别】
在1985年初,Lotus、Intel和Microsoft三家共同定义了LIM-EMS,即扩充内存规范,通常称EMS为扩充内存。当时,EMS需要一个安装在I/O槽口的内存扩充卡和一个称为EMS的扩充内存管理程序方可使用。但是I/O插槽的地址线只有24位(ISA总线),这对于386以上档次的32位机是不能适应的。所以,现在已很少使用内存扩充卡。现在微机中的扩充内存通常是用软件如DOS中的EMM386把扩展内存模拟或扩充内存来使用。所以,扩充内存和扩展内存的区别并不在于其物理存储器的位置,而在于使用什么方法来读写它。下面将作进一步介绍。
第六章总线(含练习题)
6.2 总线结构
系统总线
IOP (通道)
CPU 存储 总线
主存
I/O总线
I/O接口
…
I/O接口
I/O设备 1
…
I/O设备 n
三总线结构框图
多用于大、中型计算机系统; 可发展为多总线结构。 系统吞吐能力强; 以硬件为代价。
第六章 总线
6.3 总线控制 • 解决总线结构必须面对的两个问题— 一是总线争用时的仲裁; 二是通信的双方如何在时间上协调。 • 具体完成这些任务的是总线控制器。 6.3.1 总线判优控制 一、主设备和从设备的概念 • 按总线上所连接的设备对总线有无控 制功能分— • 主设备(主方、主模块):
6.3 总线控制
• 优先次序体现在距离集中仲裁器的远 近; • 具体的查询电路略(见第八章)。 ( 3 )链式查询的特点 • 需要很少的信号线可以完成按既定优 先次序的总线仲裁; • 易于扩充设备; • 故障敏感; • 优先级安排可能造成低级别设备总是 用不上总线。
思考:计数器定时查询6.3 2.计数器定时查询方式中控制线的条数--
6.1 总线概述
教材P.213/185【例1】( 1 )某总线在一个总 线周期中并行传送4个字节的数据,假 设一个总线周期等于一个时钟周期,总 线时钟频率是33MHz,总线带宽是多 少? 解答:用Dr表示总线带宽;总线时钟周期 为T=1/f;一个总线周期传送的数据量表 示为D;依据定义有: Dr=D/T=D×f=4B×33×106/s =132MB/s (若一个总线周期由4个T构成,总线带宽 是多少?)
6.3 总线控制
6.3 总线控制
例2:在异步串行传输系统中,若字符格 式为:1个起始位、8个数据位、1个奇 校验位、1个终止位,假设波特率为 1200bps,求这时的比特率。 解答: • 比特率为— 1200×(8/11)=872.73比特
微机原理总线
习题44.1 什么叫总线?总线如何进行分类?各类总线的特点和应用场合是什么?【解答】总线是指计算机中多个部件之间公用的一组连线,由它构成系统插件间、插件的芯片间或系统间的标准信息通路。
(1)微处理器芯片总线:元件级总线,是在构成一块CPU插件或用微处理机芯片组成一个很小系统时常用的总线,常用于CPU芯片、存储器芯片、I/O接口芯片等之间的信息传送。
(2)内总线:板极总线或系统总线,是微型计算机系统内连接各插件板的总线,用以实现微机系统与各种扩展插件板之间的相互连接,是微机系统所特有的总线,一般用于模板之间的连接。
在微型计算机系统中,系统总线是主板上微处理器和外部设备之间进行通讯时所采用的数据通道。
(3)外部总线:通信总线,主要用于微机系统与微机系统之间或微机与外部设备、仪器仪表之间的通信,常用于设备级的互连。
数据可以并行传输,也可以串行传输,数据传输速率低。
4.2 什么叫总线的裁决?总线分配的优先级技术有哪些?各自的特点是什么?【解答】当总线上的某个部件要与另一个部件进行通信时,首先应该发出请求信号,有时会发生同一时刻总线上有多个请求信号的情况,就要根据一定的原则来确定占用总线的先后次序,这就是总线裁决。
(1)并联优先权判别法通过优先权裁决电路进行优先级别判断,每个部件一旦获得总线使用权后应立即发出一个“总线忙”的信号,表明总线正在被使用。
当传送结束后释放总线。
(2)串联优先级判别法采用链式结构,把共享总线的各个部件按规定的优先级别链接在链路的不同位置上,位置越前面的部件,优先级别越高。
(3)循环优先权判别法类似于并联优先权判别法,只是动态分配优先权,原来的优先权编码器由一个更为复杂的电路代替,该电路把占用总线的优先权在发出总线请求的那些部件之间循环移动,从而使每个总线部件使用总线的机会相同。
4.3 总线数据的传送方式有哪些?各自有何特点?【解答】(1)串行传送方式只使用一条传输线,在传输线上按顺序传送信息的所有二进制位的脉冲信号,每次一位。
微机原理简答题
微机原理简答题1.微型计算机由那些基本功能部件组成?1).微处理器,2)主存储器,3)系统总线,4)辅助存储器,5)输入/输出(I/O)接口和输入/输出设备2.什么是总线?在计算机中,连接CPU与各个功能部件之间的一组公共线路,称为总线,在计算机中一般有三组功能不同的总线,传输地址信息的称为地址总线,传输数据信息的称为数据总线,传输控制信息的称为控制总线。
(只要答出总线定义,即可)3.简述微型计算机主要特点。
电子计算机是一种能自动,高速,精确地完成各式各样的数据存储,数值计算,逻辑推理,过程控制和数据处理功能的电子机器。
计算机的主要特点有四个方面,即:高速性,准确性,逻辑性,通用性。
(只要意思相近即可得分)4.BCD码运算修正规则是什么?BCD码运算修正规则:(1)凡是对应位运算结果为冗余码时,加(减)6修正。
(2)如该位和数有向高位进(借)位时,也在该位加(减)6修正。
(3)如低位修正结果使高位大于9时,高位进行加(减)6修正。
(只要意思相近即可)5.简述微处理器的基本功能。
CPU是组成微机系统的核心部件,其功能如下:(1)算术和逻辑运算,执行数据处理。
(2)暂存数据。
(3)实现程序控制,即可取指令,对指令寄存,译码分析并执行指令所规定的操作,还能提供整个系统所需的定时和控制信号。
6.什么是机器数?什么是机器数的真值?数在机器内的表示形式为机器数。
而机器数对应的数值称为机器数的真值8个总线周期8. 8086CPU内部由哪两部分组成?各完成什么工作?在8086内部由BIU和EU两大部分组成,BIU主要负责和总线打交道,用于CPU与存储器和I/O接口之间进行数据交换;EU主要是将从指令队列中取得的指令加以执行。
9. 简述8086内部EU和BIU两大功能单元各自的功能和这样组织的意义。
在8086内部,按功能划分可以分为BIU和EU两大部分,BIU主要负责总线接口,与存储器和I/O接口进行数据传递;而EU则是执行部件,主要是执行指令;这两部分分开可以在执行指令的同时,从存储器中将将要执行的指令取到指令队列,使两部分并行工作,提高CPU 的速度。
华工计算机接口技术作业-网院接口技术课后作业全解
第一题:名词解释主频、字长、总线、单片机、RAM、ROM、接口、端口、统一编址、I/O端口独立编址、中断、中断向量、DMA、并行通信、数模转换、模数转换、串行通信、波特率、异步通信、同步通信1、主频:即CPU内核工作的时钟频率2、字长:字长是直接用二进制代码指令表达的计算机语言,指令是用0和1组成的一串代码,它们有一定的位数,并分成若干字长段,各段的编码表示不同的含义,例如某台计算机字长为16位,即有16个二进制数组成一条指令或其它信息3、总线:是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束,按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号4、单片机:把构成一个微型计算机的一些功能部件集成在一块芯片之中的计算机。
5、RAM:又称作“随机存储器”,是与CPU直接交换数据的内部存储器,也叫主存(内存)6、ROM:只读存储器。
断电后信息不丢失,如计算机启动用的BIOS芯片。
存取速度很低,(较RAM而言)且不能改写7、接口:CPU和存储器、外部设备或者两种外部设备,或者两种机器之间通过系统总线进行连接的逻辑部件(或称电路)。
它是CPU与外界进行信息交换的中转站,是CPU和外界交换信息的通道。
8、端口:计算机中所有能被指令直接寻址的I/O口。
每个端口都有各自独一无二的端口地址。
9、统一编址:从存储空间划出一部分地址空间给I/O设备,把I/O接口中的端口当作存储器单元一样进行访问,不设置专门的I/O指令。
10、I/O端口独立编址:对接口中的端口单独编址而不占用存储空间,使用专门的I/O指令对端口进行操作,大型计算机通常采用这种方式。
11、中断:CPU在正常运行程序时,由于内部/外部事件或由程序预先安排引起CPU暂停正在运行的程序,而转到为内部/外部或为预先安排事件服务的程序中去。
服务完毕再返回去继续执行被暂停的程序。
计算机组成原理名词解释和简答
第一章名词解释:1.中央处理器:主要由运算器和控制器组成。
控制部件,运算部件,存储部件相互协调,共同完成对指令的执行。
2.ALU:对数据进行算术和逻辑运算处理的部件。
3.数据通路:由操作元件和存储元件通过总线或分散方式连接而成的进行数据存储,处理和传送的路径。
4.控制器:对指令进行译码,产生各种操作控制信号,规定各个部件在何时做什么动作来控制数据的流动。
5.主存:存放指令和数据,并能由中央处理器(CPU)直接随机存取。
6.ISA:指令集体系结构:计算机硬件与系统软件之间的接口。
指令系统是核心部分,还包括数据类型,数据格式的定义,寄存器设计,I/O空间编址,数据传输方式,中断结构等。
7•响应时间:作业从开始提交到完成的时间,包括CPU执行时间,等待I/O 的时间,系统运行其他用户程序的时间,以及操作系统运行时间。
8. CPU执行时间:CPU真正用于程序执行的时间。
包括用户CPU时间(执行用户程序代码的时间)和系统CPU时间(为了执行用户代码而需要CPU 运行操作系统的时间)简答题:1.冯诺依曼计算机由那几部分组成,主要思想:①计算机应由运算器、控制器、存储器、输入设备和输出设备五个基本部件组成。
②各基本部件的功能是:存储器不仅能存放数据,而且也能存放指令,形式上两者没有区别,但计算机应能区分数据还是指令;控制器应能自动执行指令;运算器应能进行加/减/乘/除四种基本算术运算,并且也能进行一些逻辑运算和附加运算;操作人员可以通过输入设备、输出设备和主机进行通信。
③采用'‘存储程序"工作方式。
2.从源程序到可执行程序的过程:第二章名词解释:1.定点数:计算机中小数点固定在最左(或右)边的数2.汉字输入码:汉字用相应按键的组合进行编码表示3.汉字内码:计算机内部进行汉字存储,查找,传输和处理而采用的存储方式,两个字节表示一个内码4.大端方式:数据字的最低有效字节存放在大地址单元中5.边界对齐:要求数据的地址是相应的边界地址。
《计算机组成原理》7-总线
PC CPU
接口 主存
外部设备
7.2.1 单总线结构
使用单总线在CPU和内存之间传数据 在单总线系统中,访存指令与输入/输出指令在形式上完全相同,区别仅在于地址 的数值。这就是说,对输入/输出设备的操作,完全和内存的操作方法一样来处理。 这样,当CPU把指令的地址字段送到总线上时,如果该地址字段对应的地址是主 存地址,则主存予以响应。此时,在CPU和主存之间将发生数据传送,而数据传 送的方向由指令的操作码决定,其过程如图所示。
7.1.2 总线的分类
计算机系统中使用的总线可分成3类。 1.片内总线 片内总线是芯片内部的总线,计算机系统中各部件内部传送信息的通路。例如运 算器内部寄存器与寄存器之间、寄存器与算逻运算单元(ALU)之间的传送通路, 通常称之为内部总线。 2.系统总线 计算机系统中个部件之间传送信息的通路。例如CPU与主存储器之间,CPU与I/O 接口之间传送信息的通路,通常称之为“系统总线”,由于这些部件通常都制作 在各个插件板上,故又叫作板级总线(在一块电路板上各芯片之间的连线)和板 间总线。
7.1.1存储器分类
3.总线特性 总线特性是指机械特性(尺寸、形状)、电气特性(传输方向和有效的电平范 围)、功能特性(每根传输线的功能)和时间特性(信号和时序的关系)。 4.总线的猝发传输方式 在一个总线周期内传输存储地址连续的多个数据字的总线传输方式叫作猝发传送。 5.总线上信息传输方式 在计算机中,总线上的信息传输一般有串行、并行、并串行、分时四种方式。
小结 总线的基本概念和分类
总线基本概念 总线的分类
7.2总线结构
01
单总线结构
02
多总线结构
7.2.1 单总线结构
在许多微小型计算机中,将CPU、主存和I/O设备连接在一条单一的系统总线上, 叫作单总线结构,如图所示。
为了减轻总线负载
为了减轻总线负载,总线上的部件都应该具备什么样的特点?部件应通过三态驱动缓冲电路与总线连通什么是总线?总线传输有何特点?2.试比较同步通信和异步通信。
3.说明存取周期和存取时间的区别。
4.什么是存储器的带宽?若存储器的数据总线宽度为32位,存取周期为200ns,则存储器的带宽是多少?5.试比较静态RAM和动态RAM。
1、总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束,按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。
总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。
2、同步通信所谓同步通信是指在约定的通信速率下,发送端和接收端的时钟信号频率和相信始终保持一致(同步),这就保证了通信双方在发送和接收数据时具有完全一致的定时关系。
同步通信把许多字符组成一个信息组,或称为信息帧,每帧的开始用同步字符来指示。
由于发送和接收的双方采用同一时钟,所以在传送数据的同时还要传送时钟信号,以便接收方可以用时钟信号来确定每个信息位。
同步通信要求在传输线路上始终保持连续的字符位流,若计算机没有数据传输,则线路上要用专用的“空闲”字符或同步字符填充。
同步通信传送信息的位数几乎不受限制,通常一次通信传的数据有几十到几千个字节,通信效率较高。
但它要求在通信中保持精确的同步时钟,所以其发送器和接收器比较复杂,成本也较高,一般用于传送速率要求较高的场合。
异步通信是指通信中两个字符之间的时间间隔是不固定的,而在一个字符内各位的时间间隔是固定的。
异步通信规定字符由起始位(start bit)、数据位(data bit)、奇偶校验位(parity)和停止位(stop bit)组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80x86/Pentium微处理器
8086和8088两种CPU的执行单元是完全相同的,而总线接口单元有些不同。
8086CPU数据总线16位,指令队列6个字节;而8088CPU数据总线8位,指令队列4个字节。
⏹1.功能结构
⏹执行单元EU有8个16位的通用寄存器、1个16位的
标志寄存器(即PSW寄存器)、暂存器、16位的算术
逻辑单元ALU及EU控制电路组成。
⏹执行单元EU有8个16位的通用寄存器、1个16位的
标志寄存器(即PSW寄存器)、暂存器、16位的算术
逻辑单元ALU及EU控制电路组成。
⏹EU的功能是执行指令。
EU从指令队列取出指令代码。
将其译码,发出相应的控制信息。
控制数据在ALU中
进行运算,运算结果的特征保留在标志寄存器
(FLAGS,即PSW)中。
⏹总线接口单元BIU包括4个16位段寄存器,1个16
位的指令指针寄存器IP、1个与EU通讯的内部寄存器、先入先出的指令队列(8088的指令队列为4个字节,
8086的指令队列为6个字节)、总线控制逻辑及计算20
位物理地址的地址加法器∑。
⏹BIU的功能是负责与存储器、I/O端口传送信息。
当
EU从指令队列中取走指令,指令队列出现空字节时,
BIU即从内存中取出后续的指令代码放入队列中;当EU需要数据时,BIU根据EU给出的地址,从指定的内存单元或外设中取出数据供EU使用;
⏹当运算结束时,BIU将运算结果送入指定的内存单元或
外设。
当队列空时,EU就等待,直到有指令为止。
当8088队列空出1个字节,8086空出2个字节时,BIU 就自动执行一次取指令周期,将新指令送入队列。
若BIU正在取指令,EU发出访问总线的请求,则必须等BIU取指令完毕后,该请求才能得到响应。
⏹一般情况下。
程序执行,当遇到转移指令时,BIU就使
指令队列复位,从新地址开始取出指令,并立即传送给EU去执行。
其后续指令取来填入指令队列。
⏹指令队列的存在使8086/8088的EU和BIU并行工作,
从而减少CPU为取指令而等待的时间,提高了CPU的利用率,加快了整机的运行速度,另外也降低了对存储器存取速度的要求,这种技术叫并行技术。
在整个程序运行期间,BIU总是忙碌的,充分利用了总线,效率很高。
如图所示。
2.8086/8088的内部寄存器
如果一个处理器中没有通用寄存器,那么在指令执行的过程中要用到操作数时,必须到存储器中去取,运算的结果也必须立即送到存储器中保留起来。
从存储器存取数据要占用总线周期。
如果在指令执行的过程中,只要碰到操作数的存取就进行存储器操作,则势必要加长指令的执行时间。
⏹如果在处理器中设有一些寄存器,这些寄存器可用来暂
时存放参加运算的操作数和运算过程中的中间结果,则
在程序执行的过程中就不必每时每刻都要取到存储器
中存取数据。
⏹在处理器中,用通用寄存器暂时存放操作数可以提高程
序执行速度。
一般来说,处理器中包含的寄存器越多,处理器使用就越灵活,处理器执行程序的速度也就越
快。
⏹8086/8088内部有14个16位寄存器,按其功能可
分为三大类(P20、P14,
⑴通用寄存器
共8个,根据使用情况可分为三种。
①数据寄存器AX,BX,CX,DX
数据寄存器一般用于存放参于运算的数据或运算的结果。
每一个数据寄存器都是16位寄存器,但又可将高、低8位分别作为两个独立的8位寄存器使用,
⏹它们的高8位记作AH,BH,CH,DH,低8位记作
AL,BL,CL,DL。
这给编程带来很大方便。
⏹上述4个寄存器一般作为通用寄存器使用,但它们又有
各自的习惯用法。
见表1.7(P20、P14)。
⏹②地址指针寄存器SP、BP
SP:堆栈指针寄存器BP:基址指针寄存器
⏹作为通用寄存器的一种,它们可以存放数据,但实际上
更经常更重要的用途是存放内存单元的偏移地址。
⏹③变址寄存器SI 、DI
SI—称源变址寄存器DI—称目的变址寄存器
⏹常常用于寻址。