单片机系统扩展
第4章MCS-51单片机系统功能扩展
74LS373结构示意图
74LS373的引脚
引脚说明如下: D7~D0: 8位数据输入端。 Q7~Q0: 8位数据输出端。 G:数据输入锁存控制端:当G为“1” 时,锁存器 输出端与输入端数据相同;当G由“1” 变“0” 时,数据输入锁存器中。 OE#: 输出允许端。
P0口与地址锁存器74LS373的连接
4.1 系统扩展概述
4.1.1 最小应用系统
图4.1 MCS–51单片机最小化系统 (a) 8051/8751最小系统结构图;(b) 8031最小系统结构图
4.1.2 单片机系统扩展的内容与方法
1.单片机的三总线结构
图4.2 MCS–51单片机的三总线结构形式
(1)以P0口作为低8位地址/数据总线。 (2)以P2口的口线作高位地址线。 (3)控制信号线。 *使用ALE信号作为低8位地址的锁存控制信号。 *以PSEN#信号作为扩展程序存储器的读选通信号。 *以EA#信号作为内外程序存储器的选择控制信号。 *由RD#和WR#信号作为扩展数据存储器和I/O口的 读选通、写选通信号。 尽管MCS-51有4个并行I/O口,共32条口线,但由于系 统扩展需要,真正作为数据I/O使用的,就剩下P1 口和P3口的部分口线。
锁存器8282 功能及内部结构与74LS373完全一样,只是其引脚的排 列与74LS373不同 ,8282的引脚如下图。
4.2.2 74LS244和74LS245芯片
在单片机应用系统中, 扩展的三总线上挂接
很多负载, 如存储器、并行接口、A/D接口、显
示接口等, 但总线接口的负载能力有限, 因此常
3) 采用地址译码器的多片程序存储器的扩展
例3 要求用2764芯片扩展8031的片外程序存储器,分配的 地址范围为0000H~3FFFH。
第7章 单片机的系统扩展
第七章 单片机的系统扩展
74LS138是”3-8”译码器,具有3个选择输入端, 可组成8种输入状态。8个输出端,分别对应8种输 入状态中的1种,0电平有效。
第七章 单片机的系统扩展
第七章 单片机的系统扩展
7.2 数据存储器的扩展
MCS-51单片机内部有128B的RAM存储空间。
内部RAM通常作为工作寄存器、堆栈、软件标志 和数据缓冲区。
第七章 单片机的系统扩展
2864有四种工作方式,如表7-2所示。
第七章 单片机的系统扩展
7.1.3 程序存储器的扩展方法
1. 总线的连接与时序
第七章 单片机的系统扩展
图7-5为MCS-51单片机程序存储器的操作时序。
第七章 单片机的系统扩展
2.单片程序存储器的扩展
第七章 单片机的系统扩展
3.多片程序存储器的扩展
第七章 单片机的系统扩展
8255A的控制字
(1)工作方式控制字
第七章 单片机的系统扩展
(2)置位/复位控制字
第七章 单片机的系统扩展
例如,若将07H写入控制字 功能:PC3置位
若将08H写入控制字
功能:PC4复位
【例】 要求A口工作在方式0输入,B口为方式1输出, C口高4位PC7~PC4为输入,C口低4位PC3~PC0为 输出。设8255控制器地址为FFFDH MOV DPTR, #0FFFDH
第七章 单片机的系统扩展
第七章 单片机的系统扩展
2. 8255A芯片的控制字及其工作方式
方式0——基本输入/输出方式。 方式1——选通输入/输出方式。 方式2 ——双向传送方式。
端口A可工作于方式0、1、2,端口 B只可工作于 方式0、1,端口C只可工作于方式0。
单片机系统的扩展技术
INC R0
INC DPTR
; 修改数据指针
DJNZ R7, AG
END
4.2.3 MCS-51对外部存储器的扩展
下 图 所 示 的 8031 扩 展 系 统 中 , 外 扩 了 16KB 程 序 存 储 器 ( 使 用 两 片 2764芯片)和8KB数据存储器(使用一片6264芯片)。采用全地址译码方 式,用于控制2―4译码器的工作,参加译码,且无悬空地址线,无地址重 叠现象。1# 2764, 2# 2764, 3# 6264的地址范围分别为:0000H~1FFFH, 2000H~3FFFH, 4000~5FFFH。
4.2 存储器的扩展
存储器是计算机系统中的记忆装置,用来存放要运行的程序和程序 运行所需要的数据。单片机系统扩展的存储器通常使用半导体存储器, 根据用途可以分为程序存储器(一般用ROM)和数据存储器(一般用 RAM)两种类型。
MCS-51单片机对外部存储器的扩展应考虑的问题:
(1)选择合适类型的存储器芯片
引脚符号的含义和功能如下:
D7~D0:三态数据总线; A0~Ai:地址输入线,i=12~15。2764的地址线为13位,i=12; 27512的地址线为16位,i=15; CE :片选信号输入线; OE :输出允许输入线;
CE
VPP:编程电源输入线; PGM :编程脉冲输入线; VCC:电源; GND:接地; NC:空引脚。
8051扩展2764的电路连接方法:
数据线:P0口接EPROM的D0~D7 ;
地址线: 2764容量为8KB,213=8KB,需要A0~A12共13根地址线。P0口
经地址锁存器后接EPROM的A0~A7 ; 为了与片内存储器的空间地址衔 接,~接EPROM的A8~A11 , 经非门后与A12连接。
单片机系统扩展技术
单片机系统扩展技术1. 引言单片机是一种集成了处理器、存储器和各种输入输出接口的微型计算机系统。
单片机系统的应用范围广泛,涵盖了从工业自动化到家电控制等多个领域。
然而,随着应用需求的不断增加,单片机系统的功能往往面临着限制。
为了满足更高的要求,需要使用扩展技术来增强单片机系统的功能。
本文将介绍一些常见的单片机系统扩展技术。
2. 外部存储器扩展技术在某些应用场景中,单片机的内部存储器容量可能不足以存储所有的数据和程序。
这时可以通过外部存储器扩展技术来扩大系统的存储容量。
常见的外部存储器包括SD卡、EEPROM和闪存等。
2.1 SD卡扩展SD卡是一种常用的便携式存储介质,具有容量大、速度快和易于移植的特点。
通过使用SD卡模块,可以将SD卡连接到单片机系统中,并使用相应的驱动程序实现对SD卡的读写操作。
这样可以使单片机系统具备更大的存储容量,以便存储更多的数据和程序。
2.2 EEPROM扩展EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种可擦写的非易失性存储器。
通过使用外部连接的EEPROM芯片,可以在单片机系统中实现额外的存储容量。
EEPROM的读写速度相对较慢,但具有较高的可擦写次数和较低的功耗,适合存储一些需要长期保存的数据。
2.3 闪存扩展闪存是一种常见的存储介质,具有容量大、读写速度快和抗震动的特点。
通过使用外部连接的闪存芯片,可以在单片机系统中实现更大的存储容量。
闪存的读写速度相对较快,适合存储需要频繁读写的数据和程序。
3. 通信接口扩展技术在一些应用中,单片机系统需要与外部设备进行通信,例如传感器、执行器和其他单片机等。
为了实现与这些外部设备的通信,可以通过扩展通信接口来满足需求。
3.1 UART扩展UART(Universal Asynchronous Receiver/Transmitter)是一种常见的串行通信接口。
第9章 80C51单片机系统扩展技术
15
9.2.2 地址锁存器芯片
1. 锁存器74LS373
74LS373的结构及引脚
04:17
16
2. 锁存器8282
功能及内部结构与74LS373完全一样,只是其引脚的排列与 74LS373不同 ,8282的引脚如下图。
04:17
17
引脚的排列为绘制印刷 电路板时的布线提供了方便。
04:17
18
04:17
10
地址总线(AB): 由P2口提供高8位地址线, 此口具有输出锁存 的功能, 能保留地址信息。 由P0口提供低8位地址线。
数据总线(DB): 由P0口提供。 此口是双向、 输入三态控制的 8位通道口。
控制总线(CB): 扩展系统时常用的控制信号为:
ALE——地址锁存信号, 用以实现对低8位地址的锁存。
04:17
13
9.2.1 数据存储器芯片
典型型号有:6116、6264、62128、62256。+5V电源供电, 双列直插,6116为24引脚封装,6264、62128、62256为28 引脚封装。
6116:2KB 6264:8KB 62128:16KB 62256:32KB
04:17
14
04:17
3. 锁存器74LS573
输入的D端和输出的Q端也是依次排在芯片的两侧,与锁存 器8282一样,为绘制印刷电路板时的布线提供了方便。
04:17
19
9.2.3 数据存储器的扩展电路
需要考虑与80C51相连的存储芯片引脚:
80C51 CPU
存储芯片
(1)地址总线P0.0-P0.7 74LS373 (2)地址总线P2.0-P2.n-9 (3)数据总线的P0.0-P0.7
第6章 MCS-51单片机系统扩展技术
6.3 数据存储器扩展
6.3.1 静态RAM扩展电路
6.3.2 动态RAM扩展电路
返回本章首页
6.3.1 静态RAM扩展电路
常用的静态RAM芯片有6116,6264,62256等,其 管脚配置如图6-13所示。
1.6264静态RAM扩展 额定功耗200mW,典型存取时间200ns,28脚双列直插 式封装。表6-1给出了6264的操作方式,图6-14为6264静 态RAM扩展电路。
图 6 9
A EEPROM
28 17
扩 展 电 路
写入数据
不是指令
查询 中断 延时
2.2864A EEPROM 扩展
2864A有四种工作方式: (1)维持方式 (2)写入方式 (3)读出方式 (4)数据查询方式
图 6 12
28 64
返回本节
A EEPROM
扩 展 电 路
串行E2PROM简介 串行E2PROM占用引线少、接线简单,适用于作为数据存储 器且保存信息量不大的场合。 以AT93C46/56/57/66为例,它是三线串行接口E2PROM, 能提供128×8、256×8、512×8或64×16、128×16、256×16 位,具有高可靠性、能重复擦写100,000次、保存数据100年 不丢失的特点,采用8脚封装。
第6章 MCS-51单片机系统扩展技术
6.1 MCS-51单片机系统扩展的基本概念
6.2 程序存储器扩展技术
6.3 数据存储器扩展 6.4 输入/输出口扩展技术
T0 T1
时钟电路
ROM
RAM
定时计数器
CPU
并行接口 串行接口 中断系统
P0 P1 P2 P3
TXD RXD
INT0 INT1
第10章 单片机系统扩展
译码法又分为全译码和部分译码
20
译码法
21
译码法
22
存储器扩展
存储器是计算机系统中的记忆装置,用来 存放要运行的程序和程序运行所需要的数据。 单片机系统扩展的存储器通常使用半导体存储 器,根据用途可以分为程序存储器(一般用 ROM)和数据存储器(一般用RAM)两种类型。
23
存储器扩展
单片机系统存储器的扩展主要包括:程序存储器 和数据存储器的扩展。 程序存储器扩展比较方便,一般都是扩展一片并 行接口的EPROM、EEPROM或Flash,如常用的 EPROM芯片有27C64(8KB)、27C256(32KB) 和27C512(64KB); 数据存储器的扩展按芯片采用的接口技术不同, 可分为并行接口的芯片和串行接口的芯片扩展。.
第10章 单片机系统扩展
由于51单片机片内的ROM和RAM容量、并行I/O 端口、串行口、定时器及中断源等资源有限,且相当 多的芯片内部没有集成A/D和D/A等功能芯片。在实际 应用中经常要考虑人机接口、参数检测、系统监控、 报警等需要,会出现内部资源不够用的情况。因此系 统扩展是单片机应用系统设计时经常遇到的问题。 系统扩展问题,内容主要有外部存储器的扩展和 I/O接口部件的扩展。
24
4.2.1 程序存储器ROM扩展
25
读写存储器RAM扩展
静态RAM典型型号有:6116、6264、62128、62256。
26
8.5.2 读写片外RAM操作时序
27
RAM和EPROM的综合扩展
扩展2片8KB的RAM和2片8KB的EPROM。 RAM选6264,EPROM选2764。 各芯片地址空间分配 控制信号及片选信号
1. 以 P0 口作地址/数据总线 此处的地址总线是指系统的低8位地址线。
8031单片机各种系统扩展
单片机系统扩展在由单片机构成的实际测控系统中,最小应用系统往往不能满足要求,因此在系统设计时首先要解决系统扩展问题。
单片机的系统扩展主要有程序存储器(ROM扩展,数据存储器(RAM扩展以及I/O 口的扩展。
MCS-51单片机有很强的扩展功能,外围扩展电路、扩展芯片和扩展方法都非常典型、规范。
本章首先通过实训初步了解扩展的方法及应用,然后详细讨论各种扩展的常见电路、芯片以及使用方法。
实训6片外RAM寸信号灯的控制及可编程I/O 口的应用1. 实训目的(1) 掌握扩展片外RAM勺方法及使用。
(2) 熟悉8 1 55可编程接口芯片的内部组成。
(3) 掌握8155初始化的方法及I/O 口的使用⑷了解8155内部定时器和RAM勺编程使用⑸认识片外RAM^ 8155相关地址的确定。
2. 实训设备和器件实训设备:单片机开发系统、微机。
实训器件:实训电路板 1 套。
3. 实训电路图下图为实训电路图,与附录 1 中的电路图连接完全相同1331 19 181716—C WR P10 P00 P11P01 P12 P02 P13 P03 P14 P04 P15 P05 P16 P06 P17 P07 INT1P20 INT08031P21P22 T1 P23 T0P24P25 EA/VPP26P27X1 X2RESETRXD TXD RD -ALE/P- WRPSEN接8031P22 7 接8031ALE接8031RESETAD0 PA0 AD1 PA1 AD2 PA2 AD3 PA3 AD4 PA4 AD5 PA5 AD6 PA6 AD7PA7PB0 CE PB1 RD 8155PB2 WR PB3 IO/M — PB4 ALEPB5 PB6PB7TMROUTPC0PC1 订MRINPC2 PC3PC4 RESETPC5PC0 PC1 PC2PC3VCCD0 Q0 D1Q1 D2 Q2 D3 Q3 D4 Q4 D5 Q5 D6 Q6 D7Q7&E -LEA Y0B Y1 CY2 Y3Y4 E1 Y5 E2 Y6 E3Y7D0 A0 D1 A1 D2 A2 D3 A3 D4 A4 D5 A5 D6 A6 D7A7 6264A8 A9 A10 A11 A12OE CS2 CS1接8031RD 接8031WRlb I I I-s g ~fEL EL EL EL EL EL EL EL34PA0~PA7VCC图6.1实训6电路图4.实训步骤与要求1) 查阅附录实训电路板原理图及芯片手册,初步认识51单片机扩展片外RAM 所使用的芯片6264的管脚排列,以及与单片机的连接关系;初步分析8155与单 片机的连接及三个I/O 口与外部LED 的关系。
单片机系统扩展技术
§7-1 程序存储器旳扩展 §7-2 数据存储器旳护展 §7-3 MCS-51并行I/O口旳简朴扩展 §7-4 可编程接口电路旳扩展
前
言
单片机特点之一是在芯片内留有一定 数量旳数据存储器和程序存储器,但容量有
限。MCS-51系列旳CPU芯片内部只有很少字节 旳数据存储器;程序存储器旳数量很少,有
(
),以8031送出旳地址信号选通芯片,一般用单片机旳低位地
址线接至存储器芯片旳地址输入端,而用余下旳高位地址线接片选端。
线选法旳连接措施有多种:一线二用、一线一选和综合线选方式。
在使用线选法时要注意如下旳问题:
1)地址浮动:
即在扩展芯片时,当芯片旳地址线没有16位时,除片选信号线对电 平信号有规定外,其他旳地址线应给于电平旳固定,否则芯片旳地址会 发生变化(浮动),对存储器旳访问会发生错误。
一、用三态口扩展8位并行输入口
当传送旳数据旳保持时间较长时,可用三态门扩展8们并行输入口。 图7-3是用74LS244芯片通过P0口扩展旳8位并行输入接口。74LS244是8位 三态缓冲器,当 、 端为低平时输出与输入相似;当其为高电平时 输出呈高阻态。
由图可知,当P2.7和 同步为低电平时74LS244才将由输入设备 输出旳数据送8031旳P0口.其中P2.7决定了74LS244旳地址.它旳地址 =0ⅹⅹⅹⅹⅹⅹⅹⅹⅹⅹⅹⅹⅹⅹⅹB,可取7FFFH,该接口旳输入操作 程序如下:
▪
其电路联接如图7-5所示:
▪ §7-4 可编程接口电路旳扩展 返回 ▪ 当单片机应用系统中需要较为复杂旳I/O口时
不能采用§7-3所简介旳措施扩展I/O口,一般采 用可编程I/O接口芯片扩展I/O口。下面简介两种 常用原则可编程I/O接口及芯片扩展I/O口旳措施。
单片机原理与应用第6章
三、系统扩展及总线结构
80C51
图5.2
P0口分时复用
D0~n ~ P0 ALE R/W 单片机 ALE
锁 存 地 址 地址 采 样 数 据 采 样 数 据 Di Qi G 地址锁存器
A0~n ~
R/W 存储器
锁 存 地 址
P0
地址
R/W
三、系统扩展及总线结构
地址锁存器
MCS-51单片机的P0口是地址线/数据线分时复用的,实现 这一功能需要引入地址锁存器。常用的地址锁存器的芯片一 般有两类:一类是8D触发器,如74LS273、7474LS377等,另 一类是位锁存器,如74LS373、8282等。
74LS373
8031
6264的地址分配表
P2.7 P2.6 1 1 0 1 0 1
P2.5 0 1 1
选中芯片 6264(1) 6264(2) 6264(3)
地 址 范 围 C000--DFFFH A000--BFFFH 6000--7FFFH
存储容量 8K 8K 8K
例3:某微机系统用62128构成64K存储系统,试将其与 8051进行连接
第6章 单片机系统扩展
6-1 系统扩展及总线结构 6-2 数据存储器扩展 6-3 程序存储器扩展 6-4 I/O扩展 I/O扩展
6-1 系统扩展及总线结构 一、单片机内部资源
8位CPU; 位 ; 4KB字节掩膜 字节掩膜ROM程序存贮器(8031无); 程序存贮器( 字节掩膜 程序存贮器 无 128字节内部 字节内部RAM数据存贮器; 数据存贮器; 字节内部 数据存贮器 21个特殊功能寄存器 个特殊功能寄存器(SFR); 个特殊功能寄存器 ; 2个16位的定时器 计数器; 位的定时器/计数器 个 位的定时器 计数器; 1个全双工的异步串行口 个全双工的异步串行口; 个全双工的异步串行口 4个8位并行 口; 位并行I/O口 个 位并行 5个中断源、2级中断优先级的中断控制器; 个中断源、 级中断优先级的中断控制器 级中断优先级的中断控制器; 个中断源
单片机的系统扩展
TM1 0 1 0 1
定时/计数器工作方式
定时/计数器的工作方式 空操作,不影响计数操作
停止定时/计数器工作 定时/计数器计满后,立即停止工作 置方式和长度后,立即启动计数器工作
控制端 口B与A
的中断
控制端口B 与A的数据 传送方式
“0”为输入方式 “1”为输出方式
PC2 0 0 1
1
PC1 0 1 0
22
8155应用举例
如图6-17所示,为6位共阳极LED显示器与8155的接口电路图。
89S51 8155
P0.0 ~
P0.7 ALE P2.0 P2.7
RD
AD0
PB7
~
PB6
同
+5V
AD7 ALE
PB5
相
PB4
驱
PB3
动
IO/M
PB2
器
PB1
7407
CE
PB0
a b c d e f g dp
RD
参考程序如下: ORG
START:MOV MOV MOVX INC MOV MOVX MOV MOV MOVX END
0100H DPTR,#7F04H A,#1EH @DPTR,A
DPTR A,#40H @DPTR,A DPTR,#7F00H A,#0C0H @DPTR,A
;送低8位计数值
;送高6位计数值 ;设置M2M1=01,输出脉冲为连续方波 ;启动计数器工作 ;设置工作方式控制字
33 PB4
32 PB3
31 PB2 30 PB1
29 PB0
28 PA7 27 PA6 26 PA5 25 PA4 24 PA3 23 PA2
22 PA1
第八章 单片机应用系统扩展
(2).锁存器74LS573 输入的D端和输出的Q端依次排在芯片的两侧,为绘制印刷电 路板时的布线提供了方便。
D7~D0:8位数据输入线。 Q7~Q0:8位数据输出线。 G :数据输入锁存选通信号,该引 脚与74LS373的G端功能相同。 /OE:数据输出允许信号,低电平 有效。
8.1 程序存储器扩展
A7 A6 A5 A4 A3 A2 A1 A0
74LS373
2716(2k) EPROM
51单片机
PSEN
2716(2kx8)的地址范围为0000H ~ 07FFH。
例:扩展4KB程序存储器。
+5V VCC PGM VPP P2.4 P2.3 P2.2 P2.1 P2.0 EA P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 ALE D7 D6 D5 D4 D3 D2 D1 D0 OE CE GND D7 D6 D5 D4 D3 D2 D1 D0 G OE Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 A11 A10 A9 A8
2.译码法
使用译码器对89C51的高位地址进行译码,将译码
器的译码输出作为存储器芯片的片选信号。是最 常用的地址空间分配的方法,它能有效地利用存 储器空间,适用于多芯片的存储器扩展。 常用的译码器芯片有74LS138(3-8译码器) 74LS139(双2-4译码器)74LS154(4-16译码器)。
表8.1 2716(2K)/2732(4KB)的引脚
VCC PGM VPP A10 A9 A8
A7 A6 A5 A4 A3 A2 A1 A0
A0~A10 (2716) A0~A11 (2732) D0~D7 CE PGM
地址线 数据输出线 片选 程脉冲输入
单片机系统扩展
第六章单片机系统扩展通常情况下,采用MCS-51单片机的最小系统只能用于一些很简单的应用场合,此情况下直接使用单片机内部程序存储器、数据存储器、定时功能、中断功能,I/O端口;使得应用系统的成本降低。
但在许多应用场合,仅靠单片机的内部资源不能满足要求,因此,系统扩展是单片机应用系统硬件设计中最常遇到的问题。
在很多复杂的应用情况下,单片机内的RAM ,ROM 和 I/O接口数量有限,不够使用,这种情况下就需要进行扩展。
因此单片机的系统扩展主要是指外接数据存贮器、程序存贮器或I/O接口等,以满足应用系统的需要。
6.1 单片机应用系统按照单片机系统扩展与系统配置状况,单片机应用系统可以分为最小应用系统、最小功耗系统、典型应用系统等。
最小应用系统,是指能维持单片机运行的最简单配置的系统。
这种系统成本低廉、结构简单,常用来构成简单的控制系统,如开关状态的输入/输出控制等。
对于片内有ROM/EPROM 的单片机,其最小应用系统即为配有晶振、复位电路和电源的单个单片机。
对于片内无ROM/EPROM的单片机,其最小系统除了外部配置晶振、复位电路和电源外,还应当外接EPROM 或EEPROM作为程序存储器用。
最小应用系统的功能取决于单片机芯片的技术水平。
单片机的最小功耗应用系统是指能正常运行而又功耗力求最小的单片机系统。
单片机的典型应用系统是指单片机要完成工业测控功能所必须具备的硬件结构系统。
6.1.1 8051/8751最小应用系统MCS-51系列单片机的特点就是体积小,功能全,系统结构紧凑,硬件设计灵活。
对于简单的应用,最小系统即能满足要求。
8051/8751是片内有ROM/EPROM的单片机,因此,用这些芯片构成的最小系统简单、可靠。
图6-1 8051/8751最小应用系统用8051/8751单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如图6-1所示。
由于集成度的限制,最小应用系统只能用作一些小型的控制单元。
单片机系统的扩展
I/O口使用。
2. 内部存储器的容量有限, 只有128 B的RAM和4 KB的程序存储器。
应用系统的开发具有特殊性, 由于应用系统的P0口、 P2口在开发时需要作为数据、 地址总线, 故这两 个口上的硬件调试只能用模拟的方法进行。 8051 的应用软件须依靠厂家用掩膜技术置入, 故一般只 适用于可作大批量生产的应用系统。
采用Intel MCS-80/85微 处理器外围芯片 来扩展。
采用为MCS-48 系列单片机设计 的一些外围芯片, 其中许多芯片可 直接与MCS-51 系列单片机连用。
采用与MCS80/85外围芯片 兼容的其它一些 通用标准芯片。
4.2 常用的扩展器件简介
在MCS—51单片机系统的扩展中常用 的扩展器件如表4―1所示。 现将另外几 种常用器件简介如下。
三.2764的编程
EPROM的一个重要特点就在于它可以反复擦除, 即在其存储的内 容擦除后可通过编程(重新)写入新的内容。 这就为用户调试和修 改程序带来很大的方便。 EPROM的编程过程如下:
1. 擦除: 如果EPROM芯片是第一次使用的新芯片, 则它是干净的。 干净的标志通常是每一个存储单元的内容都是FFH。
1
MCS-51系列单片机的数据存储器与程序存储器的地址空间是 互相独立的, 其片外数据存储器的空间可达64 KB, 而片内的数 据存储器空间只有128 B。 如果片内的数据存储器不够用时, 则需进行数据存储器的扩展。
2
存储器扩展的核心问题是存储器的编址问题。 所谓编址就是 给存储单元分配地址。 由于存储器通常由多片芯片组成, 为此 存储器的编址分为两个层次: 即存储器芯片的选择和存储器芯 片内部存储单元的选择。
一.片内带程序存储E 器A 的最小应用系统 P S E N
电子教案与课件:《单片微机原理及应用基础教程》 第5章 单片机系统扩展的原理及方法
Micro Control System 51 Series
机械电子工程系
主讲:陈慧
8
2. 总线驱动器74LS244及74LS245
双向三态数据缓冲器。 含16个三态驱动器, 分两组,每方向8个
驱动方向控制端,若
DIR=1,驱动方向左
→右;若DIR=0,驱
该端低电平时三态门打开; 当G=1,输出同输入; 高电平时,输出呈高阻。 当G由1变为0时,输入数据打入锁存器保存。
Micro Control System 51 Series
机械电子工程系
主讲:陈慧
7
5.1.2 常用扩展器件简介
2. 总线驱动器芯片
51单片机的并行总线端口P0~P3的驱动能力很 有限(例如P0用作输出可驱动8个LSTTL负载,其输 出电流约为800μA),因此常常需要进行总线驱动。
机械电子工程系
主讲:陈慧
22
1. EPROM2764主要引脚定义
13位地址线
8位数据线
输出允许 信号端
机械电子工程系
Micro Control System 51 Series 主讲:陈慧
片选端
23
2. 程序存储器与CPU的连接方法
➢ 地址线的连接: 1)字选: 把存储器的地址线与系统地址线对应相连 2)片选线: 线选法或译码法
片选的实现方法
译码法
译码法是系统地址线经过译码器译码后,以其译码输 出作为存储器(或I/O)芯片的片选信号。译码法又分为全 译码和部分译码两种。
➢ 全译码 全译码方式下,每一个片选信号的地址均是唯一的。
➢ 部分译码 部分译码方式下,每一个片选信号的地址不唯一。但
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章单片机系统扩展
通常情况下,采用MCS-51单片机的最小系统只能用于一些很简单的应用场合,此情况下直接使用单片机内部程序存储器、数据存储器、定时功能、中断功能,I/O端口;使得应用系统的成本降低。
但在许多应用场合,仅靠单片机的内部资源不能满足要求,因此,系统扩展是单片机应用系统硬件设计中最常遇到的问题。
在很多复杂的应用情况下,单片机内的RAM ,ROM 和 I/O接口数量有限,不够使用,这种情况下就需要进行扩展。
因此单片机的系统扩展主要是指外接数据存贮器、程序存贮器或I/O接口等,以满足应用系统的需要。
6.1 单片机应用系统
按照单片机系统扩展与系统配置状况,单片机应用系统可以分为最小应用系统、最小功耗系统、典型应用系统等。
最小应用系统,是指能维持单片机运行的最简单配置的系统。
这种系统成本低廉、结构简单,常用来构成简单的控制系统,如开关状态的输入/输出控制等。
对于片内有ROM/EPROM 的单片机,其最小应用系统即为配有晶振、复位电路和电源的单个单片机。
对于片内无ROM/EPROM的单片机,其最小系统除了外部配置晶振、复位电路和电源外,还应当外接EPROM 或EEPROM作为程序存储器用。
最小应用系统的功能取决于单片机芯片的技术水平。
单片机的最小功耗应用系统是指能正常运行而又功耗力求最小的单片机系统。
单片机的典型应用系统是指单片机要完成工业测控功能所必须具备的硬件结构系统。
6.1.1 8051/8751最小应用系统
MCS-51系列单片机的特点就是体积小,功能全,系统结构紧凑,硬件设计灵活。
对于简单的应用,最小系统即能满足要求。
8051/8751是片内有ROM/EPROM的单片机,因此,用这些芯片构成的最小系统简单、可靠。
图6-1 8051/8751最小应用系统
用8051/8751单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如图6-1所示。
由于集成度的限制,最小应用系统只能用作一些小型的控制单元。
其应用特点:
(1)有可供用户使用的大量I/O口线。
因没有外部存储器扩展,这时EA接高电平,P0、P1、P2、P3都可作用户I/O口使用。
(2)内部存储器容量有限。
(3)应用系统开发具有特殊性。
P0、P1、P2口的应用与开发环境差别较大。
8051的应用软件须依靠半导体厂家用半导体掩膜技术置入,故8051应用系统一般用作大批量生产的应用系统。
6.1.2 8031最小应用系统
8031是片内无程序存储器的供应状态芯片,因此,其最小应用系统必须在片外扩展EPROM。
图6-2为外接程序存储器的最小应用系统。
片外4K字节单元地址要求地址线12根(A0~A11),它由P0和P2.0~P2.3组成。
地址锁存器的锁存信号为ALE。
程序存储器的取指信号为PSEN。
由于程序存储器芯片只有一片,故其片选线直接接地。
8031芯片本身的连接除EA必须接地,表明选择外部存储器外,其它与8051/8751最小应用系统一样,也必须有复位及时钟电路。
图6-2 8031最小应用系统
6.2 单片机系统扩展
在进行系统扩展时,应对单片机的系统扩展能力、扩展总线结构及扩展应用特点有所了解,这样才能顺利地完成系统扩展任务。
6.2.1 MCS-51系列单片机的外部扩展性能
一、MCS-51系列单片机的片外总线结构
单片机是通过地址总线,数据总线和控制总线与外部交换信息的。
MCS-51单片机的总线接口信号见图6-3所示。
图6-3 MCS-51总线接口信号
由图可见:
(1)由于P0分时传送地址/数据信息,在接口电路中,通常配置地址锁存器,有ALE 信号锁存低8位地址A0~A7,以分离地址和数据信息。
(2)P2口传送高8位地址A8~A15。
(3)PSEN为程序存储器的控制信号,是在取指令码时或执行MOVC指令时变为有效。
RD、WR为数据存储器和I/O口的读、写控制信号。
是执行MOVX指令时变为有效。
单片机都是通过片外引脚进行系统扩展的。
为了满足系统扩展要求,MCS-51系列单片机片外引脚可以构成三总线结构,即地址总线(AB)、数据总线(DB)和控制总线(CB)。
所有的外部芯片都通过这三组总线进行扩展。
1、地址总线(AB)
地址总线宽度为16位,故可寻址范围为216=64k字节。
地址总线由P0口提供低8位A0~A7,P2口提供高8位A8~A15。
由于P0口还要作数据总线口,只能分时用作地址线,故P0口输出的低8位地址数据必须用锁存器锁存。
锁存器的锁存控制信号为引脚ALE输出的控制信号。
在ALE的下降沿将P0口输出的地址数据锁存。
P0口具有输出锁存功能,故不需外加锁存器。
P0、P2口在系统扩展中用作地址线后便不能作为一般I/O口使用。
2、数据总线(DB)
数据总线由P0口提供,其宽度为8位,该口为三态双向口,是应用系统中使用最为频繁的通道。
所有单片机与外部交换的数据、指令、信息,除少数可直接通过P1口外,全部通过P0口传送。
数据总线要连到多个连接的外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。
哪个芯片的数据通道有效则由地址线控制各个芯片的片选线来选择。
3、控制总线(CB)
控制总线包括片外系统扩展用控制线和片外信号对单片机的控制线。
系统扩展用控制线有WR、RD、PSEN、ALE和EA。
WR、RD:用于片外数据存储器(RAM)的读/写控制。
当执行片外数据存储器操作指令MOVX时,这两个控制信号自动生成;
PSEN:用于片外程序存储器(EPROM)的“读”数控制。
“读”取EPROM中数据(指令)时不用“RD”信号;
ALE:用于锁存P0口输出的低8位地址数据的控制线。
通常,ALE在P0口输出地址期间用下降沿控制锁存器来锁存地址数据;
EA:用于选择片内或片外程序存储器。
当EA=0时,只访问外部程序存储器,不论片内有无程序存储器。
因此在扩展并使用外部程序存储器时,必须使EA接地。