九年级数学上册二十三章旋转教案新人教版

合集下载

第23章旋转全章教案

第23章旋转全章教案

23.1《图形的旋转》教学设计【教学内容】本节课是人教版数学九年级上册第二十三章“23.1 图形的旋转”的第一课时。

【学习目标】:知识与技能(1)通过观察具体实例认识旋转,理解旋转的基本涵义;(2)探索旋转的基本性质;(3)利用旋转的性质解决数学问题。

过程与方法(1)能在观察图片资料和旋转实验中得出数学结论,初步从奇妙的图形中体会所隐含的数学道理。

发展学生对具体图形的概括能力,培养几何直觉;(2)通过对旋转图形的探讨,培养学生的探索发现事物变化中的内在规律.情感态度与价值观(1)通过对生活中的旋转现象有关图形进行观察分析、欣赏等过程,培养初步的审美能力,增强对图形的欣赏意识,培养学生合作学习、探索学习的意识。

(2)通过对旋转图形的欣赏和探索,体会旋转在现实生活中的存在,以及给解决数学问题带来的方便,增强学好数学的自信心,提高初步的审美能力,增强对图形欣赏的意识。

【学情分析】:认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。

能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。

【教学重点、难点】:重点:旋转及对应点的有关概念及其应用。

难点:从活生生的数学中抽出概念。

突破难点的关键:(1)设置恰当情景,激发学生的探索欲望。

(2)通过演示操作,归纳出旋转变换的性质,加深旋转变换的【教法与学法】教学方法:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为主的教学方法。

学习方法:通过学生的自主活动、主动探究、合作交流、动手操作等活动来构建与此相关的知识经验,使学生掌握知识,从而达到知识的应用。

【教学准备】:教师准备:PPT、几何画板、白板课件。

学生准备:在一张硬纸板上挖出一个三角形,再挖一个小洞,刻度尺,量角器【教学过程】:一、创设情境、引入新课:1、上课之前我们先来做做运动,轻松一下,通过大家的预习这几种运动与咱们这节课有关吗?那你预习后哪些收获和大家分享一下。

九年级数学上册第二十三章旋转教学活动学案设计(新版)新人教版

九年级数学上册第二十三章旋转教学活动学案设计(新版)新人教版

第二十三章旋转数学活动学习目标1.加深对中心对称的理解.2.能够在直角坐标系中,将图形进行中心对称变换.学习过程一、自主思考1.什么是图形的旋转,旋转中心以及旋转角?2.什么是中心对称,中心对称图形?3.中心对称与轴对称的区别是什么?二、学习新知活动1:如图,在平面直角坐标系中选一点A(-3,2),作点A关于x轴的对称点,得到点B,作点B关于y轴的对称点,得到点C.点A与点C有什么关系?你是怎么得到的?将点A的坐标换成其他的数值还成立吗?活动2:(1)把点P(x,y)绕原点分别顺时针旋转90°,180°,270°,360°,点P的对应点的坐标分别是什么?(2)如果是逆时针方向旋转呢?活动3:如图,先准备一个花瓣模板,再选一点作为花心,然后围绕花心旋转花瓣模板,(强调画出的花要均匀)你画的是几瓣花?经过几次旋转?每一次的旋转角度是多少?三、课堂练习1.正方形绕中心至少旋转后能与自身重合.2.如图1,将△ABC绕点A旋转一定角度后能与△ADE重合,如果△ABC的面积是12 cm2,那么△ADE的面积是.3.如图2,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE 的位置,那么旋转角的度数是.4.如图3,把三角形△ABC绕着点C顺时针旋转35°,得到△A'B'C,A'B'交AC于点D,若∠A'DC=90°,则∠A的度数是.5.如图4,△ABC绕点B逆时针方向旋转到△EBD的位置,若∠E=21°,∠C=18°,E,B,C 在同一直线上,则旋转角的度数是.四、自我检测1.如图,∠AOB=90°,∠B=30°,△A'OB'可以看做是由△AOB绕点O顺时针旋转α角度得到的,若点A'在AB上,则旋转角α的大小可以是()A.30°B.45°C.60°D.90°2.如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为.3.如图,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.布置作业1.必做题:课本第74页数学活动活动1.2.选做题:课本第74页数学活动活动2.参考答案一、自主思考1.略2.略二、学习新知活动1:求出:B(-3,-2),C(3,-2),连接AC可以发现它们过O点, A点与C点是关于点O 成中心对称的,进一步观察它们的坐标可以发现它们的坐标特点:关于原点对称的点的坐标变换法则:横纵坐标变为原来的相反数.(2)略活动3:在上述实验中,不管通过做几次旋转都可以画出一朵花,设为n,则旋转的角度为360°.三、课堂练习1.90°2.12 cm23.60°4.55°5.39°四、自我检测1.C解析:∵∠AOB=90°,∠B=30°,∴∠A=60°.又∵OA=OA',∴△AOA'是等边三角形.∴∠AOA'=60°,即旋转角α为60°.故选C.2.(36,0)解析:∵每三次变换为一个循环,∴三角形⑩的直角顶点的横坐标为12×3=36.3.(1)(2,3);(2)图形略,(0,-6);(3)(-7,3)或(-5,-3)或(3,3).。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转(教案) 课题学习 图案设计教案

23.3 课题学习图案设计一、教学目标【知识与技能】赏析生活中的精美图案,探究团的组成规律,能够利用图形的平移、轴对称和旋转变换进行一些简单的图案设计。

【过程与方法】在应用图形变换进行图案设计的过程中,对所学数学知识进行“再认识”,同时进行独立的数学创造,发展形象思维和创造性思维能力.【情感态度与价值观】在经历应用数学知识进行独立的图案设计的活动中,感受到数学美与创造的同时获得自我创造的成就感,激发创造性地应用数学知识的热情.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】利用各种图形变换设计组合图案.【教学难点】将基本图形创造性地应用平移、轴对称、旋转等变换设计出和谐、丰富、美观的组合图案.五、课前准备课件、圆规、直尺、三角尺、铅笔、图片等.六、教学过程(一)导入新课让学生说一说:下列图形可以通过其中一个圆怎样变化而得到?(出示课件2)(二)探索新知探究一分析构成图案的基本图形出示课件4,例试说出构成下列图形的基本图形.(1)(2)(3)(4)学生观察后,师生共同分析:思考:成轴对称时基本图形是什么?学生思考后教师总结:对于这三种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.(出示课件5)探究二分析图形形成过程例分析下列图形的形成过程.(出示课件6)(1)(2)(3)(4)学生观察交流后,师生共同分析:(出示课件7,8)出示课件9:教师总结归纳:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计出漂亮的图案来.探究三图案的设计出示课件10:例1 下面花边中的图案以正方形为基础,由圆弧、圆或线段构成.仿照例图,请你为班级的板报设计一条花边.要求:(1)只要画出组成花边的一个图案;(2)以所给的正方形为基础,用圆弧、圆或线段画出;(3)图案应有美感.让学生自主设计图案(应以平移、旋转、轴对称变换为基本方法),然后同学间相互交流,看看谁设计的图案最美,并由设计者说说图案设计中所运用的图形交换有哪些?出示课件11,12,13:教师展示参考图案,让学生感受数学的美.出示课件14:例2 怎样用圆规画出这个六花瓣图?教师出示课件15,对学生画图进行进行启发:学生在教师的指导下进行画图.(出示课件16)教师问:图中A点的位置对六花瓣的形状有没有影响?对花瓣的位置有影响吗?(出示课件17)学生答:对形状没影响,对位置有影响.教师归纳总结:(出示课件18)在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.探究四图案设计欣赏出示课件19-22,教师引导学生反思图案设计的关键在于选取简单的基本几何图形,通过不同的变换组合出丰富的图案,在欣赏教师出示的课件中组合图案,进一步增强图案设计方法的理解和掌握.(三)课堂练习(出示课件23-28)1.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.2.图案可以通过将字母___经过______变换得到.3.图案可以通过将________经过______变换得到.4.图案可以看做将汉字___经过________变换得到.5.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的立体图形,但是涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果.6.如图已知每个网格中小正方形的边长都是1,图中的图案是由三段以格点(每个小正方形的顶点叫格点)为圆心,半径分别为1、2、3的圆弧围成.(1)填空:图中三段圆弧所围成的封闭图形的面积是.(结果保留π);(2)请你在图中以(1)中的图为基本图案,借助轴对称变换和旋转变换设计一个完整的图案.7.用直尺,圆规,三角尺再设计一个新颖的(课堂上未见过的)美丽图案.参考答案:1.解:如图所示:2.S;旋转3.正方形;平移4.弓;轴对称5.如图所示:6.解:(1)3π-6⑵如图所示:7.略.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(24.1.1)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:通过反思图案设计的过程和欣赏变换产生的美,展现了数学的应用价值和美学价值.帮助学生了解数学是图形变换的根本,了解数学在人类文明发展中的作用,促进其形成正确的数学观.。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。

本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。

通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。

二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。

但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。

三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。

2.能够运用图形旋转的性质解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.图形旋转的性质的理解和运用。

2.旋转的表示方法的掌握。

五. 教学方法采用问题驱动法和案例教学法进行教学。

通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。

六. 教学准备1.多媒体教学设备。

2.图形旋转的实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。

3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。

4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。

5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。

人教版初中数学九年级上册第二十三章:旋转(全章教案)

人教版初中数学九年级上册第二十三章:旋转(全章教案)

第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。

新人教版初中数学九年级上册第23章《图形的旋转》教案

新人教版初中数学九年级上册第23章《图形的旋转》教案
二、自主
探究
二、自主
探究
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.
3、图案设计:(1)、如下图是菊花一叶和中心与圆圈,现以O 为旋转中心画出分别旋转45°、90°、135°的菊花图案.
(2)、 如图,如果上面的菊花一叶,绕下面的点O′为旋转中心, 请同学画出图案,它还是原来的菊花吗?
选择不同的旋转中心、不同的旋转角来进行研究.
学生独立作图,两名同学上台展示。
画完之后相互批改、评价。
从画图中,师生共同归纳出:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
(3)旋转前、后的图形全等.
根据图形思考老师所给的问题,然后分组讨论,教师参与讨论交流,最后一组推荐一人上台回答结论
1.OA=OA′,OB=OB′,OC=OC′
2.∠AOA′=∠BOB′=∠COC′
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作,师生共同归纳出旋转的性质。
(5)由平面图形转动而产生的奇妙图案。
2、提出问题:
这些情境中的转动现象,有什么共同特征?
用课件展示图片并显示现实生活中部分物体的旋转现象
学生观察图片
学生思考,归纳它们的共同特征。
让学生再举一些类似的例子
通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。

九年级数学上册 第23章 旋转 旋转性质的综合应用教案 (新版)新人教版

九年级数学上册 第23章 旋转 旋转性质的综合应用教案 (新版)新人教版

旋转性质的综合应用课教材背景分析和教学安排说明:本节课是人教版数学九年级上册第二十三章《旋转》第7课时,是一节综合应用课;在此之前学生已经学完了旋转的单元知识,本节课主要目的是培养学生综合运用能力,锻炼学生的分析问题,解决问题的能力。

本节课的教学我以实例为切入点,以探究活动为主线设计了5个环节,让学生通过具体实例进一步学习旋转,动手进行数学实验探索,经历旋转现象的观察分析,证明过程,引导学生用旋转的思想解决有关问题。

近几年,有关旋转知识,在广州中考中所占分值统计表246810121416分值旋转已成为广州中考的重点与热点内容之一,当图形的形状不规则,难以直接应用数学知识求解或是条件比较分散,难以发现其内在联系时,可通过旋转使不规则图形转化为规则图形,使分散的条件发生“转移”,变得相对集中,从而使待求问题明朗化,这种解决问题的思想就是旋转变换思想.教学任务分析 教 学 目 标 知识与技能 建立旋转及相关性质的知识框架,掌握旋转的性质并能运用有关知识进行推理和计算。

过程与方法 在探究的过程中经历操作——猜想——验证的过程,发展学生分析、归纳、抽象概括的思维能力,积累数学经验。

情感态度 价值观学生经历图形旋转的操作,进一步发展空间观念,培养运动几何的观点。

让学生通过独立思考,自主探究,合作交流进一步体会旋转的数学内涵,获得知识,体验成功。

增强学习的积极性。

教学重点 旋转的基本性质的运用,解决旋转问题的一般方法。

教学方法采用以学生的合作探究为主,教师的适时引导为辅的教学方式。

活动流程图 时间安排 环节l 知识再现 4分钟 环节2 例题讲解 8分钟 环节3 探索一 15分钟 环节4 当堂训练10分钟环节5小结,布置作业 3分钟环节6 教学反思课后教师完成教学过程设计问题与情境师生行为设计意图「环节1」:知识再现(1)如图正方形ABCD,点E是CD上的任意一点,将ΔADE绕着点A顺时针旋转900后到达ΔABF的位置,连接EF,则①旋转中心是②指出旋转角③BF和DE有何关系是(2).ΔABC是等边三角形,将ΔADB绕点A逆时针旋转到ΔAEC,连结DE,则ΔADE的形状是(3)如图。

九年级数学人教版上册第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质优秀教学案例

九年级数学人教版上册第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质优秀教学案例
(四)反思与评价
1.教师引导学生回顾学习过程,反思自己在探索旋转性质过程中的优点和不足,培养学生自我评价和反思的能力。
2.组织学生进行课堂小测,检测学生对旋转知识的掌握程度,及时发现和解决问题。
3.鼓励学生积极参加数学竞赛、实践活动等,让学生在实践中不断提高自己的数学素养。同时,教师要关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习中取得更好的成绩。
二、教学目标
(一)知识与技能
1.理解旋转的概念,掌握图形旋转的性质,能够用语言和数学符号描述旋转的过程和特点。
2.能够通过实际操作,观察和分析图形在旋转过程中的变化,提高空间想象能力和逻辑思维能力。
3.学会运用旋转知识解决实际问题,培养运用数学知识解决生活问题的能力。
(二)过程与方法
1.通过观察、操作、思考、交流等活动,经历旋转概念的形成和性质的探索过程,培养学生的动手操作能力和问题解决能力。
1.教师引导学生回顾学习过程,反思自己在探索旋转性质过程中的优点和不足,培养学生自我评价和反思的能力。度,及时发现和解决问题。
3.鼓励学生积极参加数学竞赛、实践活动等,让学生在实践中不断提高自己的数学素养。
(五)作业小结
1.布置具有挑战性和实际意义的作业,让学生在完成作业的过程中,进一步巩固旋转知识,提高解决问题的能力。
4.反思与评价的教学环节:教师引导学生回顾学习过程,反思自己在探索旋转性质过程中的优点和不足,培养学生自我评价和反思的能力。这种反思与评价的教学环节有助于学生培养批判性思维和自我改进的能力,提高学习效果。
3.通过对旋转知识的学习,使学生体会到数学与现实生活的紧密联系,提高他们的应用意识。
三、教学策略
(一)情景创设
1.利用多媒体展示生活中的旋转现象,如摩天轮、风车等,引导学生关注旋转现象在现实生活中的应用,激发学生的学习兴趣。

人教版数学九年级上册第23章旋转数学活动优秀教学案例

人教版数学九年级上册第23章旋转数学活动优秀教学案例
5.作业小结的针对性:布置具有针对性的作业,让学生巩固所学知识,提高他们的数学应用能力。同时,要求学生在作业中运用旋转知识解决实际问题,培养他们的实践能力。教师及时批改作业,给予学生反馈,帮助他们改进学习方法,提高学习效果。这样的作业小结有助于学生对所学知识的巩固和应用,提高他们的数学素养。
4.教师对各小组的成果进行评价,及时给予反馈,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结自己在学习旋转知识中的优点和不足。
2.组织学生进行自我评价,鼓励他们发现自己的长处,增强自信心。
3.教师对学生的学习成果进行评价,关注学生的全面发展,不仅重视知识的掌握,还要注重能力的培养。
2.通过设计有趣的数学故事或问题,激发学生的学习兴趣,使他们主动参与到课堂活动中。
3.创设具有挑战性的数学问题,让学生在解决问题的过程中,自然地引入旋转知识,提高他们的思维能力。
(二)问题导向
1.设计一系列由浅入深的问题,引导学生逐步深入探讨旋转的性质和运算,培养学生的问题解决能力。
2.鼓励学生提出自己的疑问,教师及时解答,确保学生对旋转知识的理解。
人教版数学九年级上册第23章旋转数学活动优秀教学案例
一、案例背景
本节内容是“人教版数学九年级上册第23章旋转”,旋转是几何中的一个重要概念,也是中考的热点之一。学生需要通过本节学习,理解旋转的定义、性质和基本运算。在实际教学中,我发现许多学生在学习旋转时,容易与其生活实际脱节,难以理解旋转的本质,因此,我设计了一份数学活动,旨在让学生在实践中理解旋转,提高他们的空间想象能力和数学思维能力。
3.总结学生提出的旋转现象,引出本节课的主题——旋转。
(二)讲授新知
1.介绍旋转的定义:在平面内,将一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。

人教版初中数学九年级上册第二十三章:旋转(全章教案)

人教版初中数学九年级上册第二十三章:旋转(全章教案)

第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。

人教版九年级数学上册:第二十三章旋转教案

人教版九年级数学上册:第二十三章旋转教案

第二十三章旋转23.1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.23.2中心对称23.2.1中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB ≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习23.2.2中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD 是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.23.2.3关于原点对称的点的坐标理解点P与点P′关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重点两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线l,如图,请画出点A关于l对称的点A′.2.如图,△ABC是正三角形,以点A为中心,把△ABC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连接AO并延长AO;(2)在射线AO上截取OA′=OA;(3)过A作AD′⊥x轴于点D′,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等,∴AD′=A′D″,OA=OA′,∴A′(3,-1),同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点P′(-x,-y).两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点为P′(-x,-y).例1如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′,B′即可.解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A′(0,-1),B(-3,0).连接A′B′.则就可得到与线段AB关于原点对称的线段A′B′.(学生活动)例2已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.三、巩固练习教材第69页练习.四、课堂小结点P(x,y)关于原点的对称点为P′(-x,-y).五、作业布置教材第70页习题3,4.23.3课题学习图案设计利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.重点设计图案.难点如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、复习引入(学生活动)请同学们独立完成下面的各题.1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.错误!错误!,第2题图)错误!,第3题图) 2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?老师点评:1.AB与CD平行且相等;2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.二、探索新知请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.例1(学生活动)学生亲自动手操作题.按下面的步骤,请每一位同学完成一个别致的图案.(1)准备一张正三角形纸片(课前准备)(如图a);(2)把纸片任意撕成两部分(如图b,如图c);(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c保持不动);(5)把如图(d)平移到如图(c)的右边,得到如图(e);(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.三、课堂小结本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.。

九年级数学第二十三章旋转全章教案 新人教版

九年级数学第二十三章旋转全章教案 新人教版

九年级数学第二十三章旋转全章教案单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.2.过程与方法(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.(4)复习对称轴和轴对称图形的有关概念,•通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(7)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1 图形的旋转 3课时23.2 中心对称 4课时23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度. 2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA 全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O 作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14 ∴AE=2211()4 =174 ∵对应点到旋转中心的距离相等且F 是E 的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.三、巩固练习 教材P64 练习1、2.四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.23.2 中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A 、B 、C 、D 关于中心D 的对称点是A ′、B ′、C ′、D ′,这里的D ′与D 重合.例2.如图,已知AD 是△ABC 的中线,画出以点D 为对称中心,与△ABD•成中心对称的三角形.分析:因为D 是对称中心且AD 是△ABC 的中线,所以C 、B 为一对的对应点,因此,只要再画出A 关于D 的对应点即可.解:(1)延长AD ,且使AD=DA ′,因为C 点关于D 的中心对称点是B (C ′),B•点关于中心D 的对称点为C (B ′) (2)连结A ′B ′、A ′C ′.则△A ′B ′C ′为所求作的三角形,如图所示.C(B ')B(C ')AA 'D三、巩固练习 教材P74 练习2.23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°23.2 中心对称(3)第三课时教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AO(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.B ACDOB ACDO二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD 必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD 是平行四边形.。

人教初三数学上图形的旋转教案

人教初三数学上图形的旋转教案

人教初三数学上231、教学内容所属模块:初中数学2、年级:九年级上册3、所用教材出版单位:人民教育出版社4、所属的章节:第二十三章旋转(23.1 图形的旋转)5、类型:课堂教学设计6、学时数:45分钟7、课型:新授课二、教学设计问题:线段OA与线段OA′间有什么关系?∠AOA′与∠BOB′间有什么关系?△ABC与△A′B′C′形状和大小有什么关系?归纳旋转的性质:对应点到旋转中心的距离相等。

对应点与旋转中心所连线段的夹角等于旋转角。

旋转前、后的图形全等。

例题示范学以致用例1 E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90 °,画出旋转后的图形.教师提出问题引导学生摸索:(1)旋转中心是哪一点?(2) 如何确定△ADE三个顶点的对应点,即它们旋转后的位置。

教师适当点拨后,找几名同学上台板演。

教师巡堂,个别指导,做好后,依照做题情形,适当点评。

教师强调规范小组成员互评。

范例点击活学活用教科书P61练习1、2、31.举出一些现实生活中旋转的实例,并指出旋转中心和旋转角。

2.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?引导学生分析问题,请各小组长总结在每个解题过程中遇到的问题学生独立完成,小组成员互评,教师加以指导,并用展台展现学习成果。

拓广探究合作学习1.如图,假如把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在那个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)通过旋转,点A、B分别移动到什么位置?2.如图,四边形ABCD、四边形EFGH差不多上边长为1的正方形.(1)那个图案能够看做是哪个“差不多图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,通过旋转,点A、B、C、D分别移到什么位置?引导学生小组合作交流,在本次活动中,教师应重点关注:(1) 学生画出图形后,能否准确地运用旋转的差不多特点表达出画图的理论依据;(2) 学生画图的不同方法(3)以点A为中心,把△ADE逆时针旋转90°,画出旋转后的图形.小组内学生互改互评,展台展现学生的作业同时整理错题集。

第23章:旋转课堂(教案)2023-2024学年人教版九年级数学上册

第23章:旋转课堂(教案)2023-2024学年人教版九年级数学上册
)利用动态教具或多媒体演示旋转变换过程,帮助学生形象地理解旋转变换的性质。
(2)设计实际操作活动,让学生动手测量旋转角度,加强对测量方法的掌握。
(3)通过观察和讨论,引导学生识别旋转对称图形,总结旋转对称性的特点。
(4)通过具体实例,指导学生寻找旋转对称轴,掌握寻找方法。
(3)旋转对称图形的识别:学生可能难以判断一个图形是否具有旋转对称性,尤其是复杂的图形。例如,一个五角星具有旋转对称性,但学生可能不清楚旋转角度是多少。
(4)旋转对称轴的确定:在确定旋转对称轴时,学生可能不知道如何寻找或验证。例如,一个矩形有两条旋转对称轴,学生需要学会如何找出这两条轴。
(5)旋转知识在解决实际问题中的应用:将旋转知识应用于实际问题,学生可能不知道如何入手。例如,在建筑设计中,如何运用旋转对称性来设计美观且实用的结构。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“旋转变换在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-掌握旋转角度的计算方法
3.知识点三:旋转对称图形与旋转对称轴
-认识旋转对称图形
-理解旋转对称轴的概念
-学会判断旋转对称图形及其旋转对称轴
4.知识点四:旋转的应用
-了解旋转在现实生活中的应用
-学会运用旋转变换解决实际问题
5.课堂练习:旋转相关习题练习,巩固所学知识。
二、核心素养目标
1.培养学生的空间观念:通过旋转变换的学习,使学生能够观察、想象、分析几何图形在空间中的位置关系和运动变化,提高空间想象力。

人教版数学九年级上册第23章旋转数学活动教学设计

人教版数学九年级上册第23章旋转数学活动教学设计
2.知识传授,突破重点
(1)采用直观演示、动态模拟等方法,让学生直观地认识旋转中心、旋转角、旋转方向等概念。
(2)通过实际操作,让学生体会旋转的动态过程,培养学生的空间想象能力。
(3)运用对比分析法,让学生掌握旋转与其他几何变换的联系与区别,提高学生的分类比较能力。
3.实践操作,解决难点
(1)组织学生进行旋转操作练习,如绘制旋转后的图形,提高学生的实际操作能力。
4.提醒学生课后进行复习和巩固,为下一节课的学习打下坚实基础。
五、作业布置
为了巩固本节课所学的旋转知识,培养学生的空间想象能力和问题解决能力,特布置以下作业:
1.基础巩固题:
(1)根据课堂所学,绘制以下图形旋转后的图形:正方形、三角形、圆形。
(2)计算以下旋转角度:一个图形绕旋转中心旋转90°、180°、270°后的位置。
人教版数学九年级上册第23章旋转数学活动教学设计
一、教学目标
(一)知识与技能
1.理解旋转的定义和性质,掌握旋转的基本要素:旋转中心、旋转角和旋转方向。
2.学会使用旋转进行图形的变换,能够准确地描述和绘制旋转后的图形。
3.能够运用旋转知识解决实际问题,如平面图案的设计、物体运动的模拟等。
4.掌握旋转与轴对称、平移等几何变换的关系,提高空间想象能力和几何直观能力。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的积极性,使学生在轻松愉快的氛围中掌握旋转知识,提高学生的数学素养。同时,注重培养学生的空间想象能力和几何直观能力,为后续学习打下坚实基础。
二、学情分析
九年级学生在前两年的数学学习中,已经掌握了基本的几何知识和变换方法,如平移、轴对称等。在此基础上,学生对旋转概念的理解和运用具有一定的认知基础。然而,由于旋转涉及到空间想象和动态过程的观察,学生在实际操作和问题解决中可能存在以下困难:对旋转中心、旋转角等概念理解不够深入;在绘制旋转后的图形时,空间定位和角度把握不够准确;将旋转知识应用于解决实际问题时,缺乏灵活性和创造性。针对这些情况,教师在教学过程中应注重引导和启发,通过丰富的教学资源和活动,帮助学生克服困难,提高旋转相关知识的学习效果。同时,关注学生的兴趣和需求,激发学生的学习积极性,使其在主动参与中不断提升自己的数学素养。

九年级数学人教版上册第二十三章旋转第一课时教学设计

九年级数学人教版上册第二十三章旋转第一课时教学设计
2.引导学生运用数学语言描述旋转过程,提高学生的数学表达能力和逻辑思维能力。
3.通过小组合作、讨论交流等形式,培养学生团队协作能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学旋转变换的兴趣,激发学生探究数学问题的热情。
2.培养学生勇于尝试、克服困难的精神,增强学生在面对问题时主动寻求解决方案的信心。
4.课堂小结,巩固提升
-学生自主总结本节课所学内容,教师进行点评,巩固学生对旋转知识点的掌握。
-提问学生:你们认为旋转在生活中的应用有哪些?如何运用旋转变换解决实际问题?
5.拓展延伸,激发创新
-引导学生思考旋转在科技、艺术等领域的应用,如机器人运动、建筑设计等。
-鼓励学生发挥想象,设计具有创意的旋转图案,提升学生的创新意识和审美能力。
九年级学生在前两年的数学学习过程中,已经积累了丰富的几何图形知识和变换方法,具备了一定的空间想象能力和逻辑思维能力。在此基础上,他们对旋转变换的学习具备以下特点:
1.学生对旋转概念的理解较为模糊,需要通过具体实例和操作活动来感知旋转的性质和规律。
2.学生的空间想象能力发展不均衡,部分学生在描述旋转过程和求解旋转后的图形时可能存在困难。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组挑选一道具有挑战性的旋转题目进行讨论。
-要求学生在讨论过程中,注意运用旋转的性质和规律,寻求解决问题的方法。
2.各小组分享讨论成果,展示解题过程,其他小组进行评价和补充。
-教师适时给予指导,帮助学生完善解题思路,提高解决问题的能力。
(四)课堂练习,500字
3.能够运用旋转变换解决实际问题,提高数学应用能力。
(二)教学难点
1.理解旋转变换中旋转中心、旋转方向和旋转角度的概念。

2022年人教版九年级数学上册第二十三章旋转教案 图形的旋转 (第1课时)

2022年人教版九年级数学上册第二十三章旋转教案  图形的旋转 (第1课时)

23.1 图形的旋转(第1课时)一、教学目标【知识与技能】通过观察生活中的具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度与价值观】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.五、课前准备课件、图片等.六、教学过程(一)导入新课教师问:以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.学生思考并让学生感受到现实生活中存在着平移,轴对称变换.教师问:请观察下列图形的变化.1.新疆的风车田;(出示课件2)2.荷兰的大风车;(出示课件3)3.游乐场的摩天轮;(出示课件4)4.卫星拍摄到的台风“桑美”的中心旋涡;(出示课件5)5.钟表时针的转动;电扇上扇叶的转动.(出示课件6)(1)以上现象有什么共同特点?(2)钟表的指针、电扇的风叶在转动过程中,其形状、大小、位置是否发生变化呢?学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.(二)探索新知探究一旋转的概念教师问:1.观察下列图形的运动,它有什么特点?(出示课件8)2.钟表的指针在不停地转动,从12时到4时,时针转动了_120度.(出示课件9)3.怎样来定义这种图形变换?学生观察后思考并口答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.教师问:1.风车风轮的每个叶片在风的吹动下转动到新的位置.(出示课件10)2.怎样来定义这种图形变换?学生观察后思考并口答:把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.师生共同归纳如下:旋转的概念:把一个平面图形绕着平面内某一个定点O 转动一个角度,叫做图形的旋转.这个定点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点.线段OP与OP’叫做对应线段.出示课件12:如图点A绕_O点,往顺时针方向,转动了45度到点B.师生共同认定:旋转的三要素:旋转中心、旋转方向、旋转角度.出示课件13:例1 如图,△ABC为等边三角形,点P在△ABC中,将△ABP 旋转后能与△CBQ重合.(1)旋转中心是哪一点?(2)旋转角是多少度?(3)△BPQ是什么三角形?教师分析:(1)根据对应点到旋转中心的距离相等来确定旋转中心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)由旋转角和对应边的关系可以得到答案.师生共同解答:解:(1)旋转中心是点B.(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置时,正好转过了60°,所以旋转角的度数是60°.(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样△BPQ就是一个等边三角形.想一想:图形在旋转时,旋转的方向有几种?(出示课件15)教师提示:有两种情况,分别为逆时针方向旋转和顺时针方向旋转.出示课件16:巩固练习:若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.学生口答:O;∠AOB;60;A与B;B与C;C与D;D与E;E与F;F 与A出示课件17:师生共同认定:确定平面图形旋转时,必须明确:旋转中心,旋转方向,旋转角.教师提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素;②旋转变换同样属于全等变换.出示课件18:例2 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°教师分析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD 是对应边,∠BOD是旋转角,所以,旋转角为90°.出示课件19:巩固练习:如图,点P是正方形ABCD内一点,将△ABP绕B 点顺时针方向旋转到△CBP′的位置时,其旋转中心是点,旋转角度为.学生思考后口答:B;90°探究二旋转的性质出示课件20:如图,△ABC是如何运动到△A′B′C的位置?学生观察后口答:绕点C逆时针旋转45°.出示课件21:学生观察并根据上图填空:旋转中心是点__________;图中对应点_______________________________________;图中对应线段有_____________________________________.每对对应线段的长度.图中旋转角等于________.教师问:观察下图,你能得到什么结论?(出示课件22)学生答:角:∠AOA'=∠BOB'=∠COC'.线:AO=A'O,BO=B'O,CO=C'O.师生共同总结:旋转的性质(出示课件23)1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,OF=OC)2.两组对应点分别与旋转中心的连线所成的角相等.(∠DOA=∠EOB=∠FOC)3.旋转中心是唯一不动的点.(旋转中心O)4.旋转不改变图形的形状和大小.出示课件24:例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.师生共同解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴∠BE'E=45°,EE′=2√2在△EE′C中,E′C=1,EC=3,EE′=2√2,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.出示课件25:巩固练习:如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.求证:△BCF≌△BA1D.教师分析:根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D.出示课件26:学生板演:证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,由旋转的性质,可得A 1B=AB=BC,∠A=∠A 1=∠C,∠A 1BD=∠CBC 1,在△BCF 与△BA 1D 中,111∠=∠⎧⎪=⎨⎪∠=∠⎩A C A B BC A BD CBF ,,,所以△BCF ≌△BA 1D (ASA ).(三)课堂练习(出示课件27-37)1.如图,在△ABC 中,∠ACB=90°,AC=BC,D 是AB 边上一点(点D 与A,B 不重合),连结CD,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.2.下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.53.下列说法正确的是( )A.旋转改变图形的形状和大小B.平移改变图形的位置C. 图形可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对应点D恰好落在BC边上.若,∠B=60°,则CD的长为()A.0.5B.1.5C.D.15.△A′OB′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20°,∠A′OB=24°,AB=3,OA=5,则A′B′= ,OA′= ,旋转角等于.6.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角7.如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°8.如图,△ADE可由△CAB旋转而成,点B的对应点是E,点A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)、B(3,0)、C(1,4).请找出旋转中心P的位置,并写出P的坐标.9.如图所示,AB是长为4的线段,且CD⊥AB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.10.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB′,△ABB′有什么特征吗?参考答案:1.解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB, ∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS).(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.2.C3.B4.D5.3;5;44°6.D7.A8.解:根据旋转中心到对应点距离相等可以知道,旋转中心P既在线段AD的垂直平分线上,又在线段BE的垂直平分线上,它们的交点就是点P.9.解:把所有的阴影部分通过旋转都转移到同一个BC所在的圆中,则有大圆的半径OC=2.π×22=π.因此:S阴影=1410.解:150°;△ABB′是等腰三角形.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.1第2课时)的相关内容.七、课后作业1.教材59页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章旋转
单元要点分析
教学内容
1.主要内容:
图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.
2.本单元在教材中的地位与作用:
学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.
教学目标
1.知识与技能
了解图形的旋转的有关概念并理解它的基本性质.
了解中心对称的概念并理解它的基本性质.
了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.
2.过程与方法
(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.
(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.
(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.
(4)复习对称轴和轴对称图形的有关概念,•通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.
(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.
(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(7)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.
(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.
3.情感、态度与价值观
让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点
1.图形旋转的基本性质.
2.中心对称的基本性质.
3.两个点关于原点对称时,它们坐标间的关系.
教学难点
1.图形旋转的基本性质的归纳与运用.
2.中心对称的基本性质的归纳与运用.
教学关键
1.利用几何直观,经历观察,产生概念;
2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.
单元课时划分
本单元教学时间约需10课时,具体分配如下:
23.1 图形的旋转 3课时
23.2 中心对称 4课时
23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时。

相关文档
最新文档