电子科技大学研究生随机过程思考题
桂林电子科技大学博士研究生入学考试随机过程试题

桂林电子科技大学博士研究生入学考试试题科目代码:2001 科目名称:随机过程请注意:答案必须写在答题纸上(写在试题上无效)。
一、填空题(每小题4分,共32分)1、机变量X特征函数,随机变量X的数学期望= 。
2、已知随机变量X服从均值为3的指数分布,随机变量Y服从[0,X]上的均匀分布,则= 。
3、设随机过程是均值函数为0,方差函数为的正交增量过程,且,则= 。
4、设是参数为的Wiener过程,令,对,的相关函数= 。
5、设随机过程,其中是均值函数为2,方差为1的随机变量,则随机过程的相关函数= 。
6、设为一齐次马氏链,其步转移概率为,状态是正常返态非周期的,若在0时刻从状态出发经过1,2,3步首次返回的概率分别为,则。
7、设是一平稳随机序列,其谱密度为,则的相关函数= 。
8、设平稳过程的谱密度为,则的相关函数= 。
二、解答题(共68分)1、(12分)设随机变量Y服从均值为1的指数分布,令求(1)随机过程X(t)的一维概率密度函数,(2)X(t)的相关函数。
2、(12分)设随机过程,其中A,B都是均值为零,方差为且不相关的随机变量,证明:(1)是宽平稳随机过程,(2)的均值是各态历经的。
3、(12分)设震动按参数为的泊松过程发生,并记内发生震动次数为。
(1)若震动在内已经发生n次,且,对于,求;(2)若某装置在k次震动后失灵,求该装置寿命T的密度函数。
4、(12分)在电路系统中,若输入电压是一实平稳过程,输出电压满足随机微分方程,其中为常数,且的均值为0,相关函数,。
求(1)输出过程;(2)的谱密度及相关函数。
5、(10分)设齐次马尔可夫链的状态空间为,其转移概率矩阵为试:(1)正确分解此链并指出各状态的常返性和周期;(2)求不可约闭集的平稳分布。
6、(10分)设群体中各个成员独立地活动且以指数率λ生育。
若假设没有任何成员死亡,以X(t)记时刻t群体的总量,则X(t)是一个纯生过程,其,状态空间,设转移为,试计算(1);(2)。
(解答)《随机过程》第二章习题

第二章 Markov 过程 习题解答1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323===⋃===⋃===⋃⋃===⋃======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====⋃========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ∅====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
随机过程习题解析

其中 k 是 Boltzman 常数, T 为绝对温度, 给定分子的总动能为 e. 试求 x 方 向的动量的绝对值的期望值. 解:由题中所给分布律知分子质量为单位质量, 即有 e = 则所求为 ] [ ) 1( E |Vx | Vx2 + Vy2 + Vz2 = e 2
1 2
( 2 ) Vx + Vy2 + Vz2 .
4 解: EY (t ) = EX (t + 1) − EX (t ) = λ RX (s, t ) = Cov(X (s + 1) − X (s), X (t + 1) − X (t )) = Cov(X (s + 1), X (t + 1)) + Cov(X (s), X (t )) − Cov(X (s), X (t + 1)) − Cov(X (s + 1), X (t )) = λ [min(s + 1, t + 1) + min(s, t ) − min(s, t + 1) − min(s + 1, t )] 令 β = s − t , 当 β > 1 或 β < −1 时, RY (s, t ) = 0 当 0<β 当 −1 1 时, RY (s, t ) = λ (t + 1 + t − s − t ) = λ (t − s + 1)
这说明了 (Xn1 , · · · , Xnk ) 的分布函数与 n1 , · · · , nk 无关, 故 {X1 , X2 , · · · } 严平稳. 9. 令 X 和 Y 是从单位圆内的均匀分布中随机选取一点所得的横坐标 和纵坐标. 试计算条件概率 (
2 2
西安电子科技大学2011秋研究生随机过程试题

课程编号: 0721001 考试日期:考试日期: 2012 年 1 月 4 日考试时间: 150 分) 任课教师:任课教师:任课教师: 班号班号-saa a a a wE X l.i.ml.i.m X X lim )2C T T t -ò))22C TTTT-=-òò(2) 求状态5的首达概率(2)55f 和(5)55f以及计算511j jjm =å。
七. (12 分) 设j 为一齐次马尔可夫链的常返状态且周期为d ,则一定有,则一定有()lim nd jjn jjdp m ®¥=,其中jj m 为状态j 的平均返回时间。
的平均返回时间。
证明下面的问题:证明下面的问题:(1) 状态j 为零常返当且仅当()lim 0n jjn p®¥=。
(2) 状态j 为遍历的当且仅当()1lim 0n jjn jjpm®¥=>。
八. (12 分)分)设齐次马尔可夫链设齐次马尔可夫链{},0,1,2,...n X X n ==的状态空间{1,2,3,4,5,6}S =,且其且其 一步转移概率矩阵为一步转移概率矩阵为0.60.400.6000.400.10.10.10.10.50.1 00.20.20.40.2 0 00.2 0 00.8 00.4 0 0 0 00.6P éùêúêúêú=êúêúêúêúëû (1)试对状态空间进行分解。
)试对状态空间进行分解。
(2)问平稳分布是否存在?如果存在试求出所有的平稳分布。
(3)设初始分布0(), i P X i i S p ==Î,其中{}1261111,,...,,,0,0,,4634p p p ìü=íýîþ,求概率,求概率(1)?, =1,2,n P X n ==和概率1(1,2)?, =1,2,3,...=1,2,3,...n n P X X n +===。
电子科技大学 随机过程 覃思义 第一章1sjgc1.4

m 1 n 1
若存在实数 I, 使对任意的ε> 0, 存在δ> 0, 只要
λ max {( xi 1 xi ), ( y j 1 y j )} δ
0 i n 1 0 j m 1
( 时, 对任意分点及 xi *,y j *) 的任意取法, 不等式
a f ( x )d [ g ( x )] a
电子科技大学
b b
3) 设α,β是任意常数,则
f ( x ) d [ g ( x )].
随机变量的数字特征
以上三个等式成立的意义是: 当等号右边存 在时, 左边也存在并相等. 4) 若a < c <b, 则有
a f ( x )dg ( x ) c b a f ( x ) dg ( x ) c f ( x ) dg ( x )
dF ( x ) F ( x ) p ( x ) 0 , dx
若R-S积分存在则
f ( x )dF ( x ) f ( x ) p ( x )dx
电子科技大学
随机变量的数字特征
二、二元R-S积分简介
假定二元函数 F ( x , y ) 满足下述条件: 1) 对于平面上任意矩形 a1 x b1 , a2 y b2 ,有
均成立.
则记
a xb c yd
f ( x , y )dF ( x , y ) lim σ
λ 0
lim f ( x i* , y * ) F ( xi , x i 1 ; y j , y j 1 ) I j
λ 0 j 0 i 0
m 1 n 1
称 积 分 I 为 f ( x, y ) 关 于 F ( x, y ) 在 矩 形 {( x, y ) : a x b, c y d } 上的 R-S 积分.
随机过程-电子科技大学-彭江燕 (1)

5.4 齐次马氏链的状态为揭示齐次马氏链的基本结构,需对其状态按概率特性进行分类,状态分类是研究n 步转移概率的极限状态的基础.EX.1设系统有三种可能状态E={1, 2 ,3},“1”表示系统运行良好, “2”表示系统运行正常,“3”表示系统失效.电子科技大学电子科技大学以X (n )表示系统在n 时刻的状态, 并设{X (n ),n ≥0}是一马氏链. 在没有维修及更换的条件下, 其自然转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10010110902012022017333231232221131211p p p p p p p p p P 由矩阵P 可见,从“1”或“2”出发经有限次转移后总能到达“3”状态,而一旦到达“3”状态则永远停留在“3”.状态“1”, “2”与状态“3”有不同的概率特性.状态“1”, “2”与状态“3”有不同的概率特性.一、刻画状态特性的几个特征量二、状态类型分类三、状态类型判别条件四、状态间的关系五、状态空间的分解电子科技大学一、刻画状态特性的几个特征量定义5.4.4,记及对1,≥∈∀n E j i },)0(11,)(,)({ˆ)(i X n k j k X j n X P f n ij =−≤≤≠==称为(n 步)首达概率.系统从状态“i ”出发经过n 步转移后首次到达状态“j ”的概率特别地称)(n ii f 为首返概率;5.4 齐次马氏链的状态电子科技大学∑∞==1)(n n ijf称为最终概率.定义5.4.5 自状态i 出发迟早(最终)到达j 的概率为})0()(,1{i X j n X n P f ij ==≥=使存在定理5.4.1(首达概率表示式)有,及对1,≥∈∀n E j i ;10)1)(≤≤n ij f 2) 首达概率可以用一步转移概率表示为为状态i 的最终返回概率.ii f ji i i j i j i i i j i n ij n n p p p f 1211112)(−−∑∑∑≠≠≠=电子科技大学j i i i j i ji i i j i n ij n n p p p f 1211112)(−−∑∑∑≠≠≠= 证1)显然ii 1i 2j2)分析示意图如下})0(1,,2,1,)(,)({)(i X n k j k X j n X P f n ij =−=≠== .)0(1,,2,1,})({,)(⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=−====∈≠i X n k i k X j n X P E i j i k k k ∪第1步第2步第n 步()01;n ij f ≤≤电子科技大学⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧===−==−≠≠≠−i X j n X i n X i X P n j i j i j i n )0(})(,)1(,,)1({11112 ∪∪∪()(),{()},1,2,,1(0).k n ij k i j f P X n j X k i k n X i ≠⎧⎫⎪⎪====−=⎨⎬⎪⎪⎩⎭∪∑∑∑≠≠≠−=j i ji j i n 112 })0()(,)1(,,)1({11i X j n X i n X i X P n ===−=− ji i i j i j i ii j i n n p p p 1211112−−∑∑∑≠≠≠=定义5.4.2 对j ∈E , 称})0(,)(,1:min{i X j n X n n T ij ==≥=为从i 到达j 的首达时间.注:若右边是空集, 则令T ij =∞.随机变量EX.2在股票交易过程中令状态空间为E ={-1, 0, 1}各状态分别代表“下跌”,“持平”,“上升”.若X (0)=0, 有使<<<<k n n n 21电子科技大学 ,1)(,,1)(,1)(21===k n X n X n X }0)0(,1)(:min{01===X n X n t k 则121},,,,min{n n n n k == 注1T ij 表示从i 出发首次到达j 的时间.T ii 表示从i 出发首次回到i 的时间.注2 T ij 与首达概率之间有关系式:,2,1,,,},)0({)1)(∞=∈===n E j i i X n T P f ij n ij.,},)0({)2E j i i X T P f ij ij ∈=∞<=若X (0)=0, 有使 <<<<k n n n 21续EX.1设系统有三种可能状态E ={1, 2 ,3}, “1”表示系统运行良好, “2”表示系统运行正常,“3”表示系统失效.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10010110902012022017333231232221131211p p p p p p p p p P T 13(1)1313{1(0)1}f P T X ====131,20p =ji i i j i j i i i j i n ij n n p p p f 1211112)(−−∑∑∑≠≠≠= 系统的工作寿命,有电子科技大学(2)1313{2(0)1}f P T X ===13{(0)1}P T n X ≥=研究首达概率和首达时间有实际工程意义.……13{(0)1}P T n X ≥=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10010110902012022017333231232221131211p p p p p p p p p P [0,],n 是系统在内运行的可靠性有1113122321,400p p p p =+=13{(0)1}k nP T k X ∞====∑()13n k nf∞==∑电子科技大学定理5.4.2概率与首达概率有关系式,任意步转移及对1,≥∈∀n E j i ∪∞==⊂==1}{})(,)0({m ij m T j n X i X 因证:⎭⎬⎫⎩⎨⎧====∞=∪∩1}{})(,)0({m ij m T j n X i X })(,)0({j n X i X ==故.)(1)()(m n jjnm m ijn ijpfp−=∑=电子科技大学})0()({)(i X j n X P P n ij===⎭⎬⎫⎩⎨⎧=====i X j n X m T P nm ij )0(})(,{1∪},)0()({})0({1m T i X j n X P i X m T P ij nm ij ======∑=⎭⎬⎫⎩⎨⎧====∞=∪∩1}{})(,)0({m ij m T j n X i X ∪nm ij m T j n X i X 1},)(,)0({=====})(,)0({j n X i X ==故电子科技大学马氏性})()({})0(,11,)(,)({1j m X j n X P i X m k j k X j m X P nm ==⋅=−≤≤≠==∑=})()({1)(j m X j n X P f nm m ij ===∑=()1{(0)}{()(0),}nn ijij ij m P P T m X i P X n j X i T m =======∑.)(1)(m n jjnm m ijpf−=∑=定义5.4.1使,若存在对1,,≥∈∀n E j i ,0)(>n ijp称自状态i 可达状态j ,记为.j i →定理5.4.3的充分必要条件是0>ij f .j i →证:必要性因01)(>=∑∞=m m ijij ff 至少存在一个n 使,有)(>n ijf ()()()1nn m n m ijijjjm pfp−==∑()(0)0n ijjj fP ≥>定义5.4.3称若,,0}{E j T P ij ∈=∞=∑∞===1)(][n n ijij ij nfT E μ为从状态i 出发, 到达状态j 的平均时间(平均步数).充分性因j i →使,存在1≥n 01)()()(>=∑=−nm m n jjm ijn ijpfp则在中至少有一个大于零,故)()1(,,n ijijff 01)(>=∑∞=m m ijij ff 特别当i=j 称jj μ为状态j 的平均返回时间.电子科技大学二、状态类型分类状态分类是研究n 步转移概率的极限状态的基础, 能有效地揭示其深刻的统计规律.续EX.1设系统有三种可能状态E ={1, 2 ,3},“1”表示系统运行良好, “2”表示系统运行正常,“3”表示系统失效.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∞→100100100lim )(n n P该系统的状态“3”是吸收态, 经有限步均会被吸收, 直观分析可得有必要分析各种状态的类型.电子科技大学定义5.4.6对状态i ∈E , 最终返回概率为f ii ,若f ii <1,称状态i 是非常返的(或瞬时的).若f ii =1,称状态i 是常返的;若马氏链的每个状态都是常返的, 则称为常返马氏链.f ii =1表示系统从状态i 出发几乎必定会返回状态i .定义5.4.7对常返状态i ∈E , 平均返回时间为μii ,若μii <+∞, 称状态i 是正常返的;进一步, 根据常返状态的平均返回步数再划分为两类.注若μii = +∞, 称状态i 为零常返的。
(完整版)随机过程习题答案

解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)
。
解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2
随机过程习题及答案

随机过程习题及答案第二章随机过程分析1.1学习指导1.1.1要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1.随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2.随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1)如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率称为随机过程?(t )的二维分布函数。
如果存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。
如果存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。
3.随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。
随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为其中,f 1(x ,t )为?(t )的概率密度函数。
随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.若 ,是否有 ?
有施瓦兹不等式及三角不等式可知成立。
4.你认为关于随机过程的均方极限最本质的性质是哪一条?为什么?
5.均方连续随机过程的样本函数是否一定是连续函数?
不一定。参数为r的泊松过程均方连续,但是样本函数不连续。
4.白噪声过程是否一定是独立过?
不一定。
标准高斯白噪声与[0,1]均匀分布的乘积得到的白噪声过程不独立不相关。
5.独立过程是否是独立增量过程?反之?
独立过程是独立增量过程,反之不一定。
三、第二章:
1.能否保证Y= CX 服从非退化正态分布?
C的行列式不等于0,即C可逆。
2.随机振幅电信号是否是正态过程?可否写出任意n维概率密度?
随机过程思考题总结
一、第零章(附录):
1.如何准确理解“维”的含义?
2.如何理解“定义在同一概率空间”?
3.定义连续性随机变量的条件分布会遇到什么问题?
二、第一章:
1.随机过程可以描述哪些工程技术中的随机现象,试举例?
来电次数、误码率是泊松过程,机器维修次数等。天气预报。
2.为什么可以用有限维分布函数族描述随机过程的统计特性?
不一定。泊松过程是独立增量过程但不是平稳过程。
3.为什么需要特别研究平稳过程的自相关和互相关函数?
可以表示出该平稳过程
4.联合平稳过程意义?
5.时间平均、时间相关函数与统计平均、统计相关函数概念有什么本质区别?又有什么联系?
6.均值的遍历性与自相关函数的遍历性是否有必然的联系?
过程的自相关函数的遍历相当于是自相关函数过程的均值的遍历性。
7.列举平稳过程遍历性的判断方法?
六、第五章
1.如何理解马氏过程的马氏性? 如何验证过程的马氏性?
2.马氏过程的分布和数字特征有什么特点?
3.齐次性描述的是转移概率与绝对时间的无关性,齐次马氏链定义中的一步转移概率可否用二步转移概率代替?为什么?
是,知道他的均值函数和协方差函数就可以写出他的任意n维概率密度。
3.怎样验证随机过程XT={X(t), t∈T}是正态随机过程?利用正交矩阵变换验证并写出算法依据?还有其他方法吗?
特征函数
四、第三章:
1.在二阶矩随机变量空间除定义均方极限外,还可以定义其他极限吗?
距离定义
2.均方极限与普通函数极限有什么相似之处?
柯尔莫哥洛夫定理可以证明,在一定条件下,随机过程和n维分布函数族是一一对应的,因此可以用有限维分布函数族描述随机过程的统计特性。
3.为什么说随机过程的均值函数和自相关函数在研究过程的概率与统计特性尤其重要?
均值函数表征了随机过程在各时间点上的平均特征。方差函数描述了随机过程在各时点处的波动程度。刻画两个不同时点随机过程状态之间的线性关联程度,转化为自相关函数的收敛问题。 关于随机过程的均方极限的存在性,均方连续性,可积性和可导性都可转化为自相关函数的性质讨论问题。
6.均方微积分是否具有普通函数微积分的所有性质, 为什么?
五、第四章
1.严平稳性与宽平稳性的实际意义?
严平稳过程的有限维分布不随时间推移而改变,表示物理系统的概率特征不随时间的推移而改变,但严平稳过程不一定是二阶矩过程。宽平稳性只保证了过程的一阶矩和二阶矩不随时间的推移而改变。
2.独立增量过程是否为平稳过程?